

G67
+
Scie

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.
http://www.archive.org/details/cu31924029881095

SCIENTIFIC RESULTS

ow tue

UNITED STATES AROTIO EXPEDITION.

STEAMER POLARIS, C. F. HALLL COMAIANDING.

> VOL. I.

PHYSICAL OBSERVATIONS.

LIY

EMIL BESSEISS,
chef of the schentheic department, unfted states ahotic expledition.

WASHINGION:
GOVERNMENT PRINTING OFFICE. 1876.

$$
\begin{aligned}
& \text { AT36F61 } \\
& \text { A. } 125478
\end{aligned}
$$

National Academy of Sciences,
 Washington, D. C., March 10, 1875.

Srr: I have the honor to submit herewith the first volame of the report of the scientific results of the "Expedition to the North Pole," prepared by Dr. Emil Bessels, nuder the direction of the National Academy of Seiences, in accordance with the law of Congress.

Very respectfully, your obedient serrant,
JOSEPH HENRY, President National Academy of Scienecs.
Hon. George M. Robeson,
Sccretary of the Navy.

Washington, D. O., March 1, 1875.
SIR: Having been ordered by the Secretary of the Nary to report to jou the scientific results of the late United States Arctic Expedition, I herewith submit the first volume of the report, containing the "Physical Observations."

Some portions of the volume have been preparcd in a somewhat hasty manner, in order to render the information collected immediately available for the use of the Euglish expedition abont to be dispatched to the same regions. But as in most cases the complete original records are also published, such further use can be made of them as may be desirable.

I have the homor to be, sir, rery respectfully, \&c.,

EMIL BESSELS,

Olief of Scientific Department Unitcd States Arctic Expcdition.
Prof. Joseph Henry, LL. D.,
President of the National Acadcmy of Scicnccs.

CONTENTS.

Mydrogriphy : Page.
Passage 2
Condition of the ice
Condition of the ice 5
Deusity and temperature of the sea and remarks on currents 8
Tides at Polaris Bay. Introductory 19
Record 21
Determination of half-tide level 36
Effect of chauges in the atmospherie pressure upon the half-tide level 42
Effect of the wind upon the half-tide level 46
Effect of the moon's and sun's declination on the variation of the half-tide level 49
Reduction of tides. 52
Semi-mensual inequality 65
Age of the tide 71
Effect of changes in the moon's parallax ou the serui-mensual inequality in time and height 72
Effect of changes in the moon's declination ou the semi-meusual inequality in time and height
76
76
Sun's declination effect 81
Diurual inequality 81
Separation of the resultant tide-wave into its compouent parts 83
Investigation of the form of the tide-waves 83
Progress of tho tidal wave 85
Temperature of tee air:
Record and discussion of observations made at Polaris Bay. Iutroductory 1
Description of station and observatory 1
Description of instruments 4
Comparison of thermometers. 4
Record 9
Maxima and minima observed 19
Daily means of temperature 19
Hourly means of temperature 20.
Aunnal fluctuation of temperature at Polaris Bay 20
Change of mean temperature with the latitude 23
Diurnal fluctuation of temperature at Polaris Bay 26
Diurnal fluctuation of temperature during seasons at Polaris Bay 29
Aualytical elements and expressions used in computation 32
Comparison of computed and observed valnes 34
Thermic wind-rose 35
Table of corrections 38
Temperature of the air at Polaris Honse. Introductory 39
Record 40
Maxima and minima observed 47
Daily means of temperature at Polaris House 47
Hourly meaus of temperature at Polaris House 48
Annual fluctuation of temperature at Polaris House 48
Diurnal fluctuation 49
Diurual fluctuation during seasons 50
Aualytical elements aud expressions used in conputation 51
Comparisou of computed and observel values. 53
Page.
Temperature of the air-Continued.
Thermic wind-rose 54
Table of corrections 56
Hygrometrical observations:
Record and discussion of olservations at Polaris Bay. Introductory 1
Record 4
Daily and hourly means of force of vapor 53
Annual fluctuation of force of vapor 54
Dinrnal fluctuation of force of vapor 55
Comparison of computed and observed values of force of vapor, (seasons) 57
Aualytical elements and expressions used in computation of diurual fluctuation of force of vapor 57
Comparison of computed and observed valnes, (months). 60
Table of corrections 62
Daily and hourly means of relative humidity 63
Annual fluctuation of relative humidity - 64
Diurnal fluctuation of relativo humidity 66
Diurnal fluctuation of relative humidity during seasous 68
Analytical elements and expressious used in computation 71
Comparisou of compnted and observed values 3
Atulic wind-rose of Polaris Bay 75
Table of corrections 76
Daily and hourly means of dew-point 77
Aunual fluctuation of dew-point 78
Dinrnal fluctuation of dew-point 79
Diurual fluctuation of dew-point duriug seasons 80
Aualytical elements and oxpressions used in computation 84
Comparison of computed and observed values 87
Difterence between temperatures of the air and of dew-point 90
'Table of cor'vectious 93
Hygrometrical olservations at Polaris Honse. 95
Record. 96
Daily and honrly means of force of vapor 132
Amual dinctuation of force of vapor 133
Diarual fluctuation of force of vapor 134
Avalytical elements and expressions used in conputation 136
Comparison of computed and observed values 137
Table of corrections $1: 39$
Daily and hourly means of relative humidity 140
Annual lluctuation of relative humidity 141
Diurwal fluctuation of relative humidity 142
Analytical elements and expressions ased in computation 145
Comparison of computed and observed valuos. 146
Atmic wind-rose 147
Table of corrections 148
Daily and hourly means of dew-point 149
Annual fluctuation of dew-point 150
Dinrual fluctuation of dew-point and temperature of the air 151
Analytical elements and expressions used in computation 154
Comparison of computed and observed values 155
Table of corrections 157
Atmospberic precipitation. Introductory 158
Record of atmospheric precipitation at Folaris Bay 159
Condcused result of precipitation at Polaris Bay 1 1i0
Deposits of boar frosts and ice-crystals at Polaris Bay 160
Record of atmospheric precipitation at Polinis Llouse 161
Contensed result of precipitation at Polaris House い位
Comparison of atmospheric procipitation at Polaris Bay and Polaris llouse 162
Atmospileric pressure:
Record and discussion of olservations at Polaris Bay. Introductory 1
Record 5
Daily and hourly means of atmospleric pressure 18
Aunual fluctuation of atmosphoric pressure 19
Annoal tluctuation corrected for force of vapor $\because 0$
Annual Auctuatiou of atmospheric pressure at various stations 21
AtMospheric pressure--Continucd. Page.
Diurual fluctuation of atmospheric pressure at Polaris Bay 21
Dinraal fluctuation, corrected for force of vapor
21
21
Diurnal fluctuation of atmospheric pressure at various statious 24
Baric wind-rose of Polaris Bay 25
Table of corrections ${ }^{2} 7$
Record of discussion of observations made at Polaris Housc. • Introductory 29
Record 30
Daily and hourly means of atmospheric pressure 39
Aunual fluctuation of atmospheric pressure 40
Annual fluctuation, corrected for force of vapor 40
Diurnal flnctuation of atmospheric pressure 40
Dinrnal fluctuation, corrected for force of vapor. 42
Baric wiad-rose 42
Table of corrections 43
Winds:
Record and discussion of winds at Polaris Bay. Introductory I
Record 4
Analysis of winds at Polaris Bay 35
Duration of storms 37
Record and discussion of winds at Polaris House. Introductory 39
Record 40
Analysis of winds at Polaris House 61
Duration of storms 65
Rotation of storms 65
Rotation of winds at Polaris Bay 66
Rotation of winds at Polaris House 67
Rotation of winds at various other stations 68
Solar radiation :
Solar radiation at Polaris Bay. Introductory 1
Record 4
Solar radiation at Polaris Honse. Introductory 41
Record 42
Recapitulatiou $7: 3$
Results 80
Terrestrial radiation :
Record and discussion of observations at Polaris Bay 1
Record of observations made at Polaris House. 7
Discussion of observations made at Polaris House 25
Face of tile sky and state of weitiler:
Face of the sky and state of weather at Polaris Bay. Introductory 1
Record 4
Recapitulation 64
Face of the sky and state of weather at Polaris Honse 65
Record 66
Recapitulation 108
Observations on ozone :
Observations made at Polaris Bay and Polaris House. Introductory 1
Record of observations at Polaris Bay 4
Record of observatious at Polaris House 8
Remarks on above 12
Meteorological observations taigein at sea:
Meteorological observations taken during the passage 1
Meteorological observations at Newman's Bay 9
Discnssion of the observations taken at Newman's Bay 12
Meteorological observations during drift of ice-floe party 15
Mctcorological record kept daring retreat of expedition from Polaris House to Mclville Bay 19
Meteorological observations on board whaling-steamer Arctic. Introdnctory 23
Mcteorological observations in Baffin Bay 24
Meteorological observations in Prince Regent Inlet 29
Mcteorological observations in Baffin Bay 36
Meteorological observations in Davis Strait 39
Meteorological observations in tho Nortb Atlantic 44
Meteorological observations takex at sea--ContinuedRecapitulation48
Temperature 43
Atmospheric pressure 50
Winds 51
Hygrometrical olservations 52
Face of the sky 53
Solar radiation 54
(IIronometer Journal:
Introdnctory 1
Journal 4
Astronomical observations:
Iatroductory 1
Observations for latitude 7
Observations for time and longitude 37
Longitude of Polaris House 58
Pendulum experiments:
Pendulam oxperiments made at Polaris Bay. Introductory 1
Record of vibrations 5
Method of reduction. Temperature of pendnlum 37
Chronometer comparisons 45
Reduction 49
Peudulum experiments made at Polaris House. Introdnctory 71
Record of vibrations 72
Formulic and method of reduction 88
Cbronometeŕ comparison 89
Reduction 90
Recapitulation of results 98
Magnetic onservations and list of auroras:
Introductory 1
Observations and results of magnetic declinations
4
4
List of auroras 6
Psychnometrical tables:
Introductory 1
Tables 4

LIST OF ILLUSTRATIONS.

PLATES.
Hydrography :Chart showing the tracks and discoveries, (in pocket.)
Cluart of co-tidal linesE6
I. Rise and fall of tides at Polaris Bay 86
II. Rise and fall of tides at Polaris Bay 86
1II. Dinrnal inequality in height, high water and low water 86
IV. Diurnal inequality in height, high water and low water 86
V. Lunitidal intervals, high water 86
VI. Lunitidal intervals, low water 86
VII. Diurnal inequality in time, high water 86
VIII. Diurnal inequality in time, low water 86
LX. Separation of the diurnal and semi-diurnal wavo 86
Temiperature of tile air :
I. Plan of observatory at Polaris Bay 56
II. Ground plan of observatory at Polaris Bay 56
Hygrometrical observation :
Tension of vapor in English iuches 163
WOOD-CUTS.
Hyorography :
Viguette of the Polaris 1
Semi-mensual inequality in time 68
Semi-mensual inequality of height 70
Semi-mensual inequality of mean level 71
Form of spring and neap tirle waves 84
Temperature of the air:
Sketch of thermometer-box 4
Annual fluctuation of temperature at Polaris Bay 22
Diurnal range of temperature at Polaris Bay 27
Diurnal fluctuation of temperature at Polaris Bay. 29
Diurnal fluctuation of temperature at Polaris Bay 50
Hygrometrical observitions:
Diurnal fluctuation of force of vapor at Polaris Bay 55
Annual fluctuation of relative humidity at Polaris Bay 65
Diurnal fluctuation of relative humidity at Polaris Bay 66
Diurual fluctuation of relative humidity and force of vapor, during spring, Polaris Bay. 67
Dinrnal ductuation of relative humidity and foree of vapor, during stmmer, Polaris Bay 68
Dinmal fluctuation of relative humidity and force of vapor, during antumn, Polaris Bay 69
Diurnal fluctuation of relative humility and force of vapor, during winter, Polaris Bay 70
Dinrual fluctuation of temperature of the aic and dew-point, during spring, Polaris Bay 81
Dinual fluctuation of temperature of the air and dew-point, during summer, Polaris Bay $8 \cdot 2$
Diumal flnctuation of temperature of the air and dow-point, during autumn, Polaris Bay 83
Diarual flnctuation of temperature of the air and dew-point, dming winter, Polaris Bay $\therefore 4$
Dimmal fluctuation of force of vapor, winter, half zear, at Polaris llouse 134
limrnal flactuation of relative hamidity, winter, half year, at Polaris House 142
Diomal fluctuation of force of vapor and relative humidity dnring winter, at Pularis Honse 143
Diornal fluctuation of force of vapor and relative humidity during spring, at Polaris llonse. 1 1.1
Diurnal fluctuation of temperature of the air and dew point, winter, at Polaris Honse $15:$
Diarnal flnctuation of temperature of the air and dew point, spring, at Polaris Honso 153
Page.
ATMOSPHLREIC PRESSURE 20
Annual fluctuation of atmospheric pressure at Polaris Bay
$2: 3$
$2: 3$
Diurnal fluctuation of atmospheric pressure at Polaris Bay
26
26
Baric wind-rose of Polaris Bay
Baric wind-rose of Polaris Bay
41
41
Didrnal fluctuation of atmospheric pressure at Polaris House
Observed and computed velocities of wiud at Polaris House 36
Solar radiation
Black-bulb thermomoters 1
Chronometer journal:
Diagram showing positiou of box-chronometer in cabin of steamship Polaris 1
Pendulum experiments :
The Hayes pendulum 1
Cross-section of observatory showing pendulum and telescope 2
Diagram showing fastening of lower portion of peudalum-case 3

. ERRATA.

Atmospherie Pressure:
Page 40, line 21, read "April" instead of "May."
Page 40, line 22, read " $30^{\text {in }}$. 2109, during April," instead of " 29 in. 9341 duriug November." Page 40, line 28, omit "which is not at all likely."
Face of the Sky and State of Weather:
Page 64, line 17, read " mostly" instead of " nearly entirely."

Pendulum Experiments:

Page 2, line 3, read "very nearly" instead of "exactly."
Page 3, liue 3, read "test" instead of "tell."
Psychrometrical Tables:

HYDROGRAPHY.

IIYI)ROGRAPIIY.

The United States steamer Polaris, a foretopsail sehooner of three hundred and eightyseven tons, commanded by the late C. F. Hall, left the Washington wavy-yard at $12^{\mathrm{h}} 30^{\mathrm{m}}$ p. m., Jume 10, 1871, bound for Brooklyn, where she dropped anchor June 14 at $7^{\text {b }} 30^{\mathrm{m}}$ a. m. After having been mate ready for sea she left this port the evening of the 29 th, making New Lomdon Harbor the following morning, where she remained until July 3. Making sail at day-break she left the harbor, and, after having passed Rave Rock at $5^{\text {l }}{ }^{2} 0^{\prime \prime \prime}$, shaped her conse tor New Foumdland, reaching St. John's Harbor near noon July 11, where she remained till the 19th.

The first port made in Greenland was Fiskernaes, in latitude $63^{\circ} 5^{\prime}$ N., longitude $65^{\circ} 33^{\prime} .5$ W., where the ressel dropped anchor in the afternoon of July 27 , and remained till dar-break July $\because 9$. Coasting aloug the steep cliffs, Holsteinburg, in latitude $66^{\circ} 57^{\prime}$ N., longitude $33^{\circ} 533^{\prime} .7$ W., was reached ou July 31 at $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$. Thence she started again Angust 3 at ${ }_{2} \mathrm{p}$ p. m., arriving, 24 hours later, at Goodhavn, in latitude $69^{\circ} 14^{\prime} . \overline{\mathrm{I}}$ N., longitude $53034^{\prime} \mathrm{W}$. Here she had to await the arriral of the Uuited States steamer Congress, a supply-vessel dispatched from New Iork. Having coaled up and taken the stores on board, she left Goodharn August 12 at $2^{4} \mathrm{p}$. m. and dropped anchor at Upernivik, in latitude $22^{\circ} 46^{\prime} \mathrm{N}$., longitude $56^{\circ}{ }^{2} \mathrm{~W}$. ., the following day at $11^{\mathrm{h}} 30^{\mathrm{m}} \mathrm{m}$. m. She put. to sea again on the 21 st at $8^{\mathrm{h}} 30^{\text {wu }} \mathrm{p}$. m., reached Kingigtok Island at $11^{\mathrm{b}} \mathrm{p}$. m., where she stopped for two hours, and then she made her way to Tassiussak, latitude $73^{\circ} 21^{\prime}$ N., longitude $56^{\circ} 5^{\prime} .7 \mathrm{~W}$., dropping auchor at $5^{11} 30^{\mathrm{m}}$ a. m . on the x_{2}. Leaving this place, the most northern settlement of white men on the globe, at $\mathscr{y}^{11} 1 j^{m} \mathrm{p}$. m. on the 24 th, her course was shaped to the westward across Melville Bay. With the exception of a number of bergs scarcely any ice was met with, and at noon the next day she found herself in latitude $75056^{\prime} \mathrm{N}$., lougitude $69026^{\prime} .5 \mathrm{~W}$., passing Conical Rock at a distance of about 12 miles at about $1^{\mathrm{h}} \mathrm{p}$. m . and Cape Duiley Digges one honr hater. At eight in the eveuing Grauville Bay was opened, and at 9^{4} the ressel was surrounded by broken ice, throngh which she steamed withont any difficnlty, passing Fitz Clarence Rock at $11^{\mathrm{h}} 10^{\mathrm{mm}}$. Her position at noon on the 27 th of August was latitude $77^{\circ} 31^{\prime} \mathrm{N}$., longitude $73^{\circ} 4 t^{\prime} \mathrm{W}$., and at $3^{1 \mathrm{n}} \mathrm{p} . \mathrm{m}$. she doubled Cape Mlexander, thus enterings Smith Sonnd. At $4^{41} 37^{\text {ru }}$ Port Fonlke was passed, at $6^{1 \mathrm{~h}} 50^{\mathrm{m}}$ Cairn Point, and at eight in the evening she found herself abreast of Van Rensselater Harbor, shaping her course more to the northward and heading for Cape Frazer, a prominent landmark on the east coast of Grinuell Land, which was ionbled at $8^{11} 30^{\mathrm{un}} \mathrm{a}$. m . August 23 , atter a hoat had landed to examine a small bight in the coast. Her position on the same day at noou was latitnde sor 3^{\prime} N., longitude $69^{\circ} 2^{\prime}$ W. Half an hour later Cape Nortou Shaw, the sonth cape of Scoresby Bay, was sighted, and at $2^{1 \mathrm{~h}} 30^{\mathrm{m}}$ she doubled Cape Mcolintock. Following the trend of the coast at an average distane of from 8 to 10 miles she passed between Hans Island, latitude
$80^{\circ} 48^{\prime} \mathrm{N}$., and the main laud at $12^{\prime \prime} 30^{\mathrm{m}}$ a. m., August 29. As a dense fog was settling, the vessel was mate fast to an jee floo at about S^{11} a. p., aud when it began to clear toward noon she was east off again. A meridian altitude of the sun placed her in latitude $81^{\circ} 20^{\prime} \mathrm{N}$. (longitude $64^{\circ} 34^{\prime}$ W.), which was the northernmost position determined astronomically at sea. From here Robeson Cbannel appeared to be land-locked toward the north, but steaming on for about 5 miles the land toward the east and west began to recede, and the ehannel was opened again. The atmosphere being most of the time bazy or obseured by deuse fog, the vessel steamed north at an average speed of about 6 knots, keoping somowhat nearer to the east eoast of the chamel than to the west coast, and passing bnt little ice. As the fog grew denser and denser, and as cousiderable ice appeared, she was made fast to an iee-field about 6 miles in leugth at $9^{\mathrm{h}} 35^{\mathrm{mI}} \mathrm{a}$. m. August 30 , where she remained till $7^{\mathrm{h}} 15^{\mathrm{m}}$ in the evening. At $8^{\mathrm{ln}} 55^{\mathrm{m}}$ a boat crossed over to a little bay, now known as Repulse Harbor, but was prevented from landing by the swift tidal current. As it was growing thicker the vessel was moored to a floe at $11^{14} 30^{\mathrm{m}} \mathrm{p} . \mathrm{m}$., getting uuder way once more at $6^{\mathrm{h}} \mathrm{a}$. w., on the 31st. At $7^{\mathrm{h}} 50^{\mathrm{m}}$ sho had to be made fast again on account of fog, and when it cleared toward 9 o'elock she was undor stean again. In the eourse of the afternoon another attempt was made to land at Repulse Harbor, which proved more successful ; but as the little bight was filled with ice, and as it was open to the north winds, it was not considered to be fit for an anchorage.

Since the pack north of Repulse Harbor apparently stretelied across the chaunel, the vessel was headed west, when she found herself in latitude $82^{\circ} 16^{\prime}$ N., longitude $60^{\circ} 3^{\prime} \mathrm{W}$., with the intention to attempt to get north along the coast of Grimuell Land. Dense fog prevailing after 5 o'clock, she was made fast to a Hoe at $5^{\mathrm{h}} 30^{\mathrm{m}}$, where she had to remain till $9^{\mathrm{h}} 25^{\mathrm{m}}$ the next morning (September 1), but scarcely had she beon under way for 35 minutes when it grew thick again, and she had to be tied up once more, getting beset a short time afterward when the tide began to run flood. It continued to be more or less foggy until the evening of September 4 , the vessel drifting apparontly south during the whole time she was made fast to the floo. When it elearel, at about $8^{h} p . m$., the remainder of the provisions that had been previously lauted on the floe was taken on board again; the vessel was east off at $S^{h} 45^{\mathrm{m}}$ and stood in for the east coast of the channel.

At $12^{\mathrm{h}} 30^{\mathrm{m}}$ a. m., Soptember 4, she anchored in Polaris Bay, in latitude $81^{\circ} 30^{\prime} .4 \mathrm{~N}$, longitude $62015^{\prime} \mathrm{W}$., in thirteen fathoms of water, under the protection of a large berg and some grounded ice, named Thank God Harbor, where she was prepared for winter-quarters. As a place of such character ean seareely be termed a harbor, since the ieeberg, named Providence Berg, broke to pieces under our own eyes, and as the fragments are very likely dissipated by this time, we are perforce compelled to adopt the name Polaris Bay as the only one applicable to the permauent features of the locality.

A lieavy gale from the northeast broke the ice on November 20, ant, setting it adrift, the ves. sel swung to her anehor and against the berg in question, which latter, in the eourse of the winter, was pressed farther and farther toward the shore. The Polaris, lying between the two and resting on a projecting tongue of the berg, heeled over at every low tide, sometimes as much as thirty degrees. The perpetual strain thus produced started her stem and sprang a keak, wbich crippled all further progress of the expedition.

During the latter part of June, 1872, the Polaris was sawed out and bore up for home August 12. In making her way through Kennedy Channel she got beset three days later, and drifting south to about latitude $8^{\circ} 1^{\prime} \mathrm{N}$. , longitude $75^{\circ} \mathrm{W}$., the ice round her suddenly parted duriner the night of October 15. White in this rather precarions position, a portion of her erew and most of her provisions were landed on the floe, to which she was moored. Uuter the combined influence of a strong sonthwest gale and a swift tidal current she parted her hawsers and got separated from the portion of the crew that had been landed on the floe. The followiug morning she tound herself north of her previous position, almost abreast of Life-boat Cove, where she was beacherl, in latitude $78^{\circ} 23^{\prime} .4 \mathrm{~N}$., longitude $72051^{\prime} \mathrm{W}$. In the spring of 1873 two boats were built of a portion of ber timber, and leaving Polaris House June 3 the fourteen survivors were picked up by the Scotch whaling-ship Ravenscraig on the 23d in the vicinity of Cape York. After liaring been able to get clear of the ice of Melville Bay, the Ravenscraig crossed over to the west sille of Baffin Bay, and in steaming through Lancaster Sound she fell in with the wbaling-ship Aretic, from Dun-
dee, on July 7. A portion of the officers and erew of the Polaris was transferred to Captain Adams's vessel, and afterward, when Captain Allen met the Intrepid, the otirer in command of the latter kiudly took another portion on board. The track of the Arctic, as far as it refers to the meteorologieal observations taken on board of this ressel, is laid down on the map accompanying this volume.

CONDITION OF THE ICE.

A critical examination of the history of aretic exploration demonstrates the fact that the scope of the different discoreries made by means of ressels is in inverse proportion to the extent of the ice toward the region of departure, while that of sledge-traveling is governed almost solely by the condition of the ice, whether swooth or hnmmocky, stationars or drifting, compact or intersected by lanes of open water. It will furthermore be seen that the extent of the ice is not ouly subject to great ehanges during the different seasons of one and the same year, but that it also varies in different rears, according to the normal or anomalous march of the temperature of the locality in question, to the direction of the prevailing winds in the vicinity, and to other iufluenees . ouly partly knowu, and whose study would mell repay for the time spent in their investigation.

As we propose to give some results relating to this subject in the second volume of this publieation, where we shall dwell more in detail on the glacial system of Greeuland, and of the aretic region in general, we shall limit ourselves here to the observations made during the expelition.

In steaming north, after having left Tassiussak, the first pack was met with between $11^{\text {h }}$ and $12^{\text {h }}$ p. m., Angust 27, in about latitude $79^{\circ} 3^{\prime} \mathrm{N}$., longitude $72^{\circ} \mathrm{W}$., stretchiug apparently across the sound. Following a lead, the ressel soon found herself in tolerably clear water, extending along the coast of Grinnell Land. After haring passed the eightieth parallel the quantity of ice diminished, and but very few bergs were seen north of this latitude. During the forenoon of August 29 some old floes made their appearance, to one of which the ressel was made fast for sereral hours on aceount of dense fog. Having been monoored, she steamed north again, meeting larger quantities of ice only occasionally, till she found berself north of latitude 820 , whell she fell in with heary fields and high hmmocks, intersected by minor lanes of water, and stretching across Robeson Channel near latitude $8: 16^{\prime} \mathrm{N}$. From the deek of the ressel the barrier appeared more or less solid, bnt dense elonds of frost-smoke bung to the north of it, and from the crow's. nest a considerable body of open water conld be seen.

As it seems, Robeson Channel, Hall's Basin, Kennedy Channel, Smith Sound, and Smith Strait are never eutirely trozen over; at least, it was always possible to detect open water in one or the other direction, both during our stay at Polaris Bay and at Polaris Honse. If we take the prevailiug direction and force of the wind into consideration, and if we remember that the different ehannels above mentioned are narrow, and, comparatively speaking, rery deep, thas giving occasion to a swift tidal eurrent, we cau scarcely expect anything else. During the winter and spring' of 1871-72 the only stationary ice near onr winter-qnarters was fond along the shore, extending in a narrow belt from a few miles north of Cape Lupton, along the shores of Polaris Bay, to the mouth of Petermann's Fjord, and growing very hummoeky near Cape Lucie Marie. South of Cape Morton, along the northwest coast of Petermann's Peninsula, it was found a little smoother in April, 1872, althongh intersected by lanes of water, while there was scarcely an ice-foot along John Brown Coast, and a traveling party, trying to reach Cape Constitution, was stopped by open water, and hat to retmrn. As far as the observations made at Polaris Bay aud Newman Bay go, the ice in the chaunel was adrift during the greatest portion of the time; it was stationary only on a few occasions, during Mareh, when the temperature was low, and when there was not much wind. Owing to the eombined action of curreuts and wiuls, the ice forming in deep channels, tanked by steep shores, will always be fonnd hummocky; and, indeed, that of Robeson Chamel and Hall's Basin was of the worst description. It was rongher than that of Smith Straits, the bad eondition of which prevents the natives living near Cape Alexander from crossing the strait, searcely 30 miles wide, and from commnnicating with the Eskimos inhabitating the region of Ellesmere Land, near Cape Isabella.

It wonld lead us too far to give a detailed account of the condition of the ice during the time spent at the winter quarters of the expedition. It will be suffieient to state that, during spring
and summer of 1872, the sea in Hall's Busin and Robeson Channel was in such a condition that, during the navigable season, the lanes of open water intersecting the ice were scarcely wide enough to permit a boat to be launched, while they were too mumerous aud the ice too rough to encourage sledge-traveling. In Hall's Basin the drift of the ice was iu most instances sontherly, acceleraterl by northeast winds and the flood-tide, which runs stronger than the ebb. The influence of the latter is less marked, and it was only when the returning ebb was accompanied by soatherly winds that the ice drifted with the same velocity in a northerly direction as in the opposite one. During the stay of the boat-party at Newmau's Bay the prevailing direction of the drift was likewise southerly, with the exception of a few occasions during the time of spring-tides, when a slow motion in the opposite direction conld be noticed for a few hours at a time.

- In a number of instances a strong westerly set was observed during the latter part of June and during July. While it was apparently calm, the ice could be seen to drift in great quantities from Polaris Bay to the coast of Grinnell Land, disappearing, as it seemed, in Lady Franklin Bay. As the set was so strong, and as the same ice was never seeu to return, these observations led to the supposition that the bay in question was actually a strait. This view is supported by the observations made from the height of Polaris promoutory, whence Monnt Grinnell could be seen to be isolated from the main land, looking like an islaud, behiud which an ice-borizon could plainly be distinguislıed.

During the latter part of the summer of 1872 the condition of the ice was less favorable to navigation than during the preceding sear. As stated before, the Polaris, when on her way bome, was beset in Kennedy Channel, and drifted out of Smith Strait. From the 16th of August till themiddle of September lanes of opeu water of greater or less extent could be noticed almost daily along the coast of Grianell Laud, but it was impossible to reach them with the vessel. The presence of open water along the west const of a channel swept by a sontherly curreut appears to be rather abnormal, as, according to theory, we might reasonably expect the contrary. The observations ou hand that might throw some light on this subject are, unfortunately, too few to enable us to offer an explanation, but we shall see hereafter that the open water cannot have been produced by high temperatures of the sea, as the latter were never much above the freezing-point. The only possible assumption we can make is that the cleptin of the water along the coast is more considerable than in the middle of the channel. In this manner the current would attain a greater velocity near the sliore. It would carry the ice south as far as Cape Frazer, where the coast takes a more westerly trend, and where an accumulation along the shore is prevented by causes that are too obvious to be dwelt upon.

We shall now consider iu brief the condition of the ice in Smith Sound, based on observations made during onr stay at Polaris Honse, from October, 1872, till June, 1873.

A glance at the map accompanying this volume will show that the position of onr second winter-quarters is but a few miles north of Port Foulke, the harbor of the Hayes expedition in 1860 and 1861 , and the state of the ice in our case was very similar to that observed by Hayes ten years before; Smith Strait and a portion of Smith Sound being partly open during the greater portion of the winter and spring. If we are justified in drawing conclusions in regard to the state of the ice in Kennedy Channel, or perhaps Hall's. Basin, from the motion of the ice in Smith Sound, we might judge that there must have existed a solid barrier stretching somewhere across oue of these straits, as with scarcely any exception sontherly winds would block the sound, while northeasters would produce much open water. If this barrier did not exist, then the area of ice carried north by the southerly (mostly sonthwest) winds must have either been greater at the time than the area of open water, or we might suppose that the winds north of Smith Sound blew from such a direction at the time as to counteract the influence of the southwest winds, under the force of which the ice drifted north.

The open water found by Hayes during 1860 and 1861. was attributed by Petermann ${ }^{*}$ to the influence of the Gulf Stream; but we shall demoustrate hereafter that there is nothing whatever to support this view; that there is not the slightest trace of a warm current in the vicinity of Smith Sound; in fact, that the only permauent current existing there is setting south. Any currents in the opposite direction, as mentioned by Inglefield and others, are merely produced by the tlood.

[^0]tide, or perhaps by the difference that might exist at certain times between the speeific gravity of water of Baffin Bay and that of Smith Sound. Before going any further we take occasion to repeat that the open water found in Smith Sound and north of this region is solely due to the effect of the winds and to the considerable depth of the narrow channels, giving origin to swift tidal currents. Had the meteorological observations made by the Haves expedition been published when Petermann wrote the paper alluded to, the learned geographer would never have been tempted to show that the Gulf Stream sweeps the eastern shores of Smith Sound.

It only remains now to give a short description of the ice as fonnd during the journey of the boatparty from Polaris House to Mclville Bay. At the same time we think it advisable to dwell awhile on our observations made in regard to this subject in Lancaster Sound and vicinity, when on board the Arctic. The latter can be done very briefly, as the bihourly meteorological observations made on board that vessel (compare the chapter "Meteorological Observations taken at Sea," p. 24) contain all the details that can be desired.

When the boats left Polaris Honse June 3, 1873, they coasted at a distance of from 1 to 4 miles from the shore in clear water, meeting floating hummocks only occasionally, although the pack was in sight nearly all the time to the west. In regard to the condition of the latter, it is scarcely possible to pass any opinion, as ice sighted from a distance may appear as a solid barrier, while in reality it may be iutersected by numerous lanes of open water, through which vessels can pass without any difficulty.

Arriving at Cape Saumarez the solid land-floe was metwith stretching in the meridian of this cape almost as far south as Northumberland Island. To the north west of this island and of Hakluyt Island, a considerable pack had accumulated, throngh which the boats had to force their way in order to effect a landing on Hakluyt. Owing to the ice that blocked the strait running about northeast and sonthwest between these two islands, and to the pack that had accnmulated to the south of them, the progress was very slow, and the boats were detained from the evening of June 4 until the morning of the 12 th , when the ice dispersed. Between 8^{h} and $9^{\mathrm{h}} \mathrm{p}$. m. of this day Blackwoorl Point was reached, the boats meeting more or less loose ice during the whole of their passage, the most being encountered off Whale Sound, which was still covered by the solid floe, which stretchell from a little north of Cape Parry along the shore and across Booth Sound to Blackwood Point. For about 8 miles south of this latter locality the coast was perfectly clear of ice, beyond which the fast land floe was enconntered stretching to the northwestermmost extremity of Sounders Island and then in the direction of the meridian to the eastern portion of the north coast of Wolstenholme Island, while Dalrymple Rock was accessible. The floe appeared again at the sontheast point of Wolstenholme, stretching sonthrest to abont longitude $72^{\circ} 5^{\prime}$. As the bóats' track from Wolstenholme Island to Cape York led always along the margin of the land-floe, a glance at the map will show how far the latter, which was very level, extended from the coast.

Concerning the region of Lancaster Sound and vicinity, the season of 1873 mnst.be termed a very farorable one to navigation. During July and the first half of Augnst there was scarcely enough ice in Lancaster Sound to prevent a vessel from sailing anywhere between longitudes 80° and 90° W. The only unbroken floe-ice met with stretched across the mouth of Admiralty Inlet, while Prince Regent Inlet was open enongh to permit the Arctic almost to reach latitude $72^{\circ} \mathrm{N}$. When off Pond's Inlet, July 14 and 15, the fast land•floe could be noticed to extend from a short distance south of Cape Burney to Cape Bowen; but we learned afterward that some vessels of the whaling-fleet found the mouth of the inlet clear at the beginning of Angust. On the 18th of this month the Arctic was in latitude $72^{\circ} 43^{\prime}$ N., longitude $69^{\circ} 24^{\prime}$ W., working sonth throngh more or less ice, a short distance east from the land-floe, which extended from Oape Adair to Agnes Monument in the shape of a belt, from 8 to 15 miles wide on the average. The river Clyde seemed to be open, but the floe was met with again at Cape Hewett, extending along the whole coast to a short distance south of Cape Kater. On the 25th the ressel steamed north through loose ice until the 30 th , and when in latitude $71^{\circ} 32^{\prime} \mathrm{N}$., longitude $66^{\circ} \mathrm{W}$., her course was shaped westerly; she had to force her way through heary ice, gaining the open water at about noon the next day. The last ice seen during the rest of the passage was a huge berg met with at midnight of the 31 st in about latitude $70^{\circ} .5 \mathrm{~N}$., longitude $61^{\circ} .3 \mathrm{~W}$.

DENSITY AND TEMPERATURE OF THE SEA－WATER AND REMARKS ON CURRENTS．

Density and temperature．－From the day the expedition left the Uuited States a series of obser－ vations was begun to determine the density of the sea，and，in connection with these observations， the temperature of the water was measured likewise．The observations in question were taken more frequeutly than the meteorological observations proper，and were made at more or less irregn－ lar intervals，according to the opportunities offered．After having crossed the arctic circle，the density of the water was determined at least every other hour，and when near the ice or among the same，or when the vessel crossed alternate bands of cold and warm water，the observations were taken more frequently，sometimes as often as every ten minutes．

The instruments used were very delicate hydrometers，made expressly for the expedition by Mr． Tagliabue，of New York．They were graduated from 0.990 to 1.050 ，giving direct indications to the third decimal，and as the leugth of each division was about 0.35 centimeters，the fourth deci－ mal eould easily be estimated with accuracy．The readings were taken on board the vessel，and although the cylinder into which the hydrometer was immersed，when in use，was not suspended on gimbals，as might have been done，the accuracy of the readings was scarcely affected，as there is usually but little swell among the ice．In order to eliminate the influence of capilarity，the observer in realing off sighted the scale of the hydrometer below the surface of the water，which was done repeatedly，and the mean of several readings taken，which never differed as much from each other as to amount to a whole unit in the fourth decimal．We were satisfied to measure the temperature of the water but once，that is immediately after it had been brought up on deck，and we assumed the temperature to remain the same nutil the specific gravity was ascertained．Usually the water was hoisted by means of a bucket，but in some instances，when there was too much ice packed round the vessel，a water－bottle was let down aud filled about 3 feet below the surface．

The following table contains the observations made in Smith Sound dnring the drift of the vessel in 1872．Unfortunately，by far the greater portion of those taken during the passage north are lost：Those of the determinations referring to the surface－water were made by Mr．Meyer and the writer，while the specific gravities at the different depths were ascertained by the latter．It may be well to mention that the column headed＂Specific gravity reduced＂contains the deusitics， referred to 59° Fahr．，＊and corrected for the expansion of the glass hydrometer．

Date．	$\begin{aligned} & \text { 号 } \\ & \text { 蔦 } \\ & \text { 坒 } \end{aligned}$	$\begin{aligned} & \text { 要 } \\ & \text { 它 } \\ & \text { 号 } \end{aligned}$	$\underset{\underset{G}{E}}{\stackrel{\oplus}{E}}$		Surface of the sea．			Depth．			$\begin{aligned} & \text { Specific gravity re- } \\ & \text { duced. } \end{aligned}$	Remarks．
						$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & = \\ & A_{0} \\ & 0 \end{aligned}$						
Aug． 12	－			\bigcirc	－							
			8^{81} p．m．	32.7	31.2	1．0292	1． 0206				．．．．．．	Heavy pack．
				31.5	31.5	－－．．．．．．						Do．
			10	31.6	30.9	－．．．－．－．						Do．
			11 m	30.7	31.0							Do． Considerable ice
Aug． 13			0 1 a．m．	30.8 30.6	31.4 31.0	1.0265	1．0249					Considerable ice Do．
			2	30.6	30.8	．	－．．．．．．．					Do．
			3	31.8	30.7							Do．
			4	36.1	30.9	1.0265	1.0249					Heavy pack．
			5	36.5	30.8		．．．．．．．．					Do．
			6	34.1	30.8	．．．．．．．．						Do．
			7	37.2	30.7							Do．
			$\bar{\square}$	40.6	30.0	1.0260	1.0244	69	33.1	1． 0259	1．0243	Do．
			9	39.4	30.6							Do．
			10	38.8	30.4							Do．
			11	36.6	30.5							Do．

＊Dio Zweite Dentsche Nordpolfahrt，in don Jahren， 1869 und 1870．Leipzig，1874．Zweiter Band，Zweito Abthoil－ ung，p． 678.

As our manuseript was already finished，and partly in tho hands of the printer，when this rolume was published， we conld not make as extensive use of it as we might bave done uoder other circumstances．

Table-Continued.

				$\frac{9}{7}$	Surfa	ace of the sea.	$\underset{\substack{0 \\ 5}}{ }$		Depth			
Date.			$\stackrel{\dot{\oplus}}{\vec{E}}$			$\begin{aligned} & 0 \\ & 0 \\ & 0.5 \\ & 0.50 \\ & 0 \\ & 0 \end{aligned}$						Remarks.
Aug. 13	8048	6605	Noon.	\circ 37.9	${ }^{\circ} \mathrm{\circ}$	1.0263	1. 0247		\bigcirc			
			$1^{1 /} \mathrm{p} . \mathrm{mm}$.	42.9	30.8	1.02 .	1.024					Do.
			2	44.6	30.4							Do.
			3	43.1	30.9							Do.
			4	39.3 3.2	31.0 31.0	1. 0255	1. 0239					Do.
			6	33.2 33.5	31.0 30.9	---- - -						Do. Do.
			7	33.8	30.6	1.0258	1.024?	*203	32.8	1.0281	1.026\%	Do.
			8	32.6	30.4			6	31.3	1. 0255	1. 0233	Do.
			9	32.7	30.5			18	31.7	1.0258	1.0242	Do.
			10	31.4	30.6			30	32.0	1. 0261	1. 0345	Di.
			11a. m.	31.6	30.0	1.0235		50	32. 1	1.0261	1.0245	Do.
Aug. 14	,			30.6 30.8	29.8		1.0219		.-..		-......	Do.
			1	33.6	29.8							Do.
			34	31.8	30.0							Do.
				31.5	30.0	1.0252	1. 0236					Do.
			5	32.6	30.0	-... ---						Do.
				34.4	30.3							Do.
			${ }_{6}^{7}$	37.0 34.8	30.1 30.0	1.0256	1.0241				-	Do. Do. Do.
			410	36.4	30.8				Do.
				36.7	30.7		--- .-.:	---		---	Do.
			10	36.6	30.1		.					Do.
			$1_{2}^{\text {b }} \mathrm{p} . \mathrm{m}$.	37.4	30.8	1.0256	1. 0241					Do. Considerable ice.
				35.8	30.9	1.			--		Do.
			3	$34 . \mathrm{H}$	29.6	1-020.						But little ice.
			4	35. 6	29.7	1.0262	1. 0246			...		Do.
				35.2	31.2		---				Pack ice.
			5 6	34.4	31.1							Do.
			8	35.1	31.2 31.0	1.0261	1.0245				-.-....	but littie ice. Do.
			910	35.9	31.6							Do.
	8002	6801		35.9	31.5							Very beavy pack. Do.
			11	35. 2	31.6							
Aug. 15			0 a.m.	33.4	30.0	1.0252	1.0236					Do.
			1	32.9	29.8							Do.
			2	29.6	29.7							Do.
			3	29.9	29.8							Do.
			4									Do.
			5	30.4	30.0	1. 0246	1. 0230					Heavy pack.
			6	31.4	30.0							Do.
			7	32.2	29.8							Do.
			\checkmark	33.6	29.9	1.0242	1. 0226		--.			Do.
			9 10	34.0	30.4	-.			Do.
			10	34.4	29.8	1.093			..			Do.
			11	39.8	29.8	1. 0263	1.0247					But little ice.
	8004	6806	Noon.	:36. 6	32.0						Do.
			$1^{14} \mathrm{p} . \mathrm{m}$.	37.3	31.4	-......						Do.
			$\stackrel{2}{2}$	35.8	31.5-...		--	-	.-....	Do.
			3	35.4	30.4				.-.			Do.
			4	35.2	30.3	1.0254	1.0238					Do.
			5	34.9	30.3							Considerable ice.
			6	37.1	30.4							Do.
			7	36.6	30.2							Do.
			K	36.1	31.7	1.0261	1.0245					Do.
			9	34.6	30.8							Do.
			10	33.6	30.5							Do.
			11	33.0	30.6							Do.
Aug. 16			0 a.m.	32.3	30.8	1.0252	1.0236					Do.
			1	33.7	30.5							Do.
			2	32.1	30.7							Do.
			3	32.7	30.0							Do.
			4	33.4	30.4	1. 0250	1.0234					Do.
	7959	6807	11	36.1	30.7							Do.

2 H

Table—Continued.

Table-Continued.

Tablc-Continued.

Taking the mean of the specific gravities, as measured at the surface of the sea in the region traversed between latitudes 81° and $799^{\circ} .4 \mathrm{~N}$., and longitudes 62° and $70^{\circ} .8 \mathrm{~W}$., from August 12 to August 28 , we obtain the ralue 1.02155 , being rather less than what we should expect to find a priori. This discrepancy appears less striking if we take into consideration the time daring which the above observations were made, and remembering, farthermore, that they were all made in a rather narrow channel while the vessel was surrounded by ice, we can scarcely expect anything else. As dnring the period of time over which the above observations extend, the mean temperature of the air was only on two days a few tenths of a degree balow the freezing-point, it was warm enough daring the rest of the time to melt portions of the ice surroundiug the vessel ; and hence we fiud the specific gravity of the sea to decrease.

If we calculate the daily means we obtain the values giren in the colnm of specific gravities, opposite to which the umber of observations will be found.

Date.	Specific gravits.		Date.	Specific gravity.	
August 12	1.02060	1	August 21	1.02270	3
13	1.02450	6	23	1.02020	2
14	1. 023830	6	25	1.02070	4
15	1.02370	6	26	1.02198	6
115	1.02350	2	27	1.01836	5
19	1. 02540	1		1.01502	6
	1.02563	6			

The lighest mean of the series is that of August 20, namely, 1.02563 , while the lowest is 1.01502 , derived from the observations taken August 28. The absolute maximnm density of the water of Smith Sound determined in any case was found at noon on Angust 20, amonnting to 1.0288.

On examining the observations made during each of the above named days separately, we perceive that the speciic gravity of the sea is subject to considerable changes, which become more striking if we consider that, in some instances, the vessel scarcely changed her position during 24 bours. Supposing the sky to be clear, and the temperature of the air to be above the freezing. point, we might reasonably expect that the maximum density of the ice-covered sea would be attained some time after the occurrence of the minimum temperature of the day, and vice versa. A closer
examination of the abore observations demonstrates, howerer, that in some cases the specific gravity was greater in the course of the afternoon than during the night, when the temperature of the air bad reached its minimum; for instance, on August 20, when the density gradually increased from midnight till noon. It will be easy to perceive that irregularities of this kind are either due to currents, to the change of the tide, to the influence of the wind, or to a combination of these three causes. We shall demonstrate liereafter that two tidal waves meet near Cape Frazer, one coming from the north and the otber from the south. In the former instance the lighter water from Robeson Channel and Hall's Basin and in the latter the heavier water from Baffius Bay will flow towards the region in question, where the greater portion of onr observations were made, and most likely the irregularities will be partly due to this circumstance.

The observations on record that might be used to demonstrate the change of the specific gravity of the sea-water with the depth are but few in number, and are, iu consequence of this, of but little value. The following table will show how they run:

Date.	Surface.	Depth.		Difference.	Date.	Surface.	Depth.		Difference.
August 1.3	1.0244	Fath. 69	1. 0243	-0.0001	August 21.	1. 0226	Fath.	1. 0256	+0.0030
13.	1.0242	203	1.020.3	+0.0023	A 21.	1. 12226	50	1. 0245	+0.0019
13.	1. 12.24	6	1.0239	-0.000:3	21.	1.0226	62	1.0246	+0.0020
13.	1. $0: 42$	18	1.0242	± 0.0000	21.	1. 0226	74	1.0265	+0.0039
13.	1. 1242	30	1.0261	+0.0019	21	1. $02 \% 6$	86	1. 0256	+0.0020
	1. $0: 34$	50	1. 0261	+0.0019	$\because 1$.	1. 0226	10	1. 0248	+0.002\%
	1. 02.29	10	1.0247	$+0.0021$	21.	1. $02 \% 6$	94	1.0269	+0.0043
	1. 0226	20	1.0250	+0.0024	03.	1.0236	83	1. 0279	+0.0043
21.	1. $03: 6$	30	1.0253	+0.0027		1.0178	91	1. 0286	+0.0101

In general, the above values are in conformity with theory, as we perceive the specific gravity to increase with increasing depth; but it would require a much more extensive series of observations to show whether the discrepancies, as shown by the above table, are produced by under-currents, or whether the observations iudicating a less specific gravity with increasing depth are at fault. We scarcely think the latter to be the case, as great care was always taken in bringing up the water-bottle, the valves of which were in perfect working order all the time.

Currents.-If we examine the current-system of Daris Strait and ricinity in its latest representation on Berghaus' Chart of the World, which embodies an admirable amonnt of details in the most elegant manner, we perceive the west coast of Greenland to be swept by a warm current. This warm current is represented as part of the Gule Stream, consisting principally of two branches, the westernmost crossing the parallel of Cape Farewell between longitude 50° and $60^{\circ} \mathrm{W}$., while the other sweeps the northwest coast of Iceland, whence it takes a westerly and southerly direction, and passing round Cape Farewell it joins the branch first mentioned. Sweeping the west coast of Greenland, it can be traced to Cape York, whence it sets west toward the entrance of Jones Sound, taking a southerly direction near Coburg Island, and disappearing near Lancaster Sound, from which we notice a cold current to issue, sweeping the shores of Baffin Land and Camberland. In setting sonth it is joined by another cold current issuing from Hudson Strait, and, desiguated as Labrador Current, continues its way along this coast.

In addition to these two main currents, we notice two subordinate cold ones, one running across Davis Strait, near the 70th parallel, while the other, a branch of the East Greenland icestream, runs along the southwest coast of Greenland, betweeu the latter and the warm current before mentioned, to about the Arctic Circle, one of its branches joining the Labrador Current near latitude 60°.

The materials on which the direction and relocity of these currents are based are derived from different sources, most of which are given in Petermann's claborate paper on the Gult Stream,* but evidently some portions were laid down by theory only.

It may be advisable, before going any further, to investigate briefly how much reliance can be placed in general in curreut-observations, made noder ordinary circumstances in the arctic seas.

[^1]The vessels cruising in these waters are either discovery-ships, whalers, or a few trading-vessels of the Danish Commercial Compary visiting annually the settlements on West Greeuland.

With but a few exceptions, the discorery-ships are usually under strict orders to make eertain points, and are, in such cases, not allowed to deviate from their conrse or to stop to make investigations; while the whalers, after they reach the ice, searcely take any astronomical observations for determining their position, and invariably leave their log-line on the reel until they have again reached lower latitudes. If a discovery-ship is not bound by orders, her commander may then always have a certain aim which he ean follow and to which he will make everything else subordinate; and unless this aim be the study of the physics of the sea, we ean scarcely expect any aceurate observations of this kind.

Cases like the latter are of rather rare occurrence, and there are but a few on record, the intention of the eommanders of arctic exploring-vessels being in most instances to make such discoveries as would most strike the public mind. Unfortunately, however, the public cares very little whether a current sets corth, south, east, or west, and this is one of the reasons that the momber of reliable observations is so small. This small number was only made because nothing else could be done at the time, or because they had to be made, the ressel being beset in the ice, and at its mercy. But even if a vessel starts purposely to make the observations in question, she will, in a great many instances, have to enconnter physical obstacles that render the observations less reliable, and often it will be quite impossible to make any.

The direction and relocity of currents are usually oltained by taking the difference between the position of the vessel, as found by dead reckoning, and the position as determined by astronomical observation : a less common method is that of making actual experiments whieh require considerable time and care. Owing to unavoidable errors of the dead reckoning, the former mode is far from aceurate uuder ordinary circumstances, and it decreases in value if the ressel has to make ber way throngh ice, when the \log is rendered almost useless, and when she has to clange her course so frequently that in some instances it is almost impossible to keep an aceurate reck. oning.

Those observations obtained when the vessel is beset in the ice and drifting are more valnable; but it is only nuder favorable circumstances that they give an accurate idea of the true velocits and direction of the current. If there are bergs scattered through the pack, the direction and veloeity of the surface-current, as determined by two astronomieal observations, may be considerably affected by under-currents acting on the submerged parts of the icebergs. If there is any wind blowing, it will act on the exposed portion of the berg as on a sail, and thus in many instances solely determine both the rate and direction of the dritt. The latter may also be greatly affected by the action of the tide, especially if the vessel is beset in a narrow channel.

It is easy to perceive that if we were to examine critically the different observations on record we should have to reject a large number, while others would be of rery little value, as in mang cases it is quite impossible to determine how much of the drift is due to a permanent surfacecurrent, how much to the tide, to the wind, or to under-currents.

The value of the ferr observations made by the expedition, and recorded hereafter, is very small, and we propose to deduce nothing more than general results. We shall first consider the drift of the ressel through Kennedy Channel and Smith Sound, based on the following table compiled from the log by Mr. Bryan :

Date,				WIND.			
				$0^{\text {b }}$ to $6^{\text {b }}$ a. m.	$6^{12} \mathrm{a} . \mathrm{m}$. to noon.	Noon to 6^{11} p. mi.	$6^{\text {h }}$ P. m. to $0^{\text {h }}$.
Aug. 14	$80^{\circ} 0$	- .	Midnight.	Light winds SW.			
15				Calms			Light breeze NE.
16	$80 \quad 01$		$6 \mathrm{a} \text { m.... }$				
16	7959		Noun....	Calms		Light breeze S.	
17	7957		Noon.....	Calms-.	Fresh breeze ${ }^{\text {N }}$.-	Light brecze $\mathbf{N} . .$.	
18 18	$\begin{array}{ll} 79 & 44 \\ 7941 \end{array}$	6950 7019	$\begin{aligned} & 6 \text { a.m.... } \\ & 6 \text { p. m.... } \end{aligned}$	Liglut breeze N .		Calms	Light breeze N.

Table-Continued.

Date.			$\begin{aligned} & \text { 名 } \\ & \text { 世 } \\ & 0 \\ & 0 \\ & 3 \\ & 0 \end{aligned}$	wIND.			
				$0^{\text {b }}$ to $6^{\text {b }}$ a. m.	$6^{\text {h }}$ a. m. to noon.	Noon to $6^{\text {b }}$ p. m.	$6{ }^{\text {h }}$ p. m. to $0^{\text {b }}$.
lug. 19	\bigcirc	-		Liglt breeze N			Light wind S . and SW.
20	7942		Noon	Light wind S	Wind SW	At 4 p. m., light breeze N.	Light breeze N.
20	7942	7039	$6 \mathrm{p} . \mathrm{m}$				
21	7939	70 17?	Noon.	Light airs N		Light breeze N	
22			-•	Liglat airs and calms	$\begin{aligned} & 8 \text { a. m., light } \\ & \text { breeze S. } \end{aligned}$		Fresh breeze SW.
± 3	7937		Noon.....	Fresh bueeze SW, up to 4 p. m., then calms and light airs.			
23	7987	6910	$6 \mathrm{p} . \mathrm{m}$.				
24	7936	6907	6 a. m....	Calus	Fresle breeze N..		Calns
$\because 4$	7936		Noon.				
0	7936		Noon.....	Calms		Calms	Light breeze SW
-26	7936	Nuon.....	Light breeze SW... Light winds E .		Light breeze S Calms	Liglat breeze E.
28	7936	6909	Noou and $6 \mathrm{p} . \mathrm{m}$.	Light winds E.		Light breeze E	Light wiud S.
29	7934	6901	Noou and $6 \mathrm{p} . \mathrm{m}$.	Calms .---.			
30	7935			Calms		Calms	
31				Calms	-..........	Light breeze S ..	Calms and light winds S.
Sept. 1				Light puffs from several points.		Light airs SW...	
2				Light airs SW. aụd calms.		Light airs SW.....	Fresh breeze SW.
3	7934	6856	Noou and 4 1. m.	Fresh breeze SW...	Light winds SW.	Light wiuds SW...	---......... -....
4	7933	..	Noon. . . .	Light wind SW. until evening, then from the N .			
5	$\left\{\begin{array}{lll}79 & 33 \\ 79 & 32\end{array}\right.$	$\} 6859$	$\left\{\begin{array}{c} \text { Noon and } \\ 4 \text { p. m. } \end{array}\right.$	Light airs N	Calm all the afteruoon.		
6	7932	6859	Noon and 4 p. m.	Calms		Light winds S.....	
7						Light breeze N.	Fresh breaze N.
8	7930	69	Noon and 5 p. m.	Flesh breeze N. nntil late iu afternoon.			Light breeze N .
9				Light wind N......		Calnu.......-..........	
10				Light wind N		Light breeze N	Fresla breeze N.
112	7987		Noon - -...	Fresh breeze N....		Light breeze N	Light wind N.
12			Fresh wiad N...... Fresh breeze		Fresh breeze N Fresh breeze	
13	71 25		In afternoon loy donble altitudes. Noun and	Fresh breeze N. .-. -		Fresh breeze N Calm	
14	79 21	7006	Noun and afternoon.	Light wiod N.----.		Calm	
				Calms			Light lreeze S.
15				Freslu wind S......		Light breeze S.....	
16	7920		Noon	Light airs and calms		Light wiad NE.	
18				Light loreeze NE...		Light breeze N	
19	7919		Noon	Light breeze NE...	Calnıs	Light breeze S .	Light breeze N.
20 21			-.....	Light breeze N	Fresh breeze N., continued all the afternoon.		
21			-	Frosh brecze N	Breeze N., eontinued all the afternoon.		
23				Light breeze NE...		Liglutairs N .	
23				Light breeze N.....			Light breeze NE.
24 25	7406		Noon.	Light .wind NE., eontinued during afternoon. Light wind NE....			
25		7040	-.-..	Light wind NE...-	Light breeze S., continued during afternoon.		

Table—Continued.

As the meteorological observations made during the latter part of Augnst, 1872, are lost, the notes on the winds, contained in the above table, wust necessarily be of a very general nature, so that they will ouly show whetber the wind might have accelerated the drift or not, without furnish. ing the means of determining the approximate rate of acceleratiou, which might bare been deduced with reasonable accuracy if the anemometric observations were on haud.

From miduight of August 1t, when the vessel got beset, till the evening of the 18th, between latitudes $80^{\circ} \mathbf{2}^{\prime}$ and $79^{\circ} 44^{\prime}$ the mean direction of the drift was almost SW., or more accurately S . 40 W . Between the 14 th and 16 th it was either calm or light winds were blowing from NE., SW. and from S., most likely too light to affect the drift, the rate of which during the two days in ques. tion was 5 miles, decreasing to 1 mile during the following 48 bours, and rising to 14.4 between the 17 th and 18 th. This latter relocity is the greatest on record, and as fresh northerly breezes were experienced during the time we may reasonably suppose that they accelerated the rate of the current, the more so as its direction remained the same as during the three preceding days. Most likely this increased relocity is also partly due to the action of the spring-tide, the moon being finl at $8^{\mathrm{h}} 53^{\mathrm{m}} .2$ on the 18 tb , and as a rule the set of the flood was experienced to be stronger than that of the ebb, the former being sontberly. During the afternoon of the 18 th a prime vertical observation was obtained, so that the position of the ressel could be fixed as accurately as the low altitude. of the sun permitted. At $6^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. she found herself in latitude $79 \circ 41^{\prime} \mathrm{N}$., lougitude $70^{\circ} 19^{\prime}$ W., and from this time during the following 48 hours the direction of the drift suddenly chavged to about W. 17° N., the velocity decreasing to about 2.3 miles. Between noon of the 20 th and noon of the 21 st the direction changed again, it being almost due SE., the velocity haring increased but slightly, and all the wind recorded during this time being from the north. Another change of both directiou and velocity took place between the 21 st and 23 d, the former becoming E. 9° S., and the latter laving increased from 3 to 6.5 miles, while the resulting direction of the wind during this time was almost at right angles to the set of the current.

While up to this time the rate of the current was never less than 1 mile during 24 hours, we see it to decrease to almost one-half of this velocity during the period from Augnst 23 to September 6 , the wind being very light daring the whole time with the exception of two instances when fresh breezes from $S W$. are recorded.

The whole difference of latitude made during this fortnight was ouly 5 miles, the direction of the set being very variable and apparently quite independent of the wind. This rather remarkable change will most likely find its explanation in the action of the tide. We shall see hereafter that the tidal wave is propagated from the uorth to Polaris Bay, while it reaches Tan Rensselaer Harbor, which is the northerumost station in Smith Sound where tidal observations have been made, from the opposite direction. It is evident that the tro waves must meet somewhere between these two stations; and until actual observations prove the contrary, we shall look for the line of junction between latitudes $79^{\circ} 30^{\prime}$ and $79 \circ 37^{\prime}$, where the drift of the ressel wis reduced to a minimum.

Between September 6 and 8 , the direction of the set was about $\mathrm{W}^{\circ} .10^{\circ} \mathrm{S}$., the rate increasiug again to 2.5 miles and remaining the sume until the $1 \not 1$ th, although the rasulting direction changed to almost SW., the wiud being north daring the greater portion of the time. From the latter day to October 2 the direction was nearer to that of the meridian than in any of the other iustances, the velocity deereasing from 2.5 miles to 1.5 , becoming as small as 1 mile between September 24 and October 2.

The ressel continuing to drift toward the const followal its treal very closely from the 8th till the 13 th, the velocity increasing to 8.5 miles, most likely accelerated by the wind, which was from the northeast. The last observation on record is a meridian altitude of the sun, taken on the 12th, and placing the ship in latitude $78^{\circ} 28^{\prime} \mathrm{N}$. , about 6 miles off Cape Matherton. ${ }^{-}$Increasing her distance from the shore, as a glance at the map will show, she began to drift to the west side of the channel, taking a sontembat northerly direction, partly cansed by a fresh breeze from northeast, which finally chauged into a southwest gale. Toward evening she was carried worth to the vicinity of Life-boat Cove, at the rate of at least 3 miles an hour; but most likely this speed was not ouly due to the influence of the wind, but also, and perbaps priacipally, to the flood-current, it being the time of spriug-tide.

In the same latitude, a little to the eastrard of our position, Inglefield experienced a nortberly set of 72 miles,* which we do not besitate to assigu to the same cause, as a permauent curcent 0 : such a relocity does not exist at this place. In spring, 1873, when traveling frow Polaris Honse to the Eskimo settlement, Sorfalik, where we remained a sbort tine, we paid special attention to the motion of the ice, which, luring the time of slack-water, was iuvariably toward the south. The same direction of the set, only at a greater rate, could be noticed when the tide was ebbing; while, when it rose, the ice drifted in the opposite direction at a speed of about 4 miles an hour.

From the preceding observations it becomes evident that the resulting direction of the current is: sontherly, even between Port Foulke and Cairu Point, where Patermann supposed the existence of a braneb of the Gulf Stream. That there is no warm current north of Cairn Point may be seen from the observations on the temperature of the sea as measured lourly or at greater intervals, and given at the commencement of this chapter, from which is derived the following table, giving both the mean temperatnre of the sea and that of the air, together with their differences, for the period from Angust 12 to Angust 99 , when the vessel was betwcen latitudes $81^{\circ} 5^{\prime}$ and 7906^{\prime} N.:

Date.	$\left[\begin{array}{c} 0 \\ E \\ E \\ E \\ E \\ E \\ E \end{array}\right.$			Date.			苞
August $1.3 \ldots$ $13 \ldots \ldots$ $14 \ldots \ldots$ $15 \ldots \ldots$ $16 \ldots \ldots$ $19 \ldots \ldots$	31.63 35.8 31.67 34.25 33.38 35. 10 35.19	0 31.15 30. 89 30. 45 30. 40 30.52 30.10 30.17	$\begin{aligned} & -0.48 \\ & -5.13 \\ & -4.92 \\ & -3.85 \\ & -2.86 \\ & -5.00 \\ & -5.02 \end{aligned}$	August $\begin{array}{r}21 \ldots . . . \\ 23 . \ldots \\ 25 \ldots \\ 26 \ldots \\ 27 \ldots \\ 2\end{array}$	0 37.24 33.28 34.21 31.10 34.11 33.17	$\begin{aligned} & 30.35 \\ & 30.92 \\ & 30.53 \\ & 30.10 \\ & 30.50 \\ & 31.98 \end{aligned}$	-6.89 -7.36 -3.68 -1.00 -3.59 -1.89

[^2]It is evident that there is not any Gulf Stream between the latitudes above mentioned, but is there any farther south in Smith Sound? If so, it will have to enter Smith Sonud trom the south, and we shall have to look for it along its eastern coast, as, on accomnt of the rotation of the eartl, it will be deflected toward that direction. We must confess that we have no actual observations on currents to offer ; but as the Gulf Stream is partly characterized by a high temperature, the following theomometrical record kept dming the boat.jonrney* from Polaris Honse to Cape York bctween June 3 and 21 will show whether there exists a warm current in the region traversed or not:

Date.	Time.			Date.	'Tims.		
	h.	\bigcirc	\bigcirc		h.	\bigcirc	\bigcirc
June 3	$12 \mathrm{p} . \mathrm{m}$.	29.ir	29. 5	June 11	$3 \mathrm{p} . \mathrm{in}$.	30.1	48.6
	$12 \mathrm{p} . \mathrm{m}$.	29.5	30.5	12	$\stackrel{2}{1} \mathrm{p} .1 \mathrm{~m}$.	29.7	35.
5	da.m..	29. 3	29.0	13	$3 \mathrm{p} . \mathrm{ml}$.	30.:	[i5. 1
5	$11 \mathrm{1} . \mathrm{mm}$.	29.4	29.	14	$1 \mathrm{p} .11 .$.	:31.4	47. 1
	2 p.m.	ㅂ․․	- 0	15	5) a.m..	31.1	33.5
7	8 a.m..	29.0	25. 2	15	$10 \mathrm{a} . \mathrm{m}$.	31.5	33.0
\%	7 a. 10.	29.0	27.0	15	12 ta 11 l .	32. 0	41.:
9	6 p. 11.	29.0	29.0	1.5	$2 \mathrm{p} . \mathrm{mm}$.	31.6	39. 5
10	1 p . m.	29.8	38.0	15	$4 \mathrm{p} . \mathrm{m}$.	31.5	3-. 2

1)ate.	Time. 	
	h. ${ }^{\text {¢ }}$	\bigcirc
Jnue 15	$6 \mathrm{l}, \mathrm{mm} .-32.0$	33.0
16	2 1..m. - 2 ! 4	30.7
17	3 11. 11- - '91.6	30.5
1.6	6 :1. $111 . .30 .1$	34.0
12	\% 1. $11 . .30 .0$	32.
1!	12 \%. $11 . .194 .8$	31.2
$\because 11$	¢ P.11.- 24.3	38.3
± 1	$11 \mathrm{l} .14 . .80$	27.5

As the temperature of the sen was either at that of the freezing-point of fresh water, or eren below 320 F ., as shown by the above table, the axistence of the Gult Stream along the shore between Cape York and lolaris House is quite ont of the question. But might not a warm current enter Smith Sound westward of the track of the boats:

To this question we can positively answer, no, for we found the temperature of the sea in no instance above $31^{\circ} .6$ when crossing from Cape York to the coast of North Devon, during the first part of July. Had there been any traces of a marm current, we shonld have found them beyond doubt, as we usually took observations every hour, or evell as often as every halthour, when the color of the water showed any chauges.

According to these observations, the Gulf Stream does not extend north of latitude $75^{\circ} 5^{\prime}$, but how far it reaches cannot yet be stated, as onr own meteorological observations bearing upon this subject are lost, and the material thas far published is scarcely sufficient to settle this question definitels. In McClintock's Meteorological Observations \dagger we find the tollowing remark made on the 7th of Jnly, 1857; the Fox being in latitude $60^{\circ} 6^{\prime} \mathrm{N}$. , longitude $15^{\circ} 1^{\prime} \mathrm{W} .: ~ " T h e ~ t e m p e r a t u r e ~$ of the sea sufface vasied fiom $3 \mathrm{c}_{\mathrm{o}}$ to 61° during the day. At noon the following day the position, by obsercation, was 10^{\prime} to NE. of the dead reckoning. The yaeht, therefore, was probably on the northern limits of the Gulf Strean." An examination of the same register shows, however, that afterward higher temperatures were noted till the vessel had passed the parallel of Uperuivik when the water again became colder. Some manuscript observations, kindly furnished by Captaiu von Otter of the Swedish navy, seem to iudicate the same conditions; and until we shall have some more complete data, we shall hold the opinion that the Gulf Stream does not euter Melville Bay.

In order to solve the Gulf-Stream question in a sutisfactory manner, the observations on the temperature of the sea onglit to be accompanied by determinations of the specitio gravity of the water, becanse in many instances the high temperature alone is not sufficient to prove the existence of the Gulf Stream. We have shown that the is no wim corrent entering Smith Somnd, and still we fonnd that on several occasions the temperature of the water at Polais Bay was astonishingly ligh. Ou the $2 d$ of Augnst, at $3^{\mathrm{h}} \mathrm{p}$. m., we measurd 510.9 along the shore, a little south of our anchorage and opposite a ravine named the Second Ravine, but at the same time the water was almost fresh.

[^3]We made similar obserrations along the Greenland coast between Disco Island and Upernivik, and in erery instance we noticed that these warm spots were almost destitute of animal life, which was abundant where the percentage of salt was normal. It is easy to perceive how and where this high temperature is communicated to the water.

The rest of the observations on record that might tend to complete our knowledge of the system of currents do not contain anything new ; they merely help to prove what others proved before, namely, a sontherly set in Baffiu Bay and Davis Strait.

The following table contains the approximate rate of the carrent, deduced from the observiations taken by Mr. Meyer during the drift of the floe-party. As there were but four obserrations for longitude taken then, we used, in some instances, a graphic process to approximate the velocity more closely. In doing so, we were guided by the general trend of the coast and the prevailing direction of the wind, to which the dift seems to be mostly due :

Date.				Date.			
	01	\bigcirc -	Miles.		\bigcirc	-	Miles.
Oct. 15	T-10	7500		Mar. 31	5941		93.0
Dece. 7	7404	67 \%)	4.9	Anril 4	5647		43.5
Jall. 5	7207	6041	5.2	9	5551		11.:
20	7002	6001	+. 5	12	$55: 35$		5, 3
2%	69 32	6003	4.3	13	$55: 3$		12.0
Feb. ${ }^{\text {b }}$	6850		4.7	14	$55 \quad 13$		$10.0{ }^{\circ}$
Mal. 12	64 3\%		7.4	15	5458		15.0
14	6419		6.5	16	5427		31.0
17	6347		10.7	21	5357		6.0
$2 \cdot$	6256		10.2	$21 ;$	5330		5.4
95	6159		19.0	29	5804		8.6

TIDAL OBSERVATIONS AT POLARIS BAY.

The regular tidal observations made at Polaris Bay, and recorded hereafter, were commenced November 6, 1871, and contiuned, with the exception of a tew omissions, occasioned by pliysical obstacles beyond our control, until June 6, 1872, thus comprising a period of about seven luations. It was our intention, at first, to continue the observations till we left our winter-quarters, but as orer half of the ship's crew was absent on a boat jonney duriug Juue and July, and as the ice supporting the tide gange began to decay about the middle of June, the observations had to be discontinued.

The gauge used, antl represented in the following diagram, was of the most simple construction, and performel almirably, as an ex mination of the record will show. It was mounted over a square hole cut through the ice near the ressel, about a quarter of a mile from shore, where the tide-ware had free access It cousisted of a pulley and rope supported by a triporl. The rope, to which a wooden scale was fastened, divided into feet and inches, was carried through a block attached to the tripod. One end of the rope was anchored to the botrom by three thirty-two pound shot, and a counterpoise was attached to the other end to keep the rope properly stretehed.

The apparatus was frequently tested by taking series of seale-readings, with corresponding soundings, a number of which may be found in the following table:

Soundings, with corresponding gauge readings.

Dato.	Time.	Gaugereadiug.	Soumding.	Date.	Time.	Gangereading.	Sounding.	Date.	Time.	Gaugereading.	Sounding.
	h.	Wret.	Fret.		h.	Feet.	Feet.		h.	Feet.	Feet.
Dec. 19	8p.m..	1. 75	71.75	Dec. 28	8 p.m.	3.62	68.75)	Jan. 4	8 p.m..	6.67	72.37
21	$8 \mathrm{p} . \mathrm{mm}$.	6. $6 \cdot 2$	71.50	29	8 p.m..	3.75	$6 \times .83$		8 p. m..	6.50	72.46
2:	8 p. 11.	6. 00	71.18	31	¢ p. m.-	4.00	69.17	6	8 p. m..	6.58	72. 54
95.	$8 \mathrm{p} . \mathrm{m}$.	5.60	70.00	Jan. 1	$8 \mathrm{p} . \mathrm{m}$.	4. 08	69.92	7	$8 \mathrm{p} . \mathrm{m} .$.	6. 29	72.17
21	$8 \mathrm{p} . \mathrm{mm}$.	4.37	69.50		$8 \mathrm{p} . \mathrm{m}$.	5.33	\% 0.67%	8	$8 \mathrm{p} . \mathrm{m} .$.	5.96	71.33
27	$8 \mathrm{p} . \mathrm{m} .$.	3.71	69.00	3	8 p. w..-	5. 79	71.08				

It will be seen that the greater portion of the observations was taken hourly; in some instances, however, the readings were taken half-hourly, or near the turn of the tide, at intervals of ten minutes. As there was scarcely ever any perceptible swell amid the ice, the scale could be read off to a fraction of an inch.

The gauge being too far distant from the observatory to permit of the scientific members of the expedition taking the observations without much inconvenience, the readings were taken by two of the seamen, II. Siemens and II. Hobby, who were reliered from the regular duty and devoted themselves with great zeal and care to their task. The observations were controlled and transeribed by the writer every evening, when the time-piece, made use of in taking the readings, was also compared, and set if fonnd necessary. It is supposed that none of the following observations were taken more than two minutes earlier or later than recorded.

Date.	NOVEMBER, 1871.																	
Time.	6		7		8		9		10		11		12		13		14	
	Feet.	Inches.	Fect.		Fect.	Inches.	Feet.		Feet.									
$0^{\text {b }}$	3	00.0	3	03.0	3	07.5	4	06.0	4	In5.0	${ }^{\text {rect. }}$	O1.0	Fect.	Inches.	Feet.	Inches.	Feer.	Inches. 02.0
1	3	01.0	$\stackrel{2}{2}$	11.5	3.	00.0	3	05.0	3	04.0	4	05.5	4	10.0	5	11.0	6	03.0
${ }_{3}^{2}$	3	02.5	2	08.0	$\stackrel{2}{2}$	07.5	$\stackrel{2}{2}$	08.0	2	04.0	2	08.5	3	07.0	4	10.0	5	07.0
3 4	3	0.5	2	07.5	2	02.0	2	03.5	1	06.0	1	07.0	2	01.0	3	04.5	4	02.5
4 5	4	06.0	\because	09.0	2	01.0	1	10.5	1	00.0	0	10.5	0	09.0	1	10.0	2	$0 \times .0$
6	4	09.0	3	00.0	2	04.0	2	00.0	1	00.0	0	07.0	0	00.0	0	07.5	1	01.5
6	4	09.5 0.0	3 3	04.0	$\stackrel{2}{3}$	11.0	2	07.5	1	05.0	0	11.5	0	05.0	0	03.0	0	03.0
8	4	08.0	3	08.0	3	05.0	3	06.0	2	03.5	1	09.0	0	09.0	0	05.0	0	04.0
8 9	4	07.5	3	08.0	3	11.0	4	03.0	3	05.5	2	08.5	2	00.0	1	04.0	0	08.5
9 10	4	05.5	3	07.0	4	02.5	4	10.5	. 4	05.0	4	00.5	3	05.5	2	10.0	1	11.0
10	${ }^{3}$	00.0	3	06.0	4	04.0	5	02.0	5	00.5	5	01.0	4	11.5	4	06.0	3	10.0
11	$\stackrel{2}{2}$	10.0	3	03.0	4	00.0	5	00.0	5	03.0	5	08.0	6	00.0	6	00.0	5	03.0
Noon.	2	09.0	9	11.0	3	09.0	4	04.0	4	09.0	4	08.0	6	04. 25	6	10.0	6	03.0
$1^{1{ }^{\text {h }}}$	$\stackrel{2}{2}$	09.0	$\stackrel{2}{2}$	07.0	3	05.0	3	07.0	3	11.0	4	10.5	5	10.0	6	11.0	6	08.5
$\stackrel{2}{3}$	2	09.0	2	07.0	2	11.0	2	08.5	2	09.0	3	07.5	4	08.0	6	01.5	6	05. 5
3	3	00.0	$\stackrel{2}{2}$	05.0	2	06.5	2	02.5	2	00.0	2	07.0	3	04.0	4	11.0	5	03.0
4	3	05.5	2	08.0	2	06.0	1	10.5	1	06.0	2	04.5	2	01.0	3	02.5	3	11.0
5	3	10.5	3	01.0	2	09.0			1	04.0	2	04.5	1	03.5	2	01.5	2	00.0
6	4	03.0	3	09.0	3.	03.5	3	05.5	1	07.0	2	04.5	1	01.5	1	05.0	1	06.0
7	4	07.0	4	03.0	4	05.0	3	03.5	2	06.0	2	04.5	1	06.5	1	04.0	1	02.0
8	4	08.5	4	08.0	4	06.5	5	02.5	3	09.0	3	00.0	2	05.0	2	00.0	1	05.0
9 10	4	08.5	4	09.0	4	11.5			4	08.5	4	02. 0	3	11.0	3	04.0	2	03.5
10	4	03. 0	4	07. 5	4	03.5	5	05.0	5	04.0	5	02.0	4	11.5	4	06.0	3	05.0
11	3	08.0	4	02.0	5	06.0	5	02.0	5	05.75	5	09.0	6	00.0	5	07.5		07.0
Date.	NOVEMBER, 1871.														DECEMBER, 1871.			
Time.	15		16		17		18		19		20		21		3		4	
	Heet.	Inches.	Fect.	Inches.	Feet.	Inches.	Feet.	Incties.	Fett.	Inches.	Feet.	Inches.	Feet.	Inches.	Feet.	Inches.	Feet.	Inches.
$0^{\text {b }}$	5	05.5	4	08.0	4	02.0	3	05.0	3	00.0	3	03.0	2	11.0	3	11.5	4	02.0
1	5	10.0	5	06.0	5	01.0	4	01.0	3	04.0	3	02.0	2	07.0	4	07.0	4	08.5
$\stackrel{2}{2}$	5	07.5	5	08.0	5	07.5	4	07.0	3	09.0	3	04.0	2	04.5	5	00.0	5	01.5
3	4	09.0	5	04.0	5	07.5	4	11.0	4	03.5	3	07.5	2	06.0	5	03.5	5	05.0
4	3	04.0	4	04.0	5	00.0	4	11.0	4	07.0	4	00.0			5	03.5	5	08.0
5	1	10.0	3	00.0	4	01.0	4	07.0	4	06.0	4	03.0			4	11.0	5	07.5
6	1	08.0	1	09.0	3	00.0	3	11.0	4	03.0	4	07.5			4	01.5	5	02.0
7	0	04.0	0	11.0	2	00.0	3	00.5	3	11.5	4	05.0			3	07.0	4	07.5
8	0	04.0	0	09.0	1	06.0	2	05.5	3	05.0	4	02.0			3	02.0	4	02.5
9	1	01.0	0	11.0	1	04.0	2	00.5	3	00.0	3	09.5	-..		2	11.0	4	00.0
10	2	07.0	. 1	11.0	1	08.0	2	00.0	2	07.5	3	03.0			3	00.0	3	09.5
11	4	00.0	3	05.0	2	07.0	2	04.0	2	06.5	2	11.0			3	04.5	3	11. 5
Nonn.	5	06.0	4	11.5	3	08.0	3	00.0	2	09.0	2	06.0			4	01.5	4	0.5 .5
$1^{\text {b }}$	6	05.5	6	00.5	4	09.0	3	03.0	3	02.0	2	06.0			4	11.0	5	01.5
9	6	07.0	6	07.5	5	08.0	4	08.0	3	09.0	2	07.0			5	07.5	5	08.5
3	6	00.0	6	09.0	6	02.0	5	05.0	4	05.0	3	00.0			6	00.0	6	03.5
4	4	10.0	6	02.0	6	01.5	5	11.0	5	01.0	3	$0 \times .0$			6	02.5	6	09.5
5	3	06.0	5	01.0	5	07.5	5	11.0	5	05.5	4	03.0			6	02.5	6	11.0
6	2	04.0	3	11.5	4	09.5	5	05.5	5	08.0	4	10.0			5	11.0	6	10.5
7	1	07.0	3	00.0	3	1.1. 0	4	11.0	5	08.0	5	02.0			5	04.0	6	07.5
8	1	05.0	2	05.0	3	01.5	4	01.0	5	03.0	5	01.0			4	09.0	6	02.5
9	1	11.0	2	04.0	2	08.5	3	05.0	4	08.0	4	09.0			4	03.5	5	06.5
10	2	09.0	2	08.0	2	07.0	3	00.0	4	01.0	4	02.0			3	11.5	4	11.0
11	3	10.0	3	05.0	\%	11.0	2	10.5	3	07.0	3	06.0			3	11.5	4	08.0

Date.	DECEMBER, 1871.																	
Time.	5		6		7		8		9		10		11		12		13	
	Feet.	Inches.	Fert.	Inches.	Fect.	Inches.	Fect.	Inches.	Feet.	Iuches.								
$0^{\text {b }}$	4	08. 0	4	03.5	3	09.5	4	05.0	5	04.0	6	03.5	7	04.0	8	01.0	צ	01.5
1	4	09.0	4	00.5	3	04.5	3	07.0	4	07.0	5	02.0	6	04.0	7	0.5 .0	8	01.5
2	5	02.0	4	01.0	3	01.5	3	00.0	3	08.0	4	00.0	5	00.0	6	02.0	7	04.0
3	5	06.5	4	04.5	3	03.5	2	10.5	2	11.5	3	03.5	3	$0 \times .5$	4	06.0	6	01.0
46	5	10.5	4	11.5	3	08.5	3	00.0	2	04.5	2	08.0	2	09.5	3	10.0	4	06.0
5	6	00.0	5	03.0	4	03.0	3	06.5	3	05. 0	2	09. 0	$\stackrel{2}{2}$	04.0	$\stackrel{2}{2}$	04.0	3	02.0 065
6	5	11.0	5	05.0	4	10.0	4	02.0	4	07.0	3	0.5	2	05.0	$\stackrel{2}{2}$	03.5 02.5	2	06.5 06.0
7	5	08.0	5	06.0	5	03.5	5	00.0	5	01.0	4	04.5	3	03.5	2 3	02.5 09.0	$\stackrel{2}{3}$	06.0 02.0
8	5	03.0	5	04.0	5	06.0	5	10.0	6	03.0	5	05.0	4	10.0	${ }_{5}$	09.0	3	02.0 07.0
9	4	10.0	5	00.0	5	0 0. 0	6	03.0	7	00.0	6	09.5	6	02.0	5	03.0	4	07.0
10	4	06.5	4	07.0	5	03.0	6	03.0	7	05.0	7	08.4	8	09.0	6 8 8	11.0	6	01.0
11	4	05.5	4	04.0	4	09.5	5	10.0	7	02.5	8	00.0	8	06.0 06.5	8	02.5 10.25	7	07.5 09.5
$\underset{1}{\text { Noon. }}$	4	04. 0	4	00.0 10.0	4 3	04.0 11.0	5 4	01.0 05.0	$\frac{6}{5}$	07.5	7	07.5	8	06.5 10.5	8	10.25 07.0	8	09.5 02.0
1_{2}^{14}	4	08.5 01.0	3	10.0	3 3	11.0 08.0	4 3	05.0 11.5	5	08.5 07.5	6 5	07.5	7	10.5 10.0	8	07.0 09.5	9 8	02.0 10.0
2	5	01.0	4	01.0	3	08. 0	3	11.5	4	07.5	5	07.0 0	6	10.0	7	09.5 09.0	8 7	10.0 10.0
3	5	08.5	4	03. 0	3	08.5	3	08.0	4	${ }^{10.0}$	4	08.0	5	06.0 05.0	6	09.0 04.0	7	10.0 04.0
4	6	02.0	4	10.0	4	01.0	3	08.5	3	09.0	4	00.0	4	05.0	5	04. 0	6	04.0
5	6	07.75	5	04.0	4	08.0	4	02.0	3	11.5	3	09.0	3	09.0	4	01.5	5	07.0
6	6	09.25	5	08.0	5	04.0	4	10.0	4	07.0	4	00.0	3	07.5	3	07.5	4	03.0
7	6	06. 75	6	00.0	5	11.0	5	10.0	5	06.0	4	10.0	4	03.0	3	07.5	3	08.0
8	6	02.5	6	00.0	6	02.0	6	04.0	6	06.0	6	00.0	5	05.0	4	04. 4	3	11.0
9	5	07.0	5	10.0	6	03.0	6	11.5	7	03.0	6	11.0	6	07.5	5	07.0	4	09.0
10	4	11.0	5	03.5	5	11.0	6	10.5	7	06.0	6	06.0	7	06.0	6	08.0	5	10.0
11	4	05.0	5	06.5	5	02.5	6	04.0	7	02.0	7	08.0	8	01.0	8	01.1	7	00.0
Date.	DECEMBER, 1871.																	
Time.	14		15		16		17		18		19		20		21		22	
	Feet.	Inches.	Fet.	Inches.	Fcet.	Inches.	Fect.	Inehes.	Feet.	Inches.	Feet.	Incher.	Fet.	Inches.	Feet.	Inches.	Feet.	Tnches.
$0^{\text {h }}$	7	09.5	7	00.0	5	05.0	3	07.0	3	01.0	3	06.0	4	01.0	4	06.5	5	00.0
1	8	06.0	7	06.0	6	04.0	4	06.0	3	$0 \times .0$	3	07.5	3	10.5	4	00.0	4	(13.5
2	8	00.0	7	09.5	6	10.5	5	04.5	4	05.5	4	04.0	3	11.0	3	09.0	3	08.0
3	7	00.0	7	07.0	6	11.5	5	09.5	5	01.0	4	09.5	4	0.3 .5	3	09.5	3	05.0
4	5	07.5	6	08.0	6	0 0. 0	5	10.5	5	05.0	5	02.0	4	10.0	4	00.0	3	05.5
5	4	01.0	5	04.5	5	06.5	5	05.0	5	05.5	5	07.5	5	05.0	4	04.5	3	11.5
6	2	10.0	3	11.0	4	06.0	4	06.5	5	05.0	5	09.0	5	08.5	5	01.5	4	05.0
7	2	04.0	2	11.5	3	04.0	3	06.0	4	07.5	5	09.0	5	11.5	5	06.5	5	03.5
8	2	05.5	2	08.0	2	06.5	2	07.0	4	00.0	5	05.5	6	00.0	\checkmark	02.0	5	11.5
9	3	04. 5	3	00.0	2	04.0	2	02.0	3	04.5	4	10.5	5	$0 \times .5$	6	03.0	6	06.0
10	4	07.0	3	10.0	2	06.5	2	02.0	3	01.0	4	04.0	5	04.0	6	00.5	6	07.5
11	6	03. 0	5	04.5	3	06.5	2	06.0	3	00.0	4	01.0	4	11.0	5	08.5	6	06.0
Noon.	7	07.5	6	03.5	4	07.0			3	02.0	4	00.5	4	06.5	5	02.0	5	11.0
$1^{\text {b }}$	8	06.0	7	07.5	5	10.0			3	09.0	4	03.0	4	06.0	4	08.0	5	07.0
2	8	08.5	8	10.0	6	08.0	-		4	06.0	4	08.0	4	04.0	4	04.0	4	07.0
3	8	03.5	8	05.5	7	01.5			5	07.5	5	02.0	4	07.5	4	03.5	4	02.5
4	7	04.5 11.5	7	10.0 09.0	7	03.0 07.5	6	06.0	6	02. 5	6	00.0	5	02.5	4	05.5	4	01.0
6	4	09.5	5	06.0	5	07.0	5	11.0	${ }_{6}$	07.0	7	00.0	6	04. 5	5	01.0	4	04.0 00.0
7	4	02.0	4	05.0	4	06.0	5	01.0	6	04.0	7	00.0	6	08.0	6	01.0	5	07.0
8	3	05.0	3	10.0	3	06.0	4	02.5	5	09.0	6	09.0	6	08.5	6	05.5	6	00.0
9 10	3	07.0 06.0	3	07.0 0.0	2	11.0	3	05.0	4	10.5	6	00.0	6	04.0	6	07.5	6	05.5
110	4 5	06.0 08.0	3 4	08.0	2 2	08.5 10.0	3 2	00.0 11.0	4 3	02.0 0.0	5 4	04. 0	5	10.0	6	04.5	6	07.0
			4		2	10.0		11.0	3	03.0	4	08.0	5	02.5	5	09.5	6	02.5

Date.	DECEMBER, 1871.																						
Time.	23		24		25			26		27		28			29		30			31			
	Feet.	Inches. F	Feet. I	Inches.	Feet.	Inch		Feet.	Iuches.	Feet. I	Inches.	Fect.		nehea.	Feet.	In.che		Feet.	Inches.	Feet.	Inehes.		
$0{ }^{\text {b }}$	\square	06.5	6	04.5	6			7	02.5	7	02.0	6		10.0	6	04.		5	11.5	5	04. 5		
1	4	08.0	5	08.0	6			6	09.0	7	00.0	6		08.5	6	07.		6	07.5	6	01.5		
2	4	00.0	4	10.5	5			5	10.0	6	05.0	6		06.0	6	09.		6	09.5	6	06.5		
3	3	15.0	4	02.0	4			4	08.5	5	07.0	5		08.5	6	03.		6	04.5	6	07.5		
4	;	04.5	3	06.5	3			3	09.0	4	03.5	4		08.5	5	02.		5	08. 5	6	02.5		
5	3	06.0	3	05.0	3			3	02.0	3	05.0	3		06.0	4	00.		4	09.5	5	04.5		
6	4	00.0	3	06.5	3			3	00.0	3	00.0	2		10.0	3	01.		3	08.0	4	03.5		
7	4	05.0	4	03.5	3			3	01.5	2	11.5	2		07.5	2	06.		3	00.0	3	04.0		
8	5	04.0	5	00.0	4			3	06.5	3	06.0	2		11.5	2	07.		2	09.5	2	10.5		
9	6	01.0	6	00.0	5			4	07.5	4	03.5	3		10.0	3	02.		2	11.5	2	11.0		
10	6	07.0	7	00.0	6			6	00.5	5	07.0	4		08.0	4	00.		3	10.0	3	02.5		
11	6	02.5	7	0.5. 0	7			7	01.5	6	04.5	6		03.0	5	03.		4	08.5	4	01.5		
Nuon.	6	05.0	7	04.5	7			7	06.5	7	04.5	7		02.5	6	05.		6	00.0	5	02.5		
1^{11}	5	09.5	6	10.0	7		5	7	08.1	7	07.5	7		09.0	7	05.		7	02.0	6	02.5		
2	5	01.0	6	00.0	6		0	7	01.0	7	04.5	7		09.0	7	09.		7	06.5	7	00.0		
3	4	04.5	5	01.5	5		. 0	6	0\%. 0	6	07.0	7		02.5	7	05.		7	07.0	7	05.5		
4	4	01.5	4	03.5	4		. 0	5	02.0	5	06.5	6		04.0	6	07.		7	01.0	7	04.5		
5	4	03.0	3	11.0	4		. 0	4	03. 5	4	06.0	5		08.0	5	07.		6	02.0	6	08.0		
6	4	03.5	3	11.5	3		. 0	3	10.0	3	09.0	4		04.5	5	02.		5	02.5	5	08.5		
7	5	00.0	4	07.0	4		. 0	3	09.0	3	07.0	3		10.0	3	11.		4	03.0	4	09.5		
8	5	11.0	5	06.0	5		. 0	4	04.5	3	08.5	3		07.5	3	09.		3	0ヶ. 0	4	00.0		
9	6	07.5	6	01.0	5		. 5	5	03.0	4	05.5	4		03.0	3	10.		3	07.0	3	07.0		
10	7	00.0	6	08.5	6		. 0	6	02.0	5	05.0	4		11.0	4	05.		4	00.0	3	07.0		
11	6	11.5	6	10.5	7		. 0	6	10.0	6	02.5	5		08.5	5	03.		4	07.0	4	01.0		
Date.	JANUARY, 1872.																						
'Time.	1		2			3			4		5			6			7			8			
h.	Feet.	Iurlirs.	Ferf.	f. 'Inches.		Feet.	Inches.		Feet.	Inehes.	Feet.	Inches.		Feet.	Inches.		Feel.		Inehes.	Heet.	Inches.		
9. 00	4	11.5	4			4		00.5	3	07.75	3			4	00.0		4		05.0	5	06.2500.0		
0.30	5	04.5	5			4		02.0	3	08.0	3	09.0		3	09.0		$\begin{aligned} & 3 \\ & 3 \end{aligned}$		11.5	5			
1.00	5	08.5	5		0	4		06.5	3	10.5	3	0\%. 0		3	05.5				07.5	44	$\begin{aligned} & 00.0 \\ & 06.0 \end{aligned}$		
1. 30	6	01.0	5			4		10.5	4	02.0	3	10.5		3	$\begin{aligned} & 05.0 \\ & 04.6 \end{aligned}$		$\begin{aligned} & 3 \\ & 3 \end{aligned}$		04.0		$\begin{aligned} & 06.0 \\ & 01.25 \end{aligned}$		
2.00	6	03.5	5		. 5	5		02.0	4	05.5	3			3			3		$\begin{aligned} & 02.0 \\ & 00.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	07.0		
$\stackrel{2}{2.30}$	6	05.5	5 6		. 5	5		05.5	4	02.6	4	01.0		3	05.0		3			3	$\begin{aligned} & 02.0 \\ & 10.5 \end{aligned}$		
3. 00	6	06.0	6		. 0	5		09.5	5	01.0	4	04.508.6		3	$\begin{aligned} & 06.75 \\ & 0.6 .6 \end{aligned}$		$\stackrel{2}{3}$		11.6	2			
3. 30	6	05.6	6		. 5	5		11.5	5	114.6	4			3			00.3	222	$\begin{aligned} & 10.5 \\ & 09.0 \end{aligned}$				
4.00	6	04.5	-6		. 0	6		02.0	5	07.5	5	00.3		4	00.0					3		01.0	$\begin{aligned} & 0 \times .75 \\ & 09.66 \end{aligned}$
4.30	6	01.5	5		. 75	6		02.6	5	09.75	5	0.307.3		4	04.0110.3		3		0.30	2			
5. 00	5	$0 \times .5$	5		. 5	6		12.6	5	11.75	5			4			3		06.0	3	$\begin{aligned} & 09.66 \\ & 00.5 \end{aligned}$		
5. 30	5	04.5	5		. 75	6		01.6	6	00.6	5	09.5010.00.0		5	00.5		3		04.6	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 04.0 \\ & 09.0 \end{aligned}$		
6. 00	5	10.6	- 5		0	5		11. 25	6	01.6	6		0	5	04.7508.0		4						
6.30	4	04.5	5		. 0	5		$0 \mathrm{S.0}$	6	01.5	6	01.0		5			$\begin{aligned} & 4 \\ & 5 \end{aligned}$		10.0	4	$\begin{aligned} & 09.0 \\ & 01.5 \end{aligned}$		
7.00	3	11.5	5		. 0	5		03.5	6	00.0	6	01.501.3		5	11.0				OR. 6	45	09.5		
7.30	3	07.0	4		. 0	4		03.0	5	09.0	6			6	$\begin{aligned} & 01.5 \\ & 03.0 \end{aligned}$		56				$\begin{aligned} & 03.66 \\ & 11.00 \end{aligned}$		
8.00	3	03.5	- 4		. 5	4		04. 5	5	06.0	6	$\begin{aligned} & 01.3 \\ & 00.0 \end{aligned}$		6			$\begin{aligned} & 6 \\ & 6 \end{aligned}$		00.6	6			
$\begin{array}{r}8.30 \\ \hline .30\end{array}$	3	02.5	- 3		. 5	4		03.75 01.5	5	03.0 11.5	5	110.0		6	$\begin{aligned} & 03.0 \\ & 0.3 .75 \end{aligned}$		6			$\begin{array}{lll}6 \\ 6 & 10.3 .3\end{array}$			
9.00 9.30	3	01.6 02.25	6 3 3		. 5	4		01.5 00.25	4	09.0	5	1).0.30.2		$\stackrel{6}{6}$	03.0		6		06.3 07.5	$7 \quad 04.75$			
10.60	3	04. 25	253		. 0	3		11.0	4	06.5	5	01.0		6	$\begin{aligned} & 01.5 \\ & 11.75 \end{aligned}$		6		07.0	$7 \quad 07.0$			
10.30	3	07.25	253		. 0	3		10.5	4	0 n 0 0	5	01.710.5		5			6			7	117.75		
11. 00	3	11.5	5		. 75	3		10.5	4	04.5 03.75	4 4	0.3 .0		5 5	06.0		$\begin{aligned} & 6 \\ & 6 \end{aligned}$		$\begin{aligned} & 03.7 \\ & 02.0 \end{aligned}$	7 7 01.25 7 05.0			
11. 30	4	03. 25	254		. 5	3		11.5	4	03.75	4			5			6						

1！11．FEBRUARY， 1872.	FEBRUARY， 1872.																	
$11^{1 /}$	1	110.5	$\square!$	01.10	．	10.11	ij	11．75	7	114．	7	111.5	6	1120	5	111． 3	4	112．75
，	\therefore	11．． 11	1	$11: 0$	5	1111．こ－		114． 3	7	11：， 01	7	11－． 5	7	118．11	19	11． 616	\％	11.0
\because	：	114.11	：	17．3． 10	\therefore	11.11	5	11.20	$1{ }^{1}$	13：311	\％	115．95	7	112.11	7	117．${ }^{\text {a }}$	6	10．1）
\therefore	i	11.11	3	（10）． 11	\because	161．1）	；	10.11	$\bar{\square}$	10.5	1	（1：）． 11	7	111.7	7	117.35	7	01．${ }^{10}$
4	：	117.5	\because	11．5	\because	18，嫁	\because	11．1if	\therefore	（1）． 75	4	パ゙，「	5	11．11	1	10．0	1	0．9．0
\square	1	0．3． 11	\because	11.2 .5	2	11.5 .51	\because	（15，：3：	\because	11.0	\because		4	1ri． 11	5	116.0	19	111） 11
1	1	11．	：	119． 0	\because	1！ 1.0	！	113：75	\because	$10: 3.75$	\because	10：\％ 5	\because	11.11	1	170． 11	\cdots	02．0
7	－	11－．${ }^{1}$	1	115.5	\therefore	11.9 .01	：	113． 11	\because	11.0	\because	119． 11	2	1116．${ }^{111}$	－	113．0）	3	01.86
is	1	12，30，	5	12.617	1	111．25	\therefore	10．） 5	\because	10．11	\cdots	13： 3	1	11.0	\because	（1）． 11		（1）． （1）． （1）
9	$1 i$	（16）． 1	$1{ }^{\text {i }}$	112．11	13	（ii）． 0	F	11： 0	1	（1）． 0	：	12．5	－	111．！	\cdots	＂10．1	\because	（1－3，
111	1	（1．3．${ }^{\text {a }}$	t	11.5	is	11.5	15	$10: 10$	\square	185．${ }^{3}$	4	（15．） 11	3	U4．．．．	\because	10.11		（1）． 0.3 0.3
11	6	11．2． 11	（i）	111． 7.5	i	116．0	－	04.10	\％	11.5	\square	185.11	1	10．：3	4	111.5	3	102.0 060 10.0
N	\cdots	0－． 0	1	（1）6． 0	i．	（18．0 0	7	101．5	X		K	191， 11	6	07． 110 010 108	5	09.5 101.5	5	10．11
$1^{\prime \prime}$		11.0	\therefore	10.11	11	11． $3:=1$	$\stackrel{7}{4}$	11．－．${ }^{11}$	－	117．0	\cdots	（1）9． （1） 11	\％	111． 0	－	119．0	7	（8）． 11
\because	1	17，0	4	11．$\%$	5	110． $3: 3$		11．11	\cdots	（12． （1） 0	\％	112．0）	－	II： 1	－	11.0	$\%$	（11， 11
：	1	13．）（id	1	10.5	4	10．	－	111． 11	5	11） 10	1	12．	，	112.5	7	115．11	7	111.11
1	4		：	（13．）${ }^{(1)}$	\because	14．9	4	04．\quad \％	5	11゙．	${ }_{6}$	12， 617	f	iny 0	6	114.5	fi	12．0．0
－	4	（19．1）	\therefore	15.0	\because	18． 5	；	14．${ }^{1}$	1	11.0	\square	（11． 71	1	10． 0	4	11．${ }^{\text {ali }}$	$\stackrel{1}{5}$	119． 210
$1{ }^{1}$	$\%$	（11．	1	（10．1）	\therefore	04.11	\because	101． 136	\％	110.11	3	（1！）． 11	4	（19．3）${ }^{1}$	4	11．0\％		（1．： 11
\％	5	17． 715	4	07．1）	\because	10.1	\because	11．11	\because	1176， 11	9	10．93，	\because	（16）． 30	\％	（12，${ }^{11}$	－	0．． 0
\cdots	$1 ;$	11.0	：	04.11	4	1125	：	117.5	\because	10.5	\because	112． 11.	\because	116.0	$\stackrel{\square}{7}$	$11 \% .0$	3	12． 2.
4	15	111.11	5	11．11	5	112． 75	1	112． 35	：	10.3	\because	11：3．	\because	117.11	\because	＂1．10	\because	11－3．3
10	$1 ;$	$11 \% .0$	is	11： 3.9	13	（16．） 11		10.5	5	13： 0	4	11：3，5	3	（1：3． 13	\because	118.75	\because	116． 75
11	\therefore	119．5	1	（13．5	7	110.11		11.0	$1 ;$	113.0	5	（18i． 11	4	15．． 0	3	15.0	3	11．${ }^{2}$
Ditte．								FEB	RUA	RY， 18	872.							
＇Time．		11		15		16		17		1%		19		20		21		－2
	Prt．	Jurhos．	İ， 1.	Intur．	Fil．	Inclus．	Pid．	Iuchus．	Eut．	Inthes．	Fid．	Imblus．	Ferl	Iultas．	Prat．	Indus．	Fect．	Intues．
$0^{\text {h }}$	\because	111． $3:$	\therefore	1： $5 . \therefore$	\because	（15．） 0	3	11． 5	\square	112．5	4	10.5	5	0．5．${ }^{\text {a }}$	5	（1－．．）	\therefore	112． 11
1	F	171．${ }^{\text {a }}$	1	11.0	4	10．0 0		（10．7．）	F	（10）． 5	4	117.5	4	111.0	5	1120	\％	112．95
\because	5	11． 5	－	113．0	4	17.0	3	11．\％	4	10.5	4	111． 11	4	0.40	4	114．11	4	13： 5
\because	6	（1．）． 75	＂	10． 1	5	110.3	4	15．）． 0	5	（1）． 1	4	（15， 11	4	00.10	；	111．．	3	110.0
1	1	11.5	i	$01 . \%$	5	11） 10.5	5	100． 11	5	07．${ }^{\text {a }}$	4	（1），5， 5	；	（1）．5． 5	3	178.1	3	109.5
5	1	10.0	$1 i$	11.11	5	111． 181	5	1150	5	11．＂	4	115.0	3	119．85	：	111．0	\because	115， 8.5
i	5	13．${ }^{1}$	－	18！．0	5	（1）． 5	5	117.8	$1 ;$	114.5	4	111．	4	11．5）	3	112．01	2	11．5． 11
17	4	01.5	1	11．5	\therefore	（14．．${ }^{\text {a }}$	5	115.5	13	111． 0	I	11：	4	11.75	4	（12．${ }^{1} 1$	\because	115．
，－	；	110.8	4	－ 100.5	1	109． 5	．	117.5	1 i	（11． 10	5	119.0	5	（12－5）	5	1111．\because	：3	（15． 11
9	\because	115，in	\because	131.0	4	（1）． 0	5	114.0	$1 ;$	11，cifi	$1 i$	01.0	1	$11 \% .11$	5	119．0	4	16．0
10	\because	106， 0	3	$10: 3.7$.	：	111．${ }^{2}$	－	111.1	13	（1）． 01	1	03．0	1 i	10.5	12	14.10	\％	117.5
11	\％	160.17	\because	04．$\because 5$	，	（19）． 2.	4	10.5	（i）	（1）． 11	15	（19．）． 95	\sim	00.0	1	117.0	1	15.0
	3	（19．	\because	11．7．	＇$:$	10.0	4	110.	5	（12．0	5	11.0	6	10.11	19		6	（1＊） 0
1^{11}	4	10．＂	4	11.11	4	01.0	4	（1）． $\mathrm{lifl}^{\text {a }}$	5	11．）． 5	5	114．${ }^{5}$	0	01.5	5	11．$\overline{1}$	1	10． 0
\because	F	10.0	S	14.11	4	11－． 3	［	（12． 11	\％	04． 5	\square	111.85	5	115． 5	5	（18． 1 ）	6	100． 11
3	$1 ;$	11% ． 3	1	155．	\therefore	12：0 0	$\%$	mi． 25	5	（15，\％	4	117.0	4	111． 0	4	（1）．8． 2.0	4	10．0）
4	1 i	110.5	13	11： 10.0	5	112．0	5	111．	5	17\％．66	4	10．， 25	4	（ifi， 0	\therefore	（1）！ 11	3	（19）．5
¢	13	11.11	1 i	10.0	5	111． 5	1	111.0	5	11.0	4	05.5	4	（1）． 0	3	11.5	3	01.5
1	5	10． 5	i	11.8.	5	10． $3, \cdot 1$	${ }^{6}$	114.0	1	010.5	4	115	4	（1－2． 9	3	13：30	2	10.16
7	1	12．5．	5	19.11	E	111.11	6	1115．11	6	11.5	－	（110． 11	5	10．75	3	（15． 0	3	119．5
\cdots	3	117.8	4	11.5	4	11． 7.	6	（15．） 0	is	110． 35	－	113.11	S	11.5	4	11.0	3	（12． 11
9	\cdots	10.5	4	（110）：	4	114．	1	11.2	5	11.75	\therefore	（1）． 11	${ }^{1}$	111.5	4	119.25	\pm	（11． 3
111	\because	117.3%	3	117，洨	：	10.0	5	111，	\％	11．	5	1110	6	18.0	5	14.0	5	（15）．5
11	\cdots	（18．1）		U：3． $2 \cdot$	；	119，\％	5	（1）． $3: 3$	5	11： 3 ， 20	5	015.5	6	11.0	5	08.25	6	1118.0

Date．	APRIL， 1872.																	
Time．		1		． 5		6		8		8		9		10		11		12
	Feet．	Inthex．	Ful．	Inches．	Pll．	Itroms．	Fill	Iurlues．	Pri．	Itreltes	Firt	Inchus．	Feed	Inches．	120	Imincis．	Prel	
$0^{\text {b }}$	：	$11 . \mathrm{I}$	4	10.13	－	10． 3.	1		i	11.11	is	14．	：	11．5	\therefore	111．${ }^{\text {an }}$	4	$11.5 .5$
1	3	（1）． 5 ）	：	11.0	1	11－5	ti	04． 18	$1 ;$	11.11	is	10．75	6	19.5	1	12．11	\therefore	（110．
\because	\because	109． 0^{5}	：	（11）． 3	\because	11．）．	\therefore	0：3．0	i	11.11	i	（1）－ 11	$1 i$	11.5	$1 i$	117． 176	i	（13：$\therefore=$
：	\because	1／i． 31	\because	14.10.	\because	1178	\because	16． 168	\dagger	11．8． 11	i	11－． S	ii	（1）：亏	ii	（11．） 1 ）	fi	14．$\%$
4	\because	11% ．	$\stackrel{\square}{-}$	11.7	1	111． 5	\because	（17）	， 3	01.11	1	110.5	－	111.0	\therefore	115．$\quad 3$	5	111． 5
F	2	101．	\because	（1）：	1	11－． 5	1	109． 8	， 1	10． 5	\because	112．11	3	106，${ }^{\text {a }}$	4	（1）． 01	4	112．
1	：	11．5	：	（15．0）	\because	112．	1	117.8	1	13：$\overline{1}$	1	115．11	\because	0．7． 0	：	（19）． 6 it	\because	110．
\％	1	11.11	4	11.11	\therefore	（1．）． 11	\because	10． 0	1	11：3． 0	1	（17． 17	1	11.0	\because	（0．） 0^{3}	3	11.8 .0
－	5	1200	5		4	11．3， 1	：	11． i	1	14．$\overline{\text { i }}$	1	114．7．	1	（1i．） 1	1	112． 2	\because	（1）2． 5
9	6	11． S^{\prime}	i	（1）． 1^{\prime}	－	11：．11	1	mi． $\mathrm{i}^{\text {a }}$	3	111．11		（15．） 01	\because	［111．．．	1	（15．0）	\because	（11．：3：
10	6	112．	$1 i$	115.61	1 i	114．lilj	13	＋ 110.11	1	117.11	\because	110.8	：	11：3． 11	\because	15．0	\because	115． 5
11	\therefore	10．$\overline{5}$	I	117.8	1	11．1ili	1	11.11	1	1111． 11	\therefore	112.5	\pm	115．11	\because	10．0	：	14． 5
Nı6ו1．	－	Miti． 0 －	$!$	04.0	1	11． 5^{5}	7	Mi．${ }^{11}$	\＃	11.10	i	11：．5	\square	$11-.$	i	10.0	4	11．8． i
$1^{\text {b }}$	4	11．\square^{-}	i	190． 5	1	113．${ }^{11}$	$\stackrel{1}{1}$	11．	7	11.5	${ }^{3}$	11.0	1 i	116．11	\therefore	11.0	\therefore	（12． 5
$?$	4	11：311	3	11．i	4	11.5	I	， 11.0	${ }_{6}$	113．$\overline{1}$	1	11－． 11	1 i	1心，こ	1	0.4 .0	\square	117.5
3	3	－06．0	$\stackrel{2}{2}$	11.0	3	11.11	4	0．i． 01	S	113.5	\therefore	112．5	1	112．1	15	01． int	\square	11．5
4	\because	11．3．0	\because	112.1	\because	11150	\because	11．（iti	； 3	10．5）	1	111.11	4	11．	\therefore	10.0	5	110.3
\therefore	\because	11－．	\because	（10）． 1 ）	1	$13!1.1$	1	（10）． 5	\because	103． 5	\because	111.5	：	（15．$\overline{5}$	：	11．11	1	114.8
1	\therefore	03． 5	\because	（I．）． 11	1	115	1	（0）．	1	11：3．	1	115.5	\because	11．2．	\because	11.0	$: 3$	11.8 .5
7	：	11．0	\because	1：3．0	\because	110.11	1	10．${ }^{\text {a }}$	1	11.5	1	（1）1， 11	1	（12．0）	1	110.0	\because	11．8．11
－	4	（1）．－	4	194.19	：	111．11	\because	01.0	1	$19+11$	1	112.5	11	11．$\overline{\text {－}}$	1	10： 5	1	10.11
1	5	11．3． 5	\therefore	11.8 .11	4	14.11	：	（12．0 0	\because	15：3．3：	1	10.5	1	（1．）． 11	1	111．5	1	191． 11
10	E	（1－1）	1	131.8	\because	115．11	5	（11）． 11	3	139．11	3	110.75	\because	116， 11	\because	10.5	\because	120
11	is		$1 i$	18：35	$1 ;$	1Hi．til	1	10，י1	5	01.5	＋	（1）2， 0	：	（1）． 78	：	11.0	\because	11.0
I＇ate．									APRI	L， 1872								
Time．		13		11		1．7		16		17		16		19		20		41
	lital．	Inches．	Fed．	Imbus．	İI．	Imblus．	Prm	luthes．	lid．	／tmeltrs．	Fird．	Ituhos．	Fiow．	Imrlis．	Put．	Inthas	（\％）．	Inches．
0^{4}	：	11． F	\because	06， 5	：	1以， 5	\because	11！ 11.5	\because	（19．8．5）	\because	0．s． $\mathrm{S}^{\text {a }}$	\because	117.75	3	1111	1	01．11
1	5	（11）． 0	4	114． 5	：	$11!1.0$	\because	$11 . \mathrm{i}$	\because	10．0	\because	01.8	＂	11.11	：	115， 1	，	117． 130
\because	\therefore	Ot．0）	－	11： 11	4	11.11	\because	10． 5	：	01.161	\because	1110．11	\because	1120	\because	11－6	；	112．11
3	1	01.1	－	109.1	1	111.11	：	0．7．\quad \％	：	19． S	\therefore	111） 5	\because	12．11	1	11．5	\because	112．${ }^{\text {a }}$
4	1	00.0	\therefore	111．${ }^{\text {a }}$	I	112．	1	$10 \cdot \therefore$	\because	10， 3 只	S	11.11	\cdots	11： 11	1	11－5	\because	101， 1
5	． 7	10 O	F	（1）．11	$\overline{7}$	$11: 1.8$	4	10.10	1	12．${ }^{\text {den }}$	\because	いい． 1	\cdots	114． 3	1	（1）${ }^{\text {a }}$	1	10.0
1	4	10×13	－	$11: 10$	\square	01.19	1	（125．0	4	117.11	1	111．7\％	\cdots	11.5	\because	01．0	1.	11．\％
7	：	09． 20	4	117．1！	4	11．1． $2 \cdot$	1	11－． 3.	4	10.1	4	115．1	：	115． 5	\because	111．\therefore	\because	112．11
＋	：	01.17	3	11．	1	11： 12 ili	4	116．$\therefore 1$	4	11．${ }^{\text {a }}$	\because	（110． $111{ }^{\circ}$	I	11．：11	\because	O！ 11.8	\because	115．1
！	\because	（17． 10	3	11.7	\because	10.0	1	10.5	4	$11 . \mathrm{i}$	\because	11.5	－	115．．．	4	117.6	1	10．${ }^{10}$
111	$\stackrel{3}{2}$	0．1． 0	3	（1）．5	：	O1， 11	：	18！ 0.8	t	11！ 1.11	I	11211	＇	111．1	E	11098	5	119，0
11	：	10.7	：	11， 110	\because	114．	\because	115.0	4	u，in	－1	11.11	4	11．1	5	10.8	1	112.0
Noon．	4	d日，	：	19．7．	：	15．，is	\because	14．95	\because	11．1）	1	（1．）． 0	4	11．1．-1	$\overline{7}$	112．	1	1号
1^{16}	4	10．75	4	04． 5	i	11．1，	\because	（12．1．${ }^{10}$	\because	110.5	\because	（19）． 7.	\because	11－．11	4	11．－1． 11	\square	（1）
\because	：	10． 16	4	10.11	1	111．\because	\because	11． 1.10	\because	11．4．0	？	113，0	\cdots	11．1	＂	16． 11	I	13：，¢ivi
3	$\underline{3}$	117．75	\square	（10）． 5	，	（0， 3 ，if	\because	13i，is	\because	11： 3.7	\because	11． 75	\cdots	113.0	\because	105．5	\because	01．0
4	5	06.0	5	01． 75	4	05．is	\because	10．． 0	\therefore	111.8 .1	\because	111．5	1	11－2 68	1	111．is	\because	111． 11
5	4	11.0	4	11.5	4	11．6，61	：	11.16	：	117． 11	\because	11， 11	1	11－． 3 ，	1	112．0	1	112.11
6	4	01.5	4	13．11	1	（11．）	1	171.0	：	10．0	\because	0こ． 21	3	00． 7.5	1	112．	1	11， 12.5
7	3	（1）． 18.	\because	12．0	：	111.0	4	010.9	＋	111．1）	＂	11% ， 11	？	（1－3）	\because	117．	I	11．$\%$ ：
\cdots	\because	07． 0^{5}	\because	11． 136	：	11.75	3	（19）．${ }^{2}$	4	$111 . \text { is }$	4	（11）， 11	：	0．1．	3	15.3	3	（11）． 71.1
$1!$	\because	11.5	\because	$189.0 \mid$	\therefore	（1．7．0	3	（10．7．7．	1	111.5	4	11： （1）， 11	4	111.11	4	（1）．， 0	$\underline{1}$	（1：3， 0
10	？	115．$\%$	\＃	112．01	\％	$11-0$ 0.10		（1）．1． 0.11	$!$	1110	1	（1） 010	4	104．	5	101.0 $0-5$	i；	（19．） （11）， 11
11	\because	11.11	\because	119.5	？	（1：1． 0	\because	$10 \cdot 5$		11ヶ．3．		110．75	4	14．\％	5	0.90	1	（17） 11

DETERMINATION OF THE HALF TTDF LEVEL．

The ladf－tide level，＊which nudergoes smaller fuctuations than either the mean high－water or mean low－water level，aud to which all heights shonld be referrel，was determined by the follom－ ing method，in use at the United States Coast Survey Office：

We first tabulated all the heights of the high water and low water in order of their occurrence and placed them in the third column of the appended table．Then the mean reading of two suc－ cessive high waters was phaced in the fourth colum，opposite the intermediate low water，and the mean reading of two snccessive low waters was paced opjosite the intermediate high water in the sixth column．The mean between two successive readings in the fonth and sixth columns， respectirely，was then again taken and paced in the fifth and the seremb colnmms，respectively， opposite the intermediate high water or low water．In this mamer two mean ratues were ob－ tained on each horizontal line，the mean of which constitute one halt tide level in colnmo eight．By this process the diurnal and semi－diurnal inequality are nearly eliminated，and the sectional area of water above the balttide lerel at high water will，on the areage，correspond to an equal sectional area of water below the half－tide level at low water．

Aninquiry into the reading of the half－tide level is esperially important fur the determination of the effect of both wind and atmospheric pressure，and also for the study of the effect of changes in the moon＇s and sun＇s declination，as may be seen from some of the following paragraphs．Fur． thermore，the zero－point of the scale of the tide－gange，may undergo changes，in which case the half－ tide level readings will furnish a certain test on this point．The table made out in the manner above stated runs as follows：

Table showing the determination of the half－tide lecel for the whole sivis of obsercations，from Notem． ber，1851，to Jlune，187：．

Date．	$\begin{aligned} & \text { 菏 } \\ & \text { 畨 } \end{aligned}$	商	Means．		Meaus．			Date．		会	Means．		Means．		
$1871 .$		Peat．	Fcet．	Feet．	Fect．	Fect．	Fret．	127.		FH．	Fict．	Fect．	Frcel．	Feet．	Fut，
Nov．（i	11.	4.79	－7－7					Nov． 15	${ }^{\mathrm{H}}$ ．	5.83		6． 24	0． 2		3.49
（i）	L．	2.75	4.75					1.$)$	L．	11.3	2.60			0．$\Sigma 1$	3， 1
i	H.	4． 71		4.47	2.69		3，in	15	${ }_{H}$ ．	6．is		6． 16			3．
7	L．	$\because 6.3$	4.19	$\ldots-\ldots$		$\because .61$	： 50	15）	L．	1．42	6.12			0.90	3.85
7	11.	3.17		4． 20	2.52		3． 36	$11 ;$	11.	5.17		6.15	1.08		$\therefore 10$
7	L．	2． 42 4.75	4.21			9.39	3． 311	16	L．	0.75	6． 0^{1}			1.31	3.76
8	H．	4.75 $\because 10$		4.37	－		3．31	16	1 I ．	6． 75		6． 20	1.54		3.7
$\stackrel{8}{8}$	$\stackrel{\mathrm{L}}{\mathrm{L}} \mathrm{H}$	$\because 6$	4.54	－－－－		2． 27	3． 40	16	L．	9．33	C． 19			1．6）	3.94
－	H．	4．33		4.59	2． 29		3，4t	17	${ }_{\mathrm{H}} \mathrm{H}$	5． 63		13． 04	1.8		3.94
\％	L_{H}.	？．9．0	4.64			2． 24	：3， 44	17	L．	1． 33	5.90			1．E゙9	3．-9
\cdots	H.	4．\square^{14}		4.55	2.19	－－－	3． 3	17	${ }^{H}$ ．	6.17		5.72	1.95	－－－－－	3.4
$!$	L．	1．83	5．06			？ 03	3． 5.	17	L．	3．5	5． 51			2． I	3．-3
9	H．	5.17		5．15	1．85		3．${ }^{\text {a }}$	$1 \times$	H．	4．42		5． 48	2．99		3.8
9	L．	1．rs	5． 29			1． 66	3.48	18	1.	$\because .00$	5． 42			236	3.9
9	1 H ．	5． 42		5． 31	1.44		3． 3	$1:$	1.	万． 12		5，：3i3	$\because 4$		3．e9
111	L．	1． 00	5.33			1． 30	3． 32	15	L．	$\because .8$ ck	2， 5			2.57	3.91
10	H．	5． 5		5． 3.	1．16		3． 3 ？	19	H ，	4． 5		5.19	2.31		3.95
10	L．	1．33	5．36			1．06	3.11	$1:$	1.	4．it	5． 12			？ 20	3.95
10	H.	5.4		5.47	0.95		3．$\because 1$	19	H ．	5.67	5.1	5.14	？	0	3.99
11	L．	0.58	5.57			1．${ }^{\prime} 1$	3.39	$\because 1$	L．	3.17	5.15			9．-4	3.99
11	H．	5.67		5.64	1.47		3． 5 ！	21	11.	4．（i：）		－以	2.83		2．93
11	L．	号：3	5.71			1． 3.3	3．${ }^{\text {2 }}$	－1	L．	\because ， 11	4.90			2.64	3， 75
11	H．	5.25		5．88	1.18		3.53	－ 41	II．	5.17			9.44		
12	L．	0.00	6.05			0.4	3． 115	$\because 1$	1.	20					
12	1 I ．	6． 3.		6．1s	0.56		3.17	De． 3	11.	5． 21					
12	L．	1.13	6． 6^{2}			0．63	3． 47	3	1.	2.12	5.75				
13	H．	6， $0 \cdot 9$		6.46	0.69		3.8	3	11.	6． 21		5． 5^{4}	3． 41		4.64
1：3	L．	0.25	6.60			0.74	施 67	3	1.	3 Cl	5． 94			3.66	4， 80
13	H．	6．9．3		6.59	0.73		： 69	4	II，	5.17		13．12	3.9		4.95
13	L．	1．33	6.58			0.79	3． 69	4	1.	3.79	6.99			4.05	5． 17
14	11.	6． 8.		6． 5.3	0.79		3.86	1	II．	（i． 9.3		6．30	4.3		5．30
14	L．	0，号	C． 14			0.75	3.131	，	I．	4.19	6.46			4.36	5． 41
14	IT．	6.71		6.37	0.71		： i 4	5	1.	1.171		（i．）${ }^{2}$ ？	4.50		5． 46
$1 \pm$	L．	1，17	1． 27			0．73	3． 20	is	L．	4.30	13.38			434	5.36

[^4]Table showing the determination of the half－tide level，de．－Continued．

Dato．	$\frac{\stackrel{\rightharpoonup}{\hat{a}}}{3}$	－	Meaus．	Mea	ans．	至	Date．	范	会	Me	ans．		ans．	年
Lecre．		Firt．	Fred．Fert．	Firt．	Fect．	Fect．	$1=31$.		Fert．	Fect．	Feet	Fed，	Fret．	Fret．
	H．	6.75	．．．．．（6，51	4.18		二	Dec．	II．	7.00		7.03	3.3	1ret．	－） 40
	L．	4.04	（i． $8: 3$		4．06	\therefore 吅	De．34	L．	3． 40	7． 1			3．72	5． 46
	H ．	S， 80	－．．． 18.19	？ 113		5． 06	$\because 4$	H．	7．4．3		7．12	3.67		5.43
	L．	： 2×3	1.		3.71	1． 7.	21	L．	3.9%	7．15			3．，	5.38
	H ．	1． 00	的沙	3，12		4． 61	4	II，	6．$=2$		7.8	\therefore ， 1		S． 3 活
	L．	： 13	\therefore 分		3.44	4.85	2－	L．	3．118	\％${ }^{\text {Q }}$			3.45	5． 3
	11.	5.80	．．．．． m －1	©．10		4.60	2in	H．	7.71		\％． 3	3． 41		5.39
	L．	$\therefore 16$	5，		2．34	4． 10	2－：	L．	3.75	\％． 116			3.39	5． 13
	H，	6．${ }^{2}$	6． 117	3．		4． 138	$2 i^{1}$	11.	\％． 21		7.5	3		5． 41
	L．	\because O	6． $2-\ldots$		3.8	4.81	$\because 11$	L．	3.00	\％． 14			3.37	5． 41
	H．	6． $3=$	．．．．（i，4；	$\therefore \%$		4.8	\because	H．	$\div .67$		7.43	㕱湤		5.40
	L．	$\therefore .67$	6．（i）．．．		3.15	4．	\％1900	L．	3.8	7． 42			3.36	5.39
	11.	13.96	－．．． 6.90	3.102		4． 911	9	H．	7．17		7． 11	3.5		5．84
	L．	？ 3	7.19		3.04	5.11	\because	L．	2.96	7． 10			3.31	5.35
	H．	7．\because	7． 2	－3． 06		－． 19	$\because 1$	H.	7． 63		\％．31	3		5． 29
	L．	3.8	7．40		3.14	5． 211	9	L．	：3．5in	7.33			3.19	5． 21
	1 I．	7.50	．．．．． J .60	3．21		$\therefore 11$	2r	11.	6．－3		7． 26	3.10		－1－
	L．		7.75		$\because \because 1$	\therefore 小	\because	L．	$\because .63$	7.29			3.19	$\therefore \therefore 11$
	H．	$\therefore 110$	．．．．． $5.7!$	31		$\therefore 8$	2¢	11.	7.85		7	3.13		二〇！
	L．	析	7.83		3.12	$\therefore 18$	\because	L．	3.63	7．2，		，	3.11	$\therefore 1=$
	H．	7.17	7.17	$\therefore .04$		万． 5	－	H．	6． $2 \cdot$		7．31	3.10		$\therefore 17$
	L．		$\therefore 10$		3.01	$\therefore 8$	－	L．	2．54	7． 3			3.11	$\therefore 19$
	H．	\therefore－ 4	8． 21	$\because 92$		\therefore－ 9	？	H．	7． 29		7．	3.14		\cdots ）
	L．		$\therefore: 31$		\because	\therefore 为；	－	L．	3．7－	7．$\because!$			3．$\because 1$	5，易
	H．	$\therefore 10$	．．．．．	\％	－．．．	\therefore 为	3	11.	6.29		\％． 21	3		5．
	L．	$\because \because 1$	E． 46		2． d 2	万． 69	30	L．	$\because 39$	7，12			3.83	$\therefore 211$
	H．	－，	s．ds	ㄴ，		5． 811	： 11	H．	\％．38		\％． 14	3.1 －		$\therefore 16$
	L．	O， 10	c． 49		只 5	S． 14	310	L．	3 ，in	7． 10			3．21	i） 15
	H．	\cdots	－．．．：ミ．万す	$\because 06$		5－3	：1	1 I.	6． 63		7.07	3.4		5.15
	L．	\therefore S	8.65		3.07	$\therefore \mathrm{Br}$	： 11	1.	$\because 8$	7.04			3.93	$\therefore 14$
	II．	？ 17	S．74	\％． 18		5． 91	31	11.	7． 46		\％． 111	3		5．12
	L．	$\therefore 1 / 1$	N．E3		3.04	5.94	：1	L．	3.58	6.98			3．93	5.13
	H．	moill	ㄷ．才犬	3． 119		S，Mi；	1nis．							
	L．	3． 3	E60		$\because .94$	$\therefore 7$	Jau． 1	H ．	6.50		8.95	3，		5． 15
	H，	281	$\therefore 4 .:$	$\because 2$		车标	1	L．	S． 13	6.91			3.40	5， 15
	L．	3.4	$\therefore \therefore$		\％． 16	5．111	1	11.	7， 3.3		13，-9	3.44		5，\％
	H．	7． $7: 1$	S	3.04		5.115	1	L．	3． 7.	16.07			3	5． 1
	L．	$\because 67$	831 ．．．．		3.02	$\therefore 711$	\because	1.	6． 4.	6	13，	3.66		5． 24
	H．	－s：	$\therefore 10$	回1）		5， 11	\because	L．	呺	6.75			3.70	5．$\because 1$
	L．	3，in	7.54		$\because 04$	5． 11	\because	H．	7． 13		6.72	3	，	5．23
	H．	15．96	．．．．． 7.50	$\because 95$		\therefore	\cdots	L．	3． 5	6． 17			3.51	$\therefore \therefore 1$
	L．	\cdots	7． 10		只 74	4.112	3	11.	（6． $2:$		6.8	3.8		3． $2 ;$
	II，	7． 0	6． 23	2.52		4．19－	3	1.	3．－2	6． 49			3，	万． 16
	L．	\because ¢ 11	（i， 06		2－0	4.53	3	1 L.	6.77		0.47	3.76		5． 11
	H．	5.8	．－．．．（1．3．3	$\because 49$		4.44	3	L．	3.64	6． 4.			3.8	5．16
	1.	$\because 17$	6.81 ．		\％－8		4	11.	（1） 13		（3． 14	$\therefore \square$		5，$\because 1$
	11.	1i． 5	．．．．． 6.11	？ 54		4．	4	L．	4.31	6.44			$\therefore 96$	5.91
	L．	－ 9	13． 1.0		ㅇ．7．	1．：3m	4	11.	6． 2.1		6． 41	3.9		5． 21
	H．	\％． 16	1.01	$\because .06$		4．15	5	L．	3.67	6.41			$3.92 i$	\therefore 211
	L．	3.00	6．112		$\because 10$	4． 51	5	H．	6.13		6.15	3.91		5．11i
	H．	6． S^{2}	1．12，	3.25		1.16	5	L．	4．$\because 1$	i． 31			3．4	$\therefore 109$
	L．	$\therefore 8$	6.16		3．－1	1． 4	：	11.	（i．2．）		（3． 31	3． c＇l		5． 10
	1 I ．	\therefore 源	$\cdots{ }^{1} 6.0$	3．7		5．01	1	1.	3． 39	（i． 40			$\therefore 2$	$\therefore 11$
	L．	4.14	$6 .: 17$ ．－．．．		3.41	－1 1%	13	H．	1．31		1i． 1%	，$\because 1$		$\therefore 14$
	11.	7.00	．．．．．． 6.44	3.96		$\therefore \therefore 11$	18	1.	4．$\because 1$	6． 49			3.43	$\therefore 11$
	L．	3 man ．	16， S_{0}－－－．		4．0：）	$\therefore 2$	6	11.	13．15		6.7	： 10.7		$\therefore 111$
	${ }^{\mathrm{H}} \mathrm{H}$	（6． 610	－．．．． 1.43	4.10		5． 3	7	L．	$\because 2$	（1． 6.1			3	$\therefore 10$
	L．	1． $3: 3$	15．3．）		4．13	\therefore \％ 4	7	1 H ．	6． 63		13， 12.5	$\therefore 16$		$\therefore .06$
	H．	1.71	15．4：	4． 16		5．0．4	7	1.	3.96	6．fi－			3.40	5.14
	L．	4． 00	（5．s）		4． 15	5．${ }^{2}$	7	11.	1.73		C．${ }^{\text {P }}$	3，31		5.11
	H．	6.8	… 6.46	4.14		$\therefore \therefore 310$	\sim	1.	$\because 7.3$	7． 19			3，：0	可． 41
	L．	4． 39	1i． 4.1		4.00	5	N	II．	7． 1.5		7． 29	$\therefore 3.30$		5． 30
	11.	16．13：	．．．．．6． $3: 3$	3.8		5．19	$*$	1.		7， 3				$\therefore 31$
	L．	3.4	11． 133 ．．．．．．		3．－0	5． 31	－	11.	7．1：	－．．．	7．7．）	3.17		－ 16
	H．	6．13：	－．－． 6.60	$\therefore 75$		$\therefore 12$	9	L．	$\because 2$	$\therefore 10$			$\because 1:$	5． 61
	L．	4．11．	（6． 60 ．．．．．		3.74	5.17	1	11.	$\because 6.5$		心》1	3.06	－．．．	$\bigcirc 154$
	H．	6．is	－－．．6．63	$\therefore 3$		5.15	0	L．	$\therefore 17$	8．30			$\therefore 117$	5． 159
	L．	：3 3	6.64 …		3.74	5． 19	16	11.	7． 316	…	S． 19	：3． 112		5．淀
	H ．	6． 31	6，	3.6		5．	111	L．	\because	E．115			$\therefore 118$	$\therefore 51$
	L．	4.13	6．8．7		3.76	5． 31	10	H．	．		$\therefore 10$	$\because 29$		\therefore 万，

Table showing the determination of the half－tide level，di－Continned．

Date．	$\begin{aligned} & \stackrel{3}{\mathrm{~g}} \\ & \stackrel{y}{=} \\ & \underset{ت}{4} \end{aligned}$			ans．	Means．	$\frac{3}{3}$	Date．		会	Meaus．	Meaus．	芯
1－2．		Fith．	Fint．	Fect．	Fect．Furt．	Fict．	1072.		Ferel．	Fial．Fert．	Foet．Feet．	Fut．
Jan． 10	L．	3． 414	$\therefore 13$		－－．．．	5.51	Jan．岛	1.	$\because \cdot 6$	7． 16	．${ }^{-} 50$	4.83
	11.	\％． 71		8.19	2．71	5． 419	－	11.	（i，！0）	7.30	2，6：$-\cdots$	4.96
11	L．	$\because 1: 3$			－．－－	$\therefore 46$	9	L．	3吅	7． 5	－2． 36	－ 10
11	H．	$\therefore 3$		823	2． 51	$\therefore 10$	\cdots	11.	－ 61	7.54	2．-9	二．$\because 1$
11	L．	3.00	－		．．．．．${ }^{2}$	5． 21	2	1.	：$\because 1$	7， 6 ：	3.05	5.81
$1:$	11.	－18		$\bigcirc 15$	2． 46 ．．．	$\therefore 80$	（1）	11.	7，号	7.60	3． 31	5．411
1：	L．	1． $2 \cdot$	8．10		． 9.42	5．	：10	L．	$\therefore 21$	7.5	3.24	5． 41
12	11.	－ 5		3.96	为	5.17	10	11.	7．9\％	7.81	3：	5． 3
$1:$	1.	为：	7．		？	5.10	：11	1.	： 3 ：3：	7.44	i3：31）	吅
1：	11.	2． 17		\％． 51	2．	5.18	： 1	11.	1：． 31	－．．．．	3． 3^{3} ，	5，
$1: 3$	L．	1．\times ：	3.75		． 2.31	5.14	：31	1.	3， $3:$	7.06	3．3	$\therefore 17$
1：3	H．	－		7.84	㫛㫛	5． 114	： 31	11.	\％ 817	6． 3	31	$\therefore 10$
$1: 3$	L．	$\because \%$	3.90		2，${ }^{-}$	5.14	11	1.	$\therefore 10$	1． 79	3.91	$\therefore 00$
14	11.	7．1\％		\％．ss	？－1s	$\therefore 16$	Fed． 1	1 I.	1．1．	$\ldots 1.67$	21）\ldots ．．．．	4.94
14	L．	$\because 1$	\％\％！		－$\because \mathrm{A}$	$\therefore 17$	1	1.	$\therefore 31$	（1i． i 1	1312	4．－1：
14	11.	-17		5． 61	$\because 60$	$\therefore 15$	1	11.	16． 17	－． 6.51	$\therefore 1.5$	1．8：
14	1.	$\therefore 104$	－		2.71	$\therefore 1.8$	，	1.	3 （1）	（i．1－	13．24	4．38
15	1 L	\％． 100		7.47	\because	B． 5	\because	11.	16．30	1i． 4.	23：3	4． 12
15	1.	$\because 6.1$	2， 21		$\because 8$	5．11－	\because	1.	$\therefore 3.9$	（1． $4:$	－－．．｜3．46	1.94
1.5	H．	7．$: 3$		7．	UT	万． 111	\because	11.	13．21	1．3：3	号事	4.97
15	L．	2． 3	7.15		\because	4.45	3	I．	\therefore ？	1i． 4.1	： 71	\％． 07
11.	11.	1i． 4%		（1．5）	$\because 7$	4．-10	3	11.	15． 3	6． 43	2． 30	5． 16
16	1.	\because	6.62		－只	1． 3	；	1.	4．$-\cdots$	11．42	－－ 4.00	5．$\therefore 1$
$11 i$	11.			6.4		4． if^{4}	3	11.	13．2：	6．4．	4.10	5． 4
11.	L．	吕绐	（1．：$:$ ：${ }^{\text {a }}$		3． 00	4． 816	4	1．．	$\therefore 6$	13.47	4.13	5．3：11
13	11.	$\therefore \cdots$		13.17	$\because 12$	4． in^{2}	4	11.	1i． 12	1． 46	4． 16	5，31
12	1.	湤洨	15．02		3．10	1． 1.6	4	L．	1.67	1i． 16	4，103	5． 27
17	II．	6． 21		5.5	3． 11	1．49	4	11.	6．511	6． $4 \times$	4.00	5．$\because 1$
$1 \times$	1.	\because	万． $7: 3$		$\cdots 3.13$	4． 4,5	－	1.	$\therefore 3$	12．50	3.91	5． 21
1.7	11.	5．		\％，\because	$\because 1.5$	4．	5	II．	（i，－1）	1． 46	3.2	5.14
1s	1.	3．fe	5.36		\therefore－$\because 1 \%$	4． 3	5	L．	4．：31	1： 41	3.72	5．11
1＊	11.	5．4s		5，${ }^{2}$	$\because 15$	4．${ }^{2}$	5	11.	6． 3.3	6．\quad is	3． 63	5.08
19	L．	\because	5.		$\cdots 3$	4．	6	L．	是！	6． 61	3.46	5． 05
19	11.	4． 16		5． 21	3.31 ．	4． 21	6	11.		． 16.64	3．31	4.92
19	1.	3.8	5.1		…．$\therefore 80$	4．：31）	1	1.	$\therefore 1.15$	6，6：3	3． 19	4.91
19	11.	5． 16		$\therefore 4$	3.48 ．－．．	4． 44	13	11.	13． 31	． 6.37	哏119	4．20
$\because 1$	L．	3． 21	5． 60		3.8	4.39	－	L．	$\because 46$	（i． 914	9．9	4.94
31	11.	5． 35		5.67	3.617	4． 18	F	1 I.	7.50	－7．08	？－7	4.97
311	1.	4.13	$\therefore 3$		－．． 3.73	4． $3: 3$	7	L．	\therefore ：	7．	2.8	5.04
$\because 1$	11.	5.71			\％． 79	4． 3	3	1 L.	T． 110	7．S\％	20	$\therefore 06$
$\because 1$	L．	3.45	（i． 42		3， 29	4.90	8	L．	$\because 31$	7.8	是	5.04
$\because 1$	H．	（i． $3: 3$		6.12	3.311	4． 10	\sim	H．	7．7！	7．4	3． e 6	可．22
$\because 1$	L．	4.13	（i）．		－－－3． 1	－ $0=$	－	L．	$\because \sim 1$	7． 2 h	2． 36	5.06
21	1 H	6． 13		1i． 41	3.84	5． 1.	\square	H．	7．3：	． 7.7	2.56	5.16
$\stackrel{9}{2}$	L．	3.55	6.31		3.93	5.31	9	L．	$\because \cdot: 1$	7.96	2． $4=$	5． 48
\because	11	7．		6． $2:$	4．0：	$\therefore+2$	3	II．	$\therefore 5$	－－．． 7.00	？． 40	5． 10
\because	L．	4． 511	6， $3:$		3． 21	$\therefore 46$	9	1.	\because	$\therefore 14 \mid \ldots$	．． 3.33	5． 3
？	1 H ．	6.60		7.05	3.94	$\therefore .49$	10	H．	7.71	8.19	2．	－）
？	L．	3． 3	7． 16		．．．．3． 20	－ 4	10	1.	$\because 10$	世号	$\because 31$	5.27
？	11.	7．7：		7．12	3.67	$\therefore 4$.	10	II．	－． 5	－¢－－	2.36	5． 29
\because	L．	3． 96	7． 0^{0}		3， 15	5．${ }^{\text {a }}$	10	L．	$\because 73$	－． 21	？ 3 ？	5 4
$\because 4$	11.	6． 17		7.9	S． 63	$\therefore \pm 6$	11	H．	7．67	8.5	2．	－5．$\because 1$
24	L．	3． 89	7．is		3.20	$\therefore .54$	11	1.	1．	8.08 ．．．	－292	5.15
$\because 4$	1 I.	$\therefore 10$		7．09	3.31	可依	11	11.	$\therefore \mathrm{Sn}$	．．．．．	\cdots	$\overline{5} 1 *$
$\because 1$	L．	1． Sir $^{\text {r }}$	7． 2		3． 5	5.80	11.	L．	\because	$\therefore 04$	－2． 83	$\therefore .5$
\because	H．	7， 0		7．－	3.04 ．	อ． 91	12	11.	7． 12.5	． 7.15	3.8	5． 13
\cdots	1.	$3.13 ;$	7.96		$\therefore-{ }^{-1}$	5． 2	12	L．	为碞	7． 0_{1}	2.	5． 05
？	11.	\cdots		7.95	3.81 － 3	5．E	13	J1．	8．10	． 7.23	$\because 6$	4.15
\cdots	11.	4.10 7.46	7.94		3.51 3．66	5.80 5.600	$1:$	1.		7． 60 ＿．．．．	2．${ }^{3}$	4.91
36	L．	3.10	7.71		．．． 3.39	5．in	1.3	1.	$\therefore 13$	7． 416	3．	4.85
91	11.	－10		7.64	3． 2 ㅈ․	$\therefore 4 ;$	$1: 3$	11.	7．，．0	． 7.17	$\because 36$	4． 4.76
\cdots	L．	$\because 54$	7．${ }^{\text {\％}}$		－ 3.09	5.18	13	L．	$\because 8$	7．118	－．．． 2.4	4．7：3
？	11.	（6， 14		7.41	$\because .91-$	$\therefore 16$	14	II．	13.51	6．8i	2.51	4.60
\because	L．	米只	7．99		… 2.73	5.01	14	L．	$\because 16$	6．71 ．．．－	－．．2．52	4.61
\because	1 L.	7.63		7．98	$Q .55$－	4.21	14	11.	6． \％2	． 6.61	2.53	4.57
\because	L．	\because	7． 16		－－．．2． 50	4．-3	14	L．	$\because .15$	6． 50 ．．．．．	2.85	4.62
\cdots	11.	6． 69		7.11	2.45 －－．．	4． 38	15	15.	6．13	．．．．．．（i．4，	2.96	4.72
－	1.		7．10．		－3\％－2． 41	4.33	1.1	L．	3．：31	6．13	． 3.13	4． 81
只	11.	7．4：		7.11	Q． 37 ．．－．	4． 7.4	1．）	H．	（3．$-\cdots$	6．12	3.31	4.9

＊Interpolated．

Table showing the ateterminution of the hulf－tide lecet，de．－Continued．

Date．$\begin{aligned} & 1 \times 3 \\ & \text { F.ll. } 1: \end{aligned}$	穿 L．	范 Ferd． ：：$: 1$	Means．		Means．		Date．	$$	－	Means．		Means．		
			Frit．	Frel．	Fet Fi Fet．	Firt．	1－2．		Fept．	Fiert．	Prit．	Fet．	Feet．	Fert．
			6． 36			4．83	Mar： 11	H．	6.8		6.64	0.58		3． 61
110	H.	5，$\times 2$		6.12	3.54	4．83	10	I．	11.11				0.65	3．70
110	1.	3.7	¢．		$3,5$	4.78	10	H．	7． 30		1． 4.4	0.73		3．75
16	H．	5.5		5.24	3．11	4．73	10	L．	1.3	C． 90			1.04	3.9
16	L．	3.46	5.31		3.8	4.2	11	If．	16.50		6.2	1．：5		4.09
17	H．	5.11		5.95	4.09 ．．	5．12	11	L．	1． 33	6．$\%$			1，35	4．0．\％
17	L．	4.80	6.10		4.4	5． 27	11	I1．	7.00		6，	1.85		4.11
17	H．	1．5．01		6.30	4．－1）	5． 80	11	L．	1．3s	6． 99			1． 4.3	4．20
12	I．	4．s．x	6.30		4.96	5． 318	$1:$	11.	6.98		7．03	1.48		4． 4.5
1s	H．	6.50		6.41	5． $1: 3$	5.77	12	L．	1． 58	7.07			1.57	4． 2 E
1	L．	5.38	6． 31		5． 01	5.63	12	H．	7.17		15，！11	1． Cl		4，31
15	H，	6．13		6．85	4.90 ．－－－．	5． 51	1：	L．	1． 35	6．			1.75	4，31
19	L．	4．4：	c． 19		4.66	5． 43	$1: 3$	H．	6．54		13．73	1．		4． 3
19	H．	6.3.		1． 11	4．43	¢	13	L．	$\because 160$	C． 66			1，－13	4.26
19	L．	4.44	6.04		4．$\because 1$	5． 15	$1: 3$	H．	6.71		B． 54	1.		4． 21
19	H.	\therefore－		6． 3.3	4.11	5.17	13	L．	1.71	6.41			1． 86	1.14
$\because 11$	L．	： 3 3！	6.41		4.11	5．\square_{6}	14	H．	6.0 .4		6． $2 \cdot$	1.8		4.14
311	I1．	7.100		6.59	4． 10	531	11	1.	2.04	6．19：			1．9）	3．14－
31	1.	4．4．	（5） 02		4． $0: 1$	5． 3.3	14	H．	1． 00		5． 3 ：${ }^{\text {a }}$	？． $0 \cdot 3$		3.97
20	11.	6． 5	．．．．．	6.52	： 3.11	5.24	11	1.	2.00	的必；			2.18	4.00
91	L．	$\therefore 50$	15.41		3.67	5.04	15	1 I.	5． 67		5． 19	？． 33		3． 54
$\because 1$	H．	16． $\mathrm{in}^{\text {a }}$		6． 2	3.34	4． 2	1\％	L．	$\because 17$	5． 01			9． 49	3．75
$\because 1$	I．	3.8	（1． $1: 3$		3． 10	4.68	1.1	H．	4．35		4.97	？． 65		3， 31
21	H．	5． 69		6.14	？	4.49	1.7	L．	－13：	4.32			9． 81	3，st
\because	L．	$\because 1: 10$	16.15		$\because 74$	4． 415	16	H．	5， 50		－${ }^{\text {r．}} 17$	3.06		4.13
吅	14.	（1）lia		（i）： 0	$\because 6$	4． 17	16	1.	： 510	5.41			3．$\because 1$	4．：31
？	L．	？．－－	（3．40		3.1	4.50	16	H．	碞：		5.3	3， 3		4． 3 ）
$\because 3$	H．	13． 17		1．511		4.81	$11 i$	L．	$\therefore 1$	5．			3.42	4，34
4	L．	$\therefore 17$	13，54		．$\because 4.4$	4.5%	17	11.	5.91		5． 09	碞4		4． 4.1
？	H．	\％． 1111		6． 612	2.11	4． 51	17	I．	$\therefore 2$	4． 1			B． 510	4． 21
20；	1.	2.11	（tic）		$\because 45$	4.518	17	H．	4．13）		1.818	3.41		4． 0.3
21	1 I.	6． $3:$		6． 71	－16	1． 11	$1 *$	1.	8.128	4.16			3． 3 \％	3．99
44	L．	？	6.5		$\because 12$	4．1it：	1	11.	4．5		4.14	3．：3		$\therefore .90$
\cdots	11.	7．		$\therefore 0$.	$\because 4$	$4.21 i$	$1-$	L．	3.138	4． 31			3.41	$\therefore{ }^{2} \times$
24	L．	2.80	\％\because	－－．	$\because 181$	4．913	1.	1 L ．	4.14		4． 40	2． 47		3.94
－5	15.	7．1：		7.	$\because 7$	5． 1.5	19	L．	$\therefore 31$	4.81			3． 511	4． 110
S．	1.	？． 31	7.		\because	5． $3: 1$	19	1 I ．	4.96		4．（i）${ }^{\text {a }}$	3． 3.3		4．10－
足	1 H.	\cdots				$\therefore 8$	19	1.	： 3.5	4.37			3.31	1．14
95	L．	3． 3	8.06		： 310	5． 5.1	$1!1$	11.	4．s．		4． 11.	3． 50		4． $2 \cdot$
显	H．	7． 5.4		7． 7		5.8	？	1.	3．${ }^{2}$	5． 12			3． 41	4．
$\because 1$	L．	？S	7.50		？ 6 1：3	5.07	$\because 11$	11.	5.13%		5． 5^{2}	38	－－－	4．30
20	H．	7． 413		7．88	2． 9 ！	4.78	$\because 11$	1.	3.50	5． 3			3． 20	4．210
26	L．	960	\％．06		$\because 11$	4， 5	811	H．	4．\square_{1}		5.20	3.02		4．13
97	H．	13.18		6． 9	1．3：	1． 417	$\because 1$	L．	$\because 24$	5.15			？． 71	：3， 93
97	1.	1，\％	13．12：		1．7！	4． 3	$\because 1$	II．	为品；		5． 19	$\because 39$		3． 714
－1	H．	\％． 17		（i．	1． 10.	4．	$\because 1$	1.	？	5． 5			2．${ }^{\text {a }}$	3．7：3
\because	L．	1． $11 i$	（1． 719		1． 17	4．\because	$\because 1$	11.	$\therefore 13$		\％	2.116		： 16
\because	H．	（i）4：		C． 31	1． $10 \cdot$	4.17	？	L．	1．：	－ 3.1			1．9\％	3． 63.3
900	1.	1． $7!1$	（1，6： 2		… 1．12－	4．1．5	\because	11.	$\therefore 80$		\cdots	1．-4		3， 161
？	11.	（6．） B $^{\text {a }}$		1.	1．8：	4． 1.5	\because	1.	1.81	5． 46			1．7：	3，5！
？	L．	1.12	6， 54		1．83	4.19	\because	1 I.	5． 42		5． 51	1，61	．．．．．	3． 610
91	H．	（i．${ }^{3}$		6．39）	1.94	4.17	\cdots	L．	1．4：	5．7：			1.54	3． 13.
29	L．	？ 31	（i． 0		9．118	4． 16	$8: 3$	11.	6.04		5． 51	1．${ }^{6}$	ㄱ．．．．	3， $6: 3$
29	11.	6． 8.			$\because \because 1$	4．\because ：	2：	1.	1． 8.10	5，$\times 1$			1． \％$^{\prime}$	3．1．1
99	L．	$\because 2$					24	1 L ．	5.75		5． 1.9	1.31		3． $6: 3$
Mitr．if	L．	\because					$\because 1$	1.	1．1：3	6.01			1． 20	3． 61
6	H．	13．12			3.11		$\because 1$	H．	6．${ }^{1}$		13．11：	1.09		3.7
1	L．	$\therefore 10$	$\therefore 161$		2． 92	4． 21	$\because 1$	L．	1． 06	1.09			$0 .-1$	3.45
6	If．	－25		$\therefore 2:$	？．80	4.31	－	I1．	5.23		（i． 14	0.53	－－．．	3． 3.3
7	L．	？ 111	5． $3: 1$		$\because .41$	1．111	2）	1.	0． 00	6.15			0.43	3．3：11
\％	H．	4，：3：		$\therefore 8$	$\because 12$	： 3.94	号	11.	6． 44		6．${ }^{2}$	0．${ }^{2}$		3，$: 3$
7	L．	3	－5． 70		1．10	$\therefore-4$	？	L．	0．6．	（i． 47			0.61	3.51
7	11.	\％．10x		\therefore ¢ 68	1．8゙：	$\therefore 76$	\because	11.	6.50		18． 5	0.89		3.73
8	1.	1．4：	\therefore 为		1． 13.1	2． 15	64	L．	1.13	（1．）1i！			0.91	3．${ }^{10}$
\otimes	1.	1．		5． 90	1． 46 －－．．，	\cdots	？	1.	13． $2=$		（i． 69	0.94	0．1．1）	$3_{4}+1$
0	L．	1． 511	（i． 14		1． 3	3.34	近	L．	0.75	6． 69			0． $2 \cdot$	38
9	H．	1． 14		13．	1． 21	3.74	？	11.	6． 30	\cdots	6.61	0.81	－－－－．	3.85
9	L．	11． $1 \times$	1．： 39		1．10	3， 3	号	L．	1.14	6.54	6．．．		0．86	3． 20
9 9	LI．	10.5 1.10	（1． B_{1}	6．4		3.7 3	\％	$\stackrel{1}{\mathrm{LH}} \mathrm{L}$.	6.58 0.63	6． 611	6.57		0.91	3.511 3.25

Table shoring the determinution of the hull-tite lect, de-Continned.

Table showing the determination of the half－tide lewel，de－Continned．

Date．		荡	Meaus．	Means．		Dito．		药	Mea	Ins．		uns．	
1872		Fect．	Fied．Fict．	Led．Feed．	Fcot．	1－7．3．		Fict．	Fert．	Feet．	Lect．	Fint．	Fet．
May 3	11.	6.00	5.71	…：	4.01	May 30	L．	0． 51.3	5．6．			1． $3: 3$	3.45
3	L．	\because	5.4	2，32	4.11	－ 20	H．	5.80		3	1．33		3．50
3	${ }^{\mathrm{H}}$.	5．Tr	Ci． 010	2．3：3	4．11i	$\because 1$	L．	1．75	6． 6.2			1． 40	3.71
4	L．	$\because 44$	1i． 11	？	4.15	21	1 H ．	6． 19		（i． 3	1． 11		3.89
4	H．	13．44	6． 119	2． 13	4． 1.5	21	L．	1.17	6.61			1.56	4.09
4	L．	1．sio	6．	2.01	4．12	3	H．	7.04		6.72	1.		4．30
4	H．	6.00	－－－．	1.81	4． 101	\because	L．	？． 19	6． 83			1． 65	4.34
5	L．	1． 96	6． 3 ： 3	． 1.73	4． 00	22	H．	6.63		6.91	1． 31		4.26
5	H．	6.17	（1） 3	1．4i4 ．．．．．	3.98	－2	L．	1.04	6.99			1.62	4．30
5	L．	1． $3: 3$	13． 41	1.61	4.01	23	H．	7.35		7.14	1． 6		4．34
5	H．	6．35	6.41	1．54	3． 4.4	93	L．	$2 . \geqslant 1$	7． 39			1.69	4．4．3
6	L．	1．	6.41	1.50	3.98	9：3	H．	7． 24		7.44	1． 5		4.59
6	H ．	6.47	6．42	1.41	3.95	23	L．	1． 34	7．08			1.83	4.70
6	L．	1． 00	13． 5.5	1.33	3.14	24	H．	7.92		7.59	1.91		4.75
7	H.	6． 6.4	B． 516	1． 5	3.90	24	L．	2． 54	7．60			1．96	4.78
7	L．	1． 50	6． $2+4$	． $1 . \geq 4$	3.90	24	H．			7．62	2． 111		4.81
3	H．	6.48	1i． I_{2}	1． 34	3．93	24	L．	1． 46	7.63			2． 03	4.83
7	L．	0．1．6	13．6）	1． 2	3.99	\％	${ }^{\mathrm{H}}$.	7.14		7.58	¢． 0.5		4． 81
\cdots	H．	6． 90	6．6－	1.34	4.01	9	L．	2.65	7．50			${ }^{3} .09$	4.80
$-$	L．	1.71	13．17	1． 3	4．112	2	H.	7.06		7． $4: 3$	2．12		4.78
－	H ．	6． 44	6．70	1． 4 ？	4.06	2－	L．	1．60	7．34			9． 15	4.75
	L．	1.13	6． 74 ．	． 1.81	4． $1:$	26	11.	7．633		7.83	？ 15		4.81
3	H.	7.14	－1i． 75	1.60	4． 19	20	L．	$\because 77$	7．1			9． 34	4.68
9	L．	$\because 118$	13,41	．1．70	4.36	96	${ }^{\mathrm{H}}$ ．	6.61		1． 99	9． 30		4.15
9	H．	（1）	16．s4	1．84	4.34	26	L．	1． 4	6．			98	4.57
9	L．	1． 610	6． 8	1.9 .1	4． 40	27	11.	7． 13		6.18	2． $3:$		4.46
10	H．	71.1	－－．．｜6， 43	2.15 ．．．．．	4.41	27	L．	2． 63	6.49			2.8	4.37
10	L．	？． 50	6． Bl 1	$\because 17$	4． 49	\because	H．	5． 0^{6}		（6． 3 ）	2.87		4.31
10	11.	$6.41 i$	1． 3	$\because 30$	4.83	97	L．	1．92	6.20			$2 \cdot 9$	4． 24
10	L．	$\because .10$	1.74	3 B	4.57	28	II．	6.54		6． 04	3.30		4.17
11	H．	7.02	1． 13	$\because 4!$	4.58	时	1.	\％．69	5．-7			兑36	4．12
11	L．	\cdots	6． 57 ．	…… \because 品	4， 515	㫛	${ }_{\mathrm{H}} \mathrm{H}$	5.91		5.74	9．4		4．02）
11	H．	6．13	． 1.51	$2.61 \quad \cdots$	4． 31,	28	L．	只1．5	5． 61			2． 43	4．02
11	1.	？	6． 44	$\because 61$	4．． 3	？	${ }_{H} \mathrm{H}$ ．	6． 02		5． 51	9.45		3.90
12	H．	1．7．）	6．$\because 9$	$\because .61$ ．．	4.45	㫛	L．	\％ 75	5.41			9．5．5	3.94
1：	L．	\cdots	1． 13	2.60	4． 17	0	H，	4．21		5． 36	\therefore dili		4.01
$1:$	1.	5．58	5.45	？． 59	4.9	99	L．	2.57	5． 30			2.64	3.97
12	L．	$\because 30$	5.76	3.43	4.09	30	H ．	5． 519		5，36			3.99
13	H．	b． 00	（3）		3． 12	30	L．	？ 6.12	5． 4 ？			O． 6	4.05
13	1.	\because	5.61	？ $3: 3$	3.17	30	11.	5.06		5． 49	2．73		4.11
1：3	11.	5． 23	－－．－5．12	$\because 40 \quad \because$.	3.94	31	L.	2． 79	5． 56			2.75	4.15
13	L．	$\because 8$	5． 33 － 3	$\therefore \cdots-64$	3.99	31	H．	（i． 06	－ 5.	\％．310	2.75		4．16
14	1 H.	$\therefore 44$	$\ldots \ldots .19$	Q－9	4.03	3 I	L．	？	5． 56			2．-6	4．14
14	L．	3.17	万． 05	$\because .96$	4.01	31	H．	5.06		5．$\overline{5}$	2．		4.83 +35
14	11.	4.67	4.93	3．U3）	3.94	June 1	L．	2． 42	5.94			． 26	4.35 4.4 .2
14	1.	$\because .94$	4．－1	－．．． 3.17	2． 3.4	1	H．	15．83		6． 16	9．8		4．4？
15	H．	4.918	4． 1 i	3．6－	3	1	L．	关44	6.37			2，6－	4.53
15	L．	3.13	4． 2 2	$\therefore .06$	3.79	，	H．	5． 4 \％		6． 3	2． 65	\％．．．	4． 45
15	H．	4.108	－4．83	$\therefore 04$－－．．	3． 71	$\stackrel{9}{\square}$	L．	？．92	6． 06			？． 65	4． 3 \％ 40
15	1.	3.96	4． 54	… $\because .99$	3.76	\％	H．	6． 2.1		6． 19	2.61		4． 40 4． 46
16	H．	$\therefore 16$	－－．．．4． i	2.94	8．75	－	L．	2.31 6.42	6.31	6.38		2． 60	4． 46 4.49
11.	L．	？．10	4．（i）－	…．${ }^{\text {a．}} 90$	3.7		$\xrightarrow{\mathrm{H}} \mathrm{L}$	6．42	6.45	6.88	2.6	Q 5：	4． 49 4.48
$11:$	11.	4	$\cdots \cdots 4$	Q．m	3.71 3.66	3	L．	6． 68	6.45	6.53	2.4	2	4.48 4.48
17	H．	4.8	．．．．4， 4 －	$\because 71$	3.4	3	L．	$\because .00$	6． 60			2.41	4． 50
17	L．	$\because 63$	4.81	$\because 64$	3.23	3	${ }^{\text {H．}}$	6.73	－．．．	6.60	2.37		4． 49
17	H．	4． 2.5	4．rs	？ 8	3.78	4	L．	2.75	6.60		…․	Q． 3	4.4
18	L．	2．5	4.14	．． 2.44	3． 69	4	H.	6.48		6.71	\％． $3: 3$		4．82
18	H．	5． 13	4.91	$\because .30$	3． 61.3	4	1.	1．92	6.81			Q． 34	4． 56
12	L．	\％，10	4.94	$\because 24$	3.61	5	H．	7.15		6.83	2.3		4.69 4.61
18	11.	4.83	5．） 00	2.15 － 10	3.39	5	L．	\cdots	6.24			2．38	4． 61 4.65
19	L．	2． $2!$	5． 03	－－1．99	3.513	5	H．	6.54 8.02		6.89	2.40		4.65 4.68 4.85
19	H．	5． 3^{3}	5.09	1.79	3.44	5	L．	2.02 -33	6.93			2.44	4.68 4.72
19	L．	1． 2 y	T． 15	． 1.61	3.40 3.34	6	L．	7.33 3.98	\％．00	6.17	2.4	2.48	4.72
19 60	L．	¢． 1.69	7， 3 － 6	1．49.- .10	38	6	H．	6． 67			2.50		
20	H．	5． 10	5． 4	1，30	3.38	6	L．	2.08					

6 H

Both theory and observation prove that the atmospheric pressure exercises a considerable effect upon the half tide level of the sea. Supposing that, on a certain day, the atmospheric pressure be the same at Polaris Bay and at otber localities, situated a certain distance north and south of this place, and let the pressure increase at Polaris Bay while it remains the same at the other places, it is clear that the water in attempting to reach its equilibrium will flow off in the direction where the pressure is least, thus cansing the half-tide level at Polaris Bay to fall.

From the complex nature of cases of this kind it will be seen that the solution of such prob. lems is rather difficult. In accordance with theory, observations made at different localities demonstrate that a rise of the barometer is followed by a fall of the tide-level and vice versa.* The results oltained vary, however, very considerably as to the ratio between rise and fall. This ratio was found to be for-

London, (Sir John Lnbbock)	1:
Liverpool, (Sir John Lubbock)	1:11
Bristol, (Bunt) . .	13.4
Fiume, (Stablberger)	1:13.1
Port Leopold, (Sir J. U. Ross).	1:13
Petropanlowsky, (?)	$1: 13$
Algiers, (Aimé)	$1: 13.1$
Port Fonlke (Cb. A. Schott)	1: 4 (?)

From the above compilation it wonld appear that the ratio $1: 13$, which is nearly the same as that between the specific gravities of sea-rater and meretry, is about a normal one.

The result of ourinrestigation depends eutirely on the record of the barometer-readings as con. tained in the "Table for the reduction of ticles, No. 1 ," to be giren hereafter. The half-tide lerels as deduced on the precediug pages were also transferred to that table to facilitate the reduction. The barometer-recorl given there is the mean of two readiugs: one taken about 1 bour before, the other 1 hour after, the epoch of high water or low water. We proceeded with the investigation as follows: First, we ascertained the mean barometric pressure for the series from all the tabulated readings, by summing up all the columns of barometric readings aud finding the mean. The result for each separate month is given in Table A.

Table A.
Sums and average values of burometer-readings for eact month.

Month.			
	Inches.		Inches.
November, 18.1	1603. 4	53	30. 2544
December, 181	$3327.54-$	112	29.7102
January, 1-2.	2-59. 376	120	29.7698
Februars, 182	3847.814	108	29. $\times 244$
March, 1872	2900.649	96	30. 2151
Alıil, 1-\%	340.166	115	30.2014
Mas, 1878	3603.957	120	30.0329
June, 10.:	688.592	23	29.9388
Sums.	22397.292	747	29.9829
29in.9829 $=$ mean of all the readings.			

[^5]The mean of all the readings is $29^{\mathrm{in}} .9829$, that derived from the average monthly values being a small fraction higher, but as these latter valnes have different weights, we prefer to make use of the former only. The next step was to separate the half-tide levels into two groups of values corresponding to atmospheric pressures above and below the mean pressure of 29 in 9829 . The difference between the mean height and the recorded height of the barometer was set down in another column opposite the corresponding half-tide level.* All the columns were fiually added up and the means taken. Table B contains the result for each mouth separately :

Table B.

Half:tide levels corresponding to elevations above and depressions below the barometric mean 2910.9829.

Month.	$\begin{gathered} \text { Number of observa- } \\ \text { tions. } \end{gathered}$					
November, 1871.	48	Feet. 179. 27	$\begin{aligned} & \text { Inches. } \\ & +14.149 \end{aligned}$	3	Fect. 10.89	Inches.
December, 1871	19	89.35	+ 4.596	91	484.58	- 35.390
January, 1872..	18	82.01	+ 2.732	102	535.08	- 28.023
February, 1872	46	214.06	+ 9.474	62	320.64	-20.122
Marcb, 1872	74	2-4.92	+24.731	19	78.99	- 2.863
April, 1872	94	357.22	+ 3.990	21	57. 27	- 1.869
May, 1872	66	254.04	+19.418	53	232.49	-13.544
June, 1872	8	36.49	+ 0.0	12	54.15	-0.915
Sums.	373	1,490.36	+102.387	363	1,804. 09	-102.800
Means.	4	3.9955	+ 0.9245		4.9679	- 0.2832
Means of half-tide levels and correspouding barometer elevatious.....					3.9955	$+0.2745$
Difference.--...-. .-. --. .-.-.					+ 0.974	- 0.5577

From the mean values of the above table it appears that a change of $0^{\text {in }} .5577$ in the beight of the barometric column causes a change of 0 tt 97 : 4 in the half-tide level. This makes the ratio between rise of barometer and fall of level $1: 17$. t. This result is probably affected by incidental irregularities in the variation of the half-tide levels and mainly by the wind, which, as is well kuown, not ouly affects the barometric column differently as it blows from different quarters, but which, by its mechanical force, also exerts a directly elevating or depressing influeuce upon the balf-tide level. In looking over the half-tide-level readings, there is apparently a break in the readings between November and Decenber, 1871, and likewise after Fehruary, 1872. A careful comparison of the baronetrical record and that of the wind with the half tide level readiugs, however, teads to show that this is not actually the case, but that the real cause lies entirely in the change of the non-periodical effects during the different months. To support this view, we give for comparison in Table C the monthly average values of thalt-tide levels taken from Table B, and the differences between the average monthly barometric pressure and the mean valne 99 in 9839 from Table A. The average declination of the moon for each month is also added, being taken from the taloles accompanging the discussion of the effect of the moon's declination on the variation of the balf-tide lerel. In the next colnmm is given the monthly arexage level reduced to the mean barometric pressure of

[^6]？$!$ in $9: 9$ ，using the ratio $1: 17.4$ ．The last column contains the differences between this reduced level and the level $4^{\mathrm{ft}} .44$ ，which latteris the average level during calms，reluced to the average press－ ure of $9.0 .9 S^{2}$

Table 0.
Monthly average half－tide levels and corvesponding berometric elentions and depressions．

Month．		8 3名完昜昜				
		Fert．	Imrh＇s．	${ }^{\circ} \mathrm{r} 1$		Fert． -0.37
Novemiser， 1871	51	3.60	$+0.3: 4$	15.1	4． 1%	
December， 1×71	110	5． 3.	－0．9\％ 16	15.5	4．75	＋0．31
Jimmary，1－9\％．	120	5.14	－－0． $21 \begin{gathered}\text {－} \\ \end{gathered}$	14． 3	1.87	＋0．33
Fulmuary，1672	108	4．9．5	－ 11.096	15．：	4．78	＋0． 34
Marelt，j－\％	93	3.91	＋0． $3: 1$	15．5	4.31	-0.13
Nuil，187：	115	3.27	＋0．2194	16.7	4． 3^{3}	-0.19
May，1ns．	119	4． 09	＋0．（15），	15.0	4． 18	－0． 26
June，1ビが．．．．	20	4． 5	－0．04：${ }^{\text {d }}$	15．	4． 46	$+0.02$
Means．					4． 45	$\pm .00$

The relation between the changes in the height of the barometric column and the half－tide level is expressed very strikingly in the above table．The balf－tide levels for November and December differ by nearly equal amonnts from the mean level of $4^{\mathrm{ft}} .44$ ；we likewise find the barometric elevation of the first month almost exactly equal to the depression in the second month．The mean of the two half－tide levels is $4^{\text {ft．}} .41$ ，diftering but $0^{\mathrm{ft}} .03$ from the average level $4^{\text {ft．}} .44$ ．In every instance the balf－tide levels corresponding to depressions of the barometric column are above $4^{\mathrm{ft}} .44$ ，while those corresponding to elecations of the same are below $4^{\mathrm{ft}} .44$ ．The results are maffected by change in the moon＇s declination，as this is nearly the same for each month．

The differences in the last colnmn change sign with the barometer valnes and apparently indi－ cate that a variable ratio is required for each month to reduce them to a minimum．A part of these residnals，however，is traceable to uneliminated portions of the lepressing or elevating influence of the wind，which in its arerage monthly effect seems to have gone band in liand with the effect of the atmospheric pressure．But there is still another aud very important fact not to be over－ looked in this comection．While the ratio $1: 17.4$ mas represent approximately enongh the aver． age atmospheric pressure for the whole period，it does not follow ly any means that it is a constant or even a nearly constant value．On the contrary，it is very clear that it must undergo considerable variations muder alfferent conditions．For instance，a great change of atmospheric pressure may， perbaps，produce very little or no effect on the half tide level when the pessmre changes equally over a very large area of water at the same time，while the effect of a smaller change of pressure， when confined to a comparatively small area，may be considerable．From this，it follows that it is not merely the high or low barometer which will canse a depression or elevation of the half－tide level，but that the amonnt of the effect will depend very largely on the difference of atmospheric pressure at the place of obserration and at other localitios mot far distant．Evidently the con－ dition of the ice is another factor affecting the action of the atmospheric pressure．

As we presumed the ratio $1: 17.4$ to be affected by the wind，we also investigated the pressure effect solely from the barometer－readings corresponding to the half－tide levdiduring calms．From 104 readings we find the average balf tide level to be $4^{4 t} .24$ ，corresponding to an average pressure
 $1 .{ }^{\text {ft }} 7 \times 0.1037=4^{\text {th }} .44$ ，which coincides very nearly with the mean half tide level of the whole series． We then sepmated the values as we did before into gromps of barometer values above and below the mean of $30^{\prime \prime} .0866$ ．The resnlts are given in detail in Table D．

Table D.

Effect of changes in the atmospheric pressure upon the half-tide lecel of the sea.
[Compiled from the half-tide levels and barometrr-readings recorded in the table for the reduction of tirles, No. 1, for days uf calms.]

Tabla D-Continned.

From the means of this table we obtain the following result : A ehouses of ($4^{\text {ft }} .594-3^{\text {ft }} .913$) = $0^{\mathrm{ft}} .681$ in the half-tide level corresponds to a change of $\left(0^{\mathrm{in}} .2435+0^{2} .2: 50\right)=0.4785$ in the barometric column, thus making the ratio between rise and fall $1: 14.2$. This ratio may be considered nearly free from the effect of the wind, and as it approximates closely to the results found for a number of other places we consider it to be entitled to some confidence.

EFFECT OF THE TIND UPON TUE HALF•TIDE LEVEL.

The non-periodical chaners in the half-tide level, besides being due to a change in the atmospherie pressure, are also greatly affected by the direction and velocity of the perailing wiud. Is the influence exated by the wind is entirely lomal, a glanco at the chart will tell which winds are likely to raise the water at Polaris Bay and which would produce the contrary effect. It will be seeu that the shores of Polaris Bay trend for about 25 miles in a mealy mortherly and sontherly direction, corving out slightly to the westward about milway and at its northern and sonthern ends. The bay is thms entirely open to all the sea-winds, and it is but matmal to suppose that the latter in sweeping throngh tle straits would drive the water brfine them.

The changealle condition of the ice in the straits will, ot course, modify the effeet of the wind and during those seasons of the year when the ice is more compact the effeet of the wind upon the half-tide level is probathy but very slight. It was omr aim to obtain as aproximate results as the nature and extent of the data at our disposal wond permit. Alter a prelimiuary investigation we arrived at the conclusion that it wouk be adviable to take the effert of atmospheric pressure into account, as we found that this effect could not be regaded even as marly climinated, when the number of ohservations was small. The wind-record, as also the atmonpheric pressures and half-tide levels as given in the "Table for the reduction of tides, No. 1," served as the basis for this investigation.

The method pursued was as follows：
The half－tide levels and atmospheric pressures were dassed into nine ironps，corresponding to calms and to the winds from each of the four cardinal and from four intermediate points of the compass．We need scarcely mention that the recorded directions of the wind are the true directions．

The velocity of the wind，in miles per hour，aml the number of observations were also set down The ralues of each group were then added and the mean taken．The folloming preliminary table contains the result from each group for each month separately．By this separation the dis－ tribution of the wind during each month is made clear at a glance，while at the same time it serves as a means of controlling the correctness of the rork，as it emables us to detect easily any serious errors in the sums of half－tide levels or atmospheric pressures．

Preliminary table for the retermination of the effect of the wime upon the half－tide level．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Montls．} \& \multicolumn{4}{|c|}{Calms．} \& \multicolumn{4}{|c|}{North winds．} \& \multicolumn{4}{|c|}{Northeast winds．} \\
\hline \& \multicolumn{12}{|c|}{Correspondiug sums of -} \\
\hline \& \& 吅 \& \& \& \& \[
\begin{aligned}
\& 0 \\
\& 0
\end{aligned}
\] \& 寿 \& 年 \& \& \& \& 考 \\
\hline Norember，1：51． \& \& \begin{tabular}{l}
Inches． \\
60． 817
\end{tabular} \& \& \(\because\) \& Feet, \& \& \& 1 \& \& \begin{tabular}{l}
Inches． \\
！0上． 690
\end{tabular} \& fiz \& \({ }_{3}^{30}\) \\
\hline December， 1571.
Jannar，18： \& \({ }_{61.11 .14}^{41.14}\) \& 䢒 \& \(\cdots\) \& \(1 \times\) \& ＋ 4.4 .4 \& \& 130 \& 1 \& \& 1100．1芸 \& 4 \& 37
\(3 \times\)

3

\hline Jaturar，Es， \& 61． 6 \& \％ate \& \& 13 \& 4 \& 107．${ }^{\text {che }}$ \& 13． \& ${ }_{1}^{6}$ \& 17 T ，in \& 111992，1120 \& 419 \& 37 37

\hline Math，1072 \& 4.4 \& Gitio．fix \& ．．．．． \& 筲 \& \& \& \& \& 131．43 \& 99， 300 \& 号 \& 33

\hline \& \& \& \& \& 3.1 \& 30，372 \& 4 \& 1 \& cist \& \& ${ }^{216}$ \& 10
30

\hline June，1sil．．．．．． \& \& 149．965 \& \& 5 \& ．．． \& ．．．．．．． \& \& \& \& \& \&

\hline Total \& 43.02 \& 3199．006 \& ．．．．． \& 101 \& $51.1 \times$ \& 20－617 \& 1i－ \& 10 \& 914， 04 \& 664\％， 849 \& 3， 62 \& di．

\hline neams．．． \& 4．29 \& 30.0866 \& ．．．． \& \& 5．02 \& 99， 617 \& 17 \& \& 4.15 \& 90．433 \& 17 \&

\hline \multirow[b]{7}{*}{November，1：1 December，1－a Felmuit March． $1=$ April， $1=$ Jane，15is} \& \multicolumn{4}{|c|}{East winds．} \& \multicolumn{4}{|c|}{Southeast winds．} \& \multicolumn{4}{|c|}{Sonth winds．}

\hline \& 45．91 \& 399．409 \& B7 \& 13 \& 3．36 \& 30．3111 \& ，${ }^{5}$ \& 1 \& \& \& \&

\hline \& 103， \& 11－4．19\％ \& \％ \& ${ }_{20}^{40}$ \& － 15.76 \& \& 40 \& 12 \& 1．5． 13 \& 8， 2×3 \& 16 \& 3

\hline \& 160.93 \& Smisis \& 130 \& 12 \& 35.98 \& 30．0\％ \& 1 \& \& 30．03 \& 119．4 \& 10 \& 4

\hline \& ${ }^{17.04}$ \& 250．ent \& Ei \& 告 \& ${ }^{34.06}$ \& 29．164 \& \％ \& \& 809 \& 60．116 \& ， \&

\hline \& 114． 31. \& （104． 617 \& $\xrightarrow{113}$ \& 3110 \& ＋9．91i 30 \& 为 \& 73
30 \& 11 \& \& \& \& ，

\hline \& 13． 11 \& － \& \& ， \& \& \& \& \& 4.5 \& 31.208 \& 2 \& 1

\hline Total \& 20\％\％ \& 5120．403 \& 721 \& $1: 1$ \& 309， 06 \& Y046． \& 21：1 \& c＊ \& 61.90 \& 3－9．54 \& 40 \& ${ }^{13}$

\hline Meaus ．．．． \& 4.60 \& \multicolumn{2}{|l|}{29.94394 .5} \& \& 1.85 \& 30.124 \& 3 \& \& 4.76 \& 29，996\％ \& 3 \&

\hline \multirow[b]{2}{*}{November，1871．} \& \multicolumn{4}{|c|}{Sunthwest wiuds．} \& \multicolumn{4}{|c|}{West winds．} \& \multicolumn{4}{|c|}{Nurthrest winds．}

\hline \& \& 121.293 \& \& \& \& \& \& \& \& \& \&

\hline December，1871． \& ${ }_{6}^{661} 91$ \& 30．200 \& \％ \& ${ }_{13}^{13}$ \& 10.81 \& 39340 \& 告 \& \& 15.53 \& 29．301 \& ${ }_{5}^{6}$ \& $\frac{3}{5}$

\hline Jamuary，189\％． \& ${ }_{5}^{81.91}$ \& － 514.655 \& 118 \& 17 \& 10．0．3 \& 18．127 \& 17 \& \& 9. \& 149，889 \& ${ }_{7}$ \&

\hline March，isto ．．． \& \& \& \& \& ＋1．09 \& ${ }_{\substack{30.293 \\ 1=1.293}}$ \& ${ }_{20}^{2}$ \& 1 \& 3． 31 \& 30.304 \& 1 \& 11

\hline April，180．．．．． \& 14．4． 15 \& ${ }^{1} 13.9 .156$ \& ${ }_{2}^{102}$ \& \& 12．70 \& 1＊1．93， \& \& \& \& 300． 4×4 \& ＋ $\begin{aligned} & 19 \\ & 14\end{aligned}$ \& 11

\hline Jube，18ta．．．．．． \& 26．56 \& 179．250 \& 59 \& ， \& 1＊． 00 \& 119． E ＋6 \& 13 \& 4 \& 9.13 \& 50 \& 11 \& 2

\hline Total ． \& 451.00 \& Nug 的 \& 906 \& 100 \& 120．53 \& 726．93？ \& 101 \& 26 \& 121.6 \& 841.609 \& 111 \& 3

\hline Means \& 4.51 \& 29．9559 \& 9 \& \& 4． 64 \& \& 4 \& \& 4.34 \& 30，0574 \& 4 \&

\hline
\end{tabular}

From the preceding table it will be seen that the average half-tide levels for the different directions of wind have unequal atmospheric pressures, and, therefore, the half-tide level may, in one case, hare too small and in another case too large a value compared with its value for a certain standard pressure. For this standard pressure we adopt the mean valne of all the pressures as fonnd in the preceding insestigation. This valne is $29^{\mathrm{in}} .9829$, to which we reduce each arerage half-tide level by the formerly deduced ratio $1: 17.4$.

The following table contains the arerage half-tide level and the barometric eleration above or depression below $29^{\text {in }} .9890$ corresponding to it, for calms aud for each direction of wind, and also the level rednced as explained above. The approximate average declination of the moon, which also affects the balf-tide level, thongh to a smatl extent only, is added as a mean of correction if such should be deemed necessary.

Table showing the apmoximate effect of the wind upon the half-tide lect.

Direction of the wiud.	$\begin{gathered} \text { Numberol olservat } \\ \text { tions. } \end{gathered}$	Arerage half-tite level.				Apposimate effect of the wind on the half-tide level. \qquad \qquad lince liall.	
		Fipt.	Thches.	Irat.		Fect. lirt.	
Calms	104	4.26	+0.13:\%	4.44	15	-	
North	10	5.02	- $0.1: 11$	4. 79	17	1). 'i:; -	18
Nortluast	215	4.48	-0.0393	4. 41	13	-..... 0.03	17
East	171	4. 60	-0.11:	4, in	15		4.5
Suntreast	(is)	4. 95	+0. 1:3-0	4. 49	15	11. 10.0 ------	3
Sonth	13	4. 76	+0.0137	4. -8	16	0.34	40
Suntlw	100	4. 51	-0.0269	4.40	1.1	0.02	9
WTrst....-.......--	41	4. 61	-0.1975	4.32	17	0.06	4
Northwest	26	4. 34	$+0.0846$	4.47	15	0.03	4

The average half-tide levels in the above table correspond learly to the moon's mean declination of 150.5 , except for 110 th and west winds, for which we applied a correction of $0^{1 t} .02$ in accordance with the results obtained from the discussion of the variation of the half-tide level due to changes in the moon's dechination.

As a basis of comprison of the effect of the different winds we use the rednced average halftide level on the days of calms. By taking the difference between this and each of the other reduced half-tide levels we obtain, at least approximately, the rise or fall of the half-tide level due to the effect of the wind. This effect is recorded in the above table in the colnmas headed rise and fall; the arerage velocity of the rind corresjonding to this eftect is given in the last column.

The effect mas be summed up as follows :
Strong north and south winds appear to prodnce a rise in the half-tide level amonnting to between $3^{\text {in }}$ and $4^{\text {in }}$. The weight of this result is small and a lager number of observations wonld probably somewhat change the amount of the effect. The depressing or elevating effect of the wind from the remaining directions is very small in each case, and owing to the comparatively limited number of observatious hardly pronomnced enough to permit of any definite conclusions being drarn. East winds appear to produce a rise of $0^{\text {in }} .9$, while west winds seent to have a contrary effect of nearly the same magnitude. For both these winds the arerage velocity was less than 5 miles per hour. The wiuls from NE, were the most prevailing, with an arerage relocits of 17 miles per homr, and apparenty depressing the level by $0^{i n} .3$, this result possessing the largest weight. The month of November, with only fonrteen days of observations, shows comparativels the largest number of NE. winds, with a greater velocity than the average. For this month, as also for March, April, and Mas, the average velocity is considerably higher than for December, January, and February. This fact, in connection with the variation of the monthly barometric means, would seem to explain, in a large measure, the apmarent breaks in the half-tide levels during November, 1871, as also in March, 18.2. To find the effect due to different relocities of the wind, our data are, of course, entirely iuadequate; neither was it possible to ascertain the effect for the different conditions of the ice.

EFFECT OF THE MOON'S AND SUN'S DECLINATION ON TIE VARIATION OF THE IIALF-TIDE LEVEL.

According to theory, the variation in the half-tide level as depending on changes of the mom's and sun's declination can be expressed by the formuta-

$$
\mathrm{A} \sin ^{2} \hat{b}_{\mathrm{m}}+\mathrm{B} \sin ^{2} \hat{\partial}_{\mathrm{s}}
$$

where δ_{m} and δ_{s} denote the declinations of the moon and sun respectively. The constants A and B are to be derived from observation, and they are greater near the equator and near the poles than in middle latitudes. Observations made at different places seem to confirm the dependence of a rise of the level on an increase of the moon's declination, irrespective of the sign of the latter. The variation in the half tide level goes through its changes from zero to maximum declination, and the level will reach its lowest and highest ralues, respectively, at these epochs.

Owing to the non-periodical effects on the half-tide level, produced by changes in the atmospheric pressure and by the prevailing winds, which in many cases will exceed in magnitude the variation dependent on the declination itself, an inquiry into this subject with a view to test the correctuess of theory, as compared with actual observation, can only gise perfectly satisfactory results when the obsercations extend orer a longer period of time than is the case with ours.

Another difficulty attending this inrestigation is that we have to deat with exceedingly small values; the range of the variation amounting to a few inches only. Still, we may try to obtain an approsimation to the true values, and as tar as the result of our investigation is concerned it scems to be quite within the limits of reliability. The method used in this investigation is as follows:

The half-tide levels for each day, made out as explained before, were summed up and the means taken. These mean values are given in the table at the end of this discussim, together with the moon's dechination tor noon of' each das, placed opposite the corresponding half-tide lerel. In some portions of the series an increase or decrease in the lerets can be detected by mere inspection of the table ; in other portions the rariation is obscured by irregularities, produced by the nowperiodical effects. To investigate the accordance of theory with observation, it is necessary to separate the hatf-tide tevels into groups for different values of declination, and to see it the faw of the increase or decrease of the resnlting means of these groups corresponds to an expmession of the form $Z+A \sin ^{2} \delta_{\mathrm{m}}$, where Z denotes the half-tide level at zero declination, and the second term, A $\sin ^{2} \delta_{\mathrm{m}}$, the rariation or difference between the levels at declination i_{m} and zero declination. After trying a separation of the levels into gronps for declinations between 0° and $5^{\circ}, 5^{\circ}$ and 10°, 10° and 15°, \&c., we could not obtain a satisfactory result from the means of these groms, the number of values in each group being evidently too small to eliminate the non-periorical effects. To obtain as large a number of values in a group as possible we finally adopted the following method:

By adding all the columns of hatf-tide levels and diviting the sum by their number we found from 195 ralues the mean half-tide level $L=4^{f t} .459$ to correspond to $\delta_{n 1}=15030^{\prime}$. This value of L appears to be perfectly reliable, and agrees with the mean of the high-water and fow-water levels $\left(\frac{6.39+2.53}{2}\right)=4^{\text {ft }} .46$, as deduced further on in the discussion of the semi-mensual inequality in height. Next, we separated the levels into groups of values corresponding to declinations below and abore the mean $t_{\mathrm{m}}=15$. 5 .

The resulting values are-

> From 90 values $L=4^{\mathrm{ft}} .365$, corresponding to $\hat{o}_{\mathrm{m}}=8^{\circ} 06^{\prime}$.
> From 105 values $L=4^{\mathrm{ft} .540, ~ c o r r e s p o n d i n g ~ t o ~} \delta_{\mathrm{n} 2}=21^{\circ} 40^{\prime}$.

In order to find the variation and its range we should know the ralnes of the half tide fevels at the moon's zero and maximn'n declination. We found-

From 15 values nearest to zero $\hat{\delta}_{\mathrm{n}}, \mathrm{L}=4^{\mathrm{ft}} .319$, corresponding to $\delta_{\mathrm{m}}=1030^{\prime}$.
From 13 values nearest to max. $\hat{\delta}_{\mathrm{m}}, \mathrm{L}=4^{\prime \prime} .690$, corresponding to $\delta_{\mathrm{m}}=4.40 .5 \mathrm{~s}^{\prime}$.
According to these values the rariation between $\grave{o}_{\mathrm{m}}=1030^{\prime}$ and $\delta_{\mathrm{m}}=24058^{\prime}$ would amount to $0^{\mathrm{ft}} .371$. The reliability of this result, howerer, is much impaired by the small number of obserrations,* and the range is probably a little too large.

[^7]However, as we cannot expect more than an approximation, we shall make use of the values previously enumerated in deducing analytically approximate ralues of the level Z at zero \hat{o}_{m}, aud of the constant A. By the method of least squares we find for Z and A the folloming equations of condition:

$$
\begin{gathered}
5 Z+A \cdot \underline{v}\left(\sin ^{2} \delta_{\mathrm{m}}\right)-\underline{v}(\mathrm{~L})=0, \text { and } \\
\left.\mathrm{A} \cdot \Sigma\left(\sin ^{4} \partial_{\mathrm{m}}\right)+Z . \underline{\sin ^{2} i_{\mathrm{m}}}\right)-\Sigma\left(\mathrm{L} \cdot \sin ^{2} \delta_{\mathrm{m}}\right)=0
\end{gathered}
$$

Solsing these me obtain-

$$
\begin{aligned}
& Z=4^{1 t} .315 \\
& \mathrm{~A}=1^{\mathrm{ft}} .96 \mathrm{~s} .
\end{aligned}
$$

Our expression thus becomes-

$$
\mathrm{L}=4^{1 \mathrm{t}} \cdot 315+1^{\mathrm{ft}} .06 S \sin ^{2} \grave{\delta}_{\mathrm{m}} .
$$

With this formola we computed the half-tide levels for different values of o_{10} given in the following table together with the values observed:

Tariations of the half-tide level, as depending on chanyes in the moon's dectination.

In using for the deduction of Z and A only the three values for $\delta_{m}=8^{\circ} 6^{\prime}, 150^{\circ} 30^{\prime}$, and $21^{\circ} 40^{\prime}$, Which have larger weight, we find the three corresponding balf-tide levels vers closely represented b $\mathrm{L}=4^{\mathrm{ft}} .340+1^{\mathrm{ft}} .51$ sin ${ }^{2} i_{11}$, the whole range of the rariation amounting then to $6^{14} .280$, and the largest difference to $0^{\text {ff }} .011$ only. We made still another test. Assming in conformity with the retardation of the tide, as found iu the diseussion of the semi-mensual inequality giren bereafter, that the greatest effect doen bot take place at the time of the greatest force, but about $2 \pm$ hours later, we also investigated the result by taking this retardation of the tide into account, in separating the halt-tide lerels and using the declination at noon of the preceding day as corresponding to the half-tide lerel on the das in question. The number of groups was the same as before, and in deducing the coustants Z and A we used the mean values of all of the fire groups. Dy means of the method previonsly used we found for the expression of the balf tide level-

$$
\mathrm{L}=t^{1 \mathrm{t}} .34 t+1^{\mathrm{ft}} .55 \sin ^{2}{ }^{2} 11
$$

to render tha corrected ralues more reliable than the valnes given abore. In trying to eliminate the eftect of atmospheric pressme, we gromped the larometer-readings in the same maner as the corresponding half-tide levels, with the intention of reducing the half-tide levels of each gromp tw in uniform or mean atmospheric pressure. In comparing the arerage at mospheric pressures corresponding to the five values of $\delta_{m 2}$, we found the atmospheric pressure to decrease with inereasing de limation of the mom, the rauge of pressme botwern zero and maximum declination amounting to a little over 0 . 1. Cominhing the high latitude of Polaris lby, we have reason to suppose that this result is merely accidental, tho more su as the ethect of the moon on the atmurpheric pessure is scarcely perceptible at Paris, which is abont 34: nearer to the equator than our arctic station. La Place hatheed $\frac{1}{18}$ millincter from a series of observations made
 itself. (Lu Place, Eurres, t. 6, p. '-1. Truilí de mévaninue cileste, livre 12, chap. i.) Bourard, (Mémoires de l'Acudimie

How far the computed valnes asice with thase observel may be seen from the following tahbe：
 when the retard of the tides is teken into aceome．

	llalli-tid 3 2 2	lovel． (u.apulores,	$\begin{aligned} & \text { Yiaria } \\ & \\ & \hdashline \\ & \hline- \\ & \vdots \\ & \vdots \\ & \vdots \\ & 5 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	ill． 		Number of whervations in tikeh gronp．
0110	Fect．	$\begin{aligned} & \text { liet. } \\ & \text { l:3it } \end{aligned}$	recl．	Pirl． 1）． 11110	Fict．	
1 ：11	4．：i：il	4． 11.7	－11． 110	＋0， 11111	－－11． 011	1－7
¢ 01	4． $3: 1$	1． 2 i 1	＋11． 11.11	＋0，16，0	＋11．11：0	\therefore
1－$\because 6$	4．fin！	1． 1.0	＋0．11．	＋10．111	＋0．11011	1！ 1.5
$\because 13$	1．S\％	1，S， 1.1	＋0，11－	＋0． 010	－0．11）：	111
$\because 1$ ぶ	4.16	1．1031	＋0．3il	＋10，ご	＋11．11：9	13
！： 0		4． 13.1		＋0．こ心		

The result from this last tahbe is probably mor refiable than that of the former．The ditherenecs between whowed and computed vahurarise partly from the uncertanty of observation，and partly． from melminated portions of the ？\quad moneriodical etlects and from the effert of the sums declination From all the results obtamed we may conclude with some contidence that the actual ramge of rari ation betweron aco amd maximan declination amonats to wry little more or less than 3 inches． It the same time the results of this investigation mas serve as a criteriou of the value of the obsewations，which，considering the dithenlties attending tidal observations in high latitudes，are pored to be rery relable，as will also be seen from the results of our subsequen disenssions．


``` LEVMI．
```

As may well be imagined，the effeet of the smos dechimation on the variation of the hate the level is still less than that of the moon，and therefore it is mome dibicolt to deduce，and woud require a series of observations extending over a perion of at least twelve months．For this reason the investigation ot thiv etient was omitted．In the expression of the suns eflest B ．sin ens， the constant B is theoretieally abont f. ．The range of the variation rond therefore amome to $0^{\text {te }} 13$ aproximately．The process of investigation would be similar to that for determining the moon＇s eltects

The table mad to determine the ctfect of the moons declination is as follows：
Table for the determination of the cflect of changes in the moon＇s declination on the rariation of the hati－tide level．

Inate．	\div \vdots \vdots \vdots \vdots		lita．			Dite．			Nite．	$\stackrel{3}{3}$ \vdots \vdots \vdots \vdots \vdots	
1－゙い。	lidt	\bigcirc	$1 \because 1$	lict	0	1－－！	rit	0	1－11．	1	
Ninct		＋1\％．11	Now．1：3		$-14,-1$	Nu\％1－	\because ！	－19．-6	1）＇ce．	4.4	＋1．81
	$\therefore \therefore 1$	12．7i	1：	\therefore（i．）	$1!14$	$1!1$	$\therefore 16$	1．1，－11		1．tio	－1，11\％
\cdots	：3． 1.7	$\therefore \mathrm{Ali}$	11	吅沙	？$\because: 1$	$\because 1$	\therefore ： 00	－11．19．1	\sim	1．Sti	1i． $7: 1$
$!1$	$\therefore \mathrm{I}$	＋$\because 2$.	1．		$\because 1.1$	1隹里 ：		＋15．31	！	$\therefore \because 0$	1？，$: 7$
11	$\therefore ?^{-}$	－ii， $\mathrm{in}^{\text {－}}$	16	$\therefore-11$	$\because 1.81$	4	\therefore	14． $\mathrm{i}^{\text {a }}$	111	$5 \mathrm{~F}, \mathrm{il}$	17， 3
11	$\therefore .811$	－！： $3: 1$	13	$\therefore 2$	－－－－	$\bar{\square}$	$\therefore 2 \cdot 1$	＋！：	11	－ 10	－$\because 1.3$

Table for the determinution of the effect of changes in the moon＇s declination，de．－Continued．

Date．			Date．			Date．			Tate．		
1\％21．	Fet．	\bigcirc	1－゙！	Feet．	c	1×0.	Fut．	\bigcirc	1－8゙．	Pret．	\bigcirc
Dee． 19	5． 19	－23．35	Jan．$\because 1$	5． 63	＋24．21	Mar．1：	4． 311	＋8．43	Apr．	3.17	－00．00
	5． 88	21.71	号	5.5	\because	$1: 3$	4． $3:$	$1: 3.7$	26	3.51	23． 20
14	5.58	2：3． 0	$\because 1$	5．	19.91	14	4.00	1－1\％	27	3.5	2． 15
15	5． 49	$\because 1.15$	－	4.17	13．34	1.3	$\because 8.3$	？1． 37	24	3． 3.3	25，${ }_{2}$
16	4．-4	17.15	2	4.75	12， $10: 3$	16	4．24	4： 19	29	3.75	23， 20
17	4．$: 1 \times$	12．1：	－9	3． 1.5	7． 17	17	4.19	－4．98	：10	3．37	20.79
18	4． 57	7． 23	30	5． 34	＋ 1.93	18	3.19	－	May 1	3.38	16．12
19	5.04	-1.87	31	5． 13	－ 3.49	19	4.11	$2: 369$	\because	3.811	11．69
20	5.21	＋3．4；	Feh． 1	4．	\％W\％	－11	4.84	21． 8.	3	4． 06	6．13
21	5.21	\％．4＊	？	4.71	13．9－	？1	3． 3.3	1－71	5	4.12 4.00	－ 0.41 +5.3
22	5.19	13．12	3	5.12	14．30	曲	3.61	14．69	5	4． 00	＋5．83
23	5． 29	17．12	4	5.28	路 01	$\because 3$	3． 02	3． 15	$1)$	3．95	10．56
24	5． 40	20． 31	\therefore	5． 12	24．	$\because 1$	：3． 51	＋4．60	\％	3.93	1：1，36
25	5． 40	号号	6	4.410	21.24	只	：i． 37	－ 0.91	¢	4． 06	14.40 8.952
6	－5． 40	－4．${ }^{\text {ar }}$	\％	5． 00	23， 53	碞	$3.7!$	1，5，${ }^{\text {1，}}$	10	4．30	20．52
？	5.31	$\because 4.71$	\checkmark	5． 04	30．（th	－	3．7：3	$1 \because .01$	10	4． 51	24．06
3／	5． 19	－3．91	$!$	－ 2.14	16． $4:$	思	3．	14．91	11	4.56	25． 55
99）	5． 21	29． 04	10	5． 21	11． 3	9！	3.94	$\because 11.94$	12	4． 99	2． 17
30	5.19	19.18	11	5． 12	－5．fix	$: 30$	3.97	23.79	1：1	3． 39	23．75
31	5.13	＋1．7．4 4	12	5．102	＋0．105	31	3.75	2．， 1.5	14	3.99	21． 19
1－－2．			13	4.79	5． 0^{2}	Apr． 1	3.78	8． 90	1.5	3.60	17．${ }^{2}$
Jan． 1	5． 18	＋11．0．5	14	4． 123	10．70	2	3． 810	$2: 304$	16	3.71	13． 30
	5． 94	1． 09	1.5	4.81	15．91	3	4． 06	19．71	17	3.70	8． 8.5
3	5.16	＋ 11.75	16	4． $2 \times$	1！1． 04	4	4.15	15． 2.1	18	3． 63	$\begin{array}{r} \\ +3.50 \\ \hline 8.16\end{array}$
4	$5 . \geqslant 1$	± 4.71	17	5.16	21.96	5	4．18	11.11	19	3． 43	－ 2.16
5	5.13	10．	18	5． 1 ，－	？ 2.94	（i）	4．${ }^{2}$	－4． 41	31	3.44 38	7.91 13.4
6	5.11	15．：3	19	5.20	34.80	7	4.27	＋1． 6	21	3， 89	13．44
7	5.08	19.74	20	5， 2	34． 60	8	4． 19.9	6． 99	2\％	4.54	18．38
8	5．33	4	$\because 1$	4.34	20．3．${ }^{2}$	$!$	3． 91	12.20	23	4． 54	22.29
9	5.65	31.6	2	4.42	$20.7!$	10	4． 111	16． 76	24	4.719	24． 71
10	5.65	4.410	2	4.53	17．：3	11	3.95	$20.4-$	2%	4.79	？．30
11	5． $4: 3$	－ 40	$\because 1$	4.34	13.18	12	4.01	4s． 9	20	4.53	24.44
12	5.91	$1 \cdots$	4	5． 40	－33	13	4.09	24， 5	2\％	4． 35	21.70
13	5.0 －	14．8ら	26	4.95	＋ 3.06	14	4．1＊	2，：31	2－	1.10	17.77
14	5． 16	9.03	行	4.12	－$\because 4$	15	3.91	3． 4 6	㫛	3.99	12． NK $^{\text {ch }}$
1.5	5.10.	－3．51	S	4.17	7．-9	16	3．73	20． 2	311	4.05	7.45
16	4.74	＋1．${ }^{1}$	3！	$4.1=$	13．19	17	3．-5	90.11	： 11	4.20	-1.74
17	4． $4: 3$	万晃	Mar．\quad ：		21． 3.	1－	3． 22	16．：3\％	June 1	4.44	$+3.84$
18	4.31	1．1． 04	${ }^{1}$	4.25	20．17	19	3.39	11.4	2	4． $4: 3$	9.21
19	4．31	16．	i	3.91	12．3il	31	$\therefore 49$	6.76	：	4． $4!$	14． 11
20	4.70	19．411	，	3． 3.69	13，\％i；	21	$\therefore .84$	$+1.21$	4	4.52	12.34
21	5.01	趶． 46	0	3.71	$\times 115$	？	4.09	－4．54	－	4． 63	21． 72
22	5.42	\％4．14	10	3.77	－ 2.9	？	3.97	111．${ }^{\text {P }}$	6	4.73	＋24．09
23	5． 41	＋24．74	11	4.11	＋ 3.50	$\because 1$	3.69	－1．3． 51			

REDUCTION OF TIDES OBSERVED AT POLARIS BAY．

In reducing the preceding original obsercatious we made use of the United States Coast Sur－ rey blanks，kindly firnished by the Superintendent of that Office．While the blanks for the sec－ ond reduction were used unaltered，we made some changes in the last three columus of No． 1. The colnmn beaded＂Duration of tide＂was dropped，and the half－tide levels for low mater substi－ tuted．The triple column，giving the dircction and relocity of the wind，the atmospheric pressure， and the temperature，also underwent some changes by leaving ont the temperature and sub－ stituting the balf－tide levels for ligh water，and instead of giving the state of the weather，as done in the original blank，we preferred to use the last column for the moon＇s parallax and declination． For further explanation we meed only state that the time of the moon＇s meridian passage and of both high and low water is mean time thronghont；that the lower transits of the moon are placed betweeu brackets，and that the lnnitidal intervals depending upon the lower transits are distin－ guished in the same manner．

Table for the reduction of tides，No．1．－Shoming the times of high med low water，whl the heights of high and low water，together with the moon＇s passing the merintian of the place，the lunitinth intervals，dee．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date．} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|l|}{Mean time of－} \& Lunitulal in－ terval． \& \multicolumn{2}{|l|}{Height of－} \& \multicolumn{4}{|c|}{Low water．} \& \multicolumn{3}{|c|}{High watri．} \& Moon＇s－

\hline \& \& \& 莺 \& 烒 \& \& \& \& \& \& $$
\begin{aligned}
& \text { ud. } \\
& \\
& \\
& \hline
\end{aligned}
$$ \& \& \& Wind． \&

\hline $$
\begin{gathered}
1-71 . \\
\operatorname{Xov} .5
\end{gathered}
$$ \& $$
h . m .
$$ \& \& h．m ． \& h．m．h．m． \& Fert． \& Feet． \& Fuct． \& Inches \& \multicolumn{2}{|l|}{．．．．} \& \& \multicolumn{2}{|l|}{Inchers．} \& ${ }^{\prime} \quad 0$

\hline \multirow[t]{2}{*}{6} \& $\left[\begin{array}{ccc}18 & 27 \\ 6 & 51\end{array}\right]$ \& \& \& \& \& \& \& \& \& \& \& \& 10 \&

\hline \& $\left[\begin{array}{cc}19 & 15 \\ 7 & 38\end{array}\right]$ \& 3030 \& 1230 \& 1334 ［190］ \& 4.31 \& 2.75 \& \& （1）1：3 \& 0 \& 0 \& \& ． 144 \& SW 6 \&

\hline i \& ${ }^{7} 38$ \& 745 \& 230 \& ［1230］ 19 ： 2 \& 3.67 \& 只 63 \& 3. \& － \& 1 \& 0 \& 3，： \& ． 314 \& SE 5 \& $56.52+12.7$

\hline \multirow[t]{2}{*}{8} \& $\left[\begin{array}{cc}20 & 01 \\ -24\end{array}\right]$ \& 2100
10 \& 1500
3
3 \& $\left[\begin{array}{l}13 \\ 13 \\ 3\end{array}\right.$ \& 4． 5 \& － \& 33． 311 \& 111020 \& ${ }_{\text {E }}$ \& $\stackrel{3}{5}$ \& \％3 \& \& ＂110 \&

\hline \& $\left[\begin{array}{ccc}20 & 4 & 4\end{array}\right]$ \& 3100 \& 1600 \& 10 \％［19 50］ \& 4.96 \& \％ \& 3.4 \& 20 \& ${ }_{\text {E }}$ \& 1 \& \％ \& 近 \& E ${ }^{\text {E }}$ \&

\hline \multirow[t]{2}{*}{9} \& 912 \& 1000 \& $4{ }^{111}$ \& $\left[\begin{array}{cc}13 & 12\end{array}\right]\left[\begin{array}{lll}19 & 3\end{array}\right.$ \& 5.17 \& 1．4．${ }^{\text {ch }}$ \& 3.5 \& 39， \& E \& i \& \％ \& 3imba \& ， \& 20

\hline \& $\left[\begin{array}{lll}21 & 36\end{array}\right]$ \& 2e 00 \& 1600 \& 124－［ $\left.\begin{array}{ll}19 & 12\end{array}\right]$ \& 5． 42 \& 1． $\mathrm{-} \mathrm{\alpha}$ \& 3.4 \& 10. \& E \& ； \& 3.3 \& ． 1 \& 1 \&

\hline 10 \& 1000 \& 1100 \& 430 \& $\left[\begin{array}{lll}13 & 34\end{array}\right]\left[\begin{array}{ll}19 & 13\end{array}\right.$ \& 5 \& 1.00 \& 3.3 \& 41： \& E \& 6 \& 3. \& ． 114 \& NE｜ 1 \& －90－3．61

\hline \multirow[t]{3}{*}{11} \& $\left[\begin{array}{ll}282 \\ 10 & 25\end{array}\right]$ \& 2300 \& $1: 00$ \& 13） $00-[19$ 24］ \& 5．ts \& 1．33 \& 3.91 \& 16.4 \& NE \& $\underline{9}$ \& 3. \& \& NE \&

\hline \& ［ 1051 \& 1130 \& $5{ }^{1171}$ \& ［1：3 15］ 1940 \& 5． 38 \& 0．5\％ \& \％ \& ，5\％ \& NE \& \％ \& 3. \& ． 511 \& 入E 16 \& －9．97－9．92

\hline \& $\left[\begin{array}{c}23 \\ 11 \\ 11 \\ 4\end{array}\right]$ \& 23 00 \& 1630 \& 1： 09 ［ $1-080$ \& 5.85 \& ？ 3 \& 3.5 \& ． \& NE \& 124 \& \％ \& ， 21 \& Xe \&

\hline $1:$ \& 1145 \& 1200 \& －00 \& $1 \times$ \& 6．${ }^{\text {a }}$ \& ${ }^{0.1119}$ \& 3， 31 \& 111 \& NE \& S \& \& ． 214 \& NE： \& 150． $50-14.3$

\hline \multirow[t]{2}{*}{13} \& $\left[\begin{array}{lll}0 & 14\end{array}\right]$ \& 000 \& 600 \& $1: 1515$ \& 6． 29 \& 0． \& 3.62 \& 02： \& NE \& 9 \& \％， \& 吅餪 \& NE［1 \& （5） 5 －-19.13

\hline \& 1243 \& 1300 \& 1900 \& $[1 \because 46]\left[\begin{array}{lll}10 & 46\end{array}\right]$ \& 1i． 92 \& 1.33 \& 3.10 \& （19） \& NE \& 1.5 \& O， 6 \& ） \& E ${ }^{\text {a }}$ \&

\hline \multirow[t]{2}{*}{14} \& $\left[\begin{array}{ll}1 & 13\end{array}\right]$ \& 100 \& 61 ll \& 12171717 \& 6.9 \& \& 3.61 \& 足： \& NE \& 1 \& ： 1 \& ． 171 \& E－ \& 60．4－2038

\hline \& 1344 \& 1300 \& 19 \& $\left[\begin{array}{lll}11 & 4\end{array}\right]\left[\begin{array}{ll}17 & 17\end{array}\right]$ \& 1． 31 \& 1．12 \& 3.51 \& ．：3 \& NE \& \because \& 3.5 \& － \& x ${ }^{\text {c }}$ \&

\hline 1.5 \& $\left[\begin{array}{lll}{\left[\begin{array}{ll}1 & 16\end{array}\right]}\end{array}\right.$ \& 100 \& 730 \& $\begin{array}{lllll}11 & 16 & 17 & 46\end{array}$ \& 5． \& 0.333 \& 3， 51 \& \％ \& NE \& 13 \& 3.1 \& ． 317 \& NE 15 \&

\hline \multirow[t]{2}{*}{16} \& $\begin{array}{ll}14 & 48 \\ {[3} & 207\end{array}$ \& 1400180 \& 20.10 \& $\left[\begin{array}{lll}11 & 14 \\ 11 & 1 .\end{array}\right]\left[\begin{array}{lll}17 & 44 \\ 17 & 12\end{array}\right]$ \& 6． 58 \& 1． 42 \& 3． 5 \& － 19 \& NE \& 4．${ }^{\text {a }}$ \& 3． 5 \& －13： \& NE ${ }^{4}$ \&

\hline \& $\left[\begin{array}{lll}3 & 20\end{array}\right]$ \& $\because 00$ \& －00 \& $111: 121712$ \& $\therefore 67$ \& 0.73 \& 3.11 \& ． 163 \& NE \& ！ \& 3.6 \& － \& NE \& （60． $193-24.50$

\hline \multirow[t]{2}{*}{17} \& 15.51 \& 1500 \& 2100 \& $\left[\begin{array}{ccc}11 & 40 \\ 10 & 39\end{array}\right]\left[\begin{array}{lll}17 & 40\end{array}\right]$ \& 6． 20 \& 2.33 \& 3． 9 \& \cdots \& NE \& \because \& 3. \& －$\because 14$ \& NE 19 \&

\hline \& $\left[\begin{array}{lll}4 & 21 \\ 16 & 1 \\ 16\end{array}\right]$ \& 230
1500 \& $\begin{array}{r}900 \\ 200 \\ \hline 20\end{array}$ \& \& 5． 6.17 \& 1．33 \& 3． \& － 3 \& NE \& 11 \& 3， 3 \& － \& NE
E \& 9.

\hline \multirow[t]{2}{*}{18} \& $\left[\begin{array}{lll}\text {［12 } & 19\end{array}\right]$ \& 330 \& 10 （10 \& $10: 391769$ \& 4.92 \& 3．i1） \& \％ \& － \& － \& 11 \& \because \& ，\％ \& －11 \&

\hline \& 1747 \& 1630 \& 2300 \& $\left[\begin{array}{lll}11 & 11\end{array}\right]\left[\begin{array}{ll}17 & 41\end{array}\right]$ \& 5． 5 \& 3－2 \& ：． 91 \& 11： 18 \& VE \& $1 ;$ \& \％． \& 21 \& 1 \&

\hline 19 \& $\left[\begin{array}{lll}{\left[\begin{array}{ll}6 & 13 \\ 1 \sim & 39\end{array}\right]}\end{array}\right.$ \& 460
1830 \& 1110 \& 1013 1： 13 \& 4. ix \& י．54 \& 38 \& \& \& \& \％ \& 1191 \& NE \& 2，94－15． 17

\hline \multirow[t]{2}{*}{20} \& $\left[\begin{array}{ll}7 & 03\end{array}\right]$ \& 600 \& 100 \& $11 \because 1 \times 4 \%]$ \& 4.43 \& 3.15 \& 3.3 \& 0.4 \& VE \& \％ \& 3 \& 3，96t \& NE \& 2，24－11．02

\hline \& 19 \& 1900 \& 12 ： \& ［11洌 17818 \& 5． 17 \& $\because 50$ \& 3.3 \& \& \& \& \& \& \&

\hline 21 \& $$
\left.\begin{array}{cc}
7 & 50 \\
20 & 12
\end{array}\right]
$$ \& \& $\because 00$ \& ［1857］ \& \& ， \& \& \& \& \& \& \& \& 5．46

\hline Dec． 1 \& 309 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{} \& ［ 1533$]$ \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& 357 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{3} \& $\left[\begin{array}{cc}16 & 1 \\ 4 & 45\end{array}\right]$ \& 330 \& 900 \& $\left[\begin{array}{ccc}11 & 199\end{array}\right]\left[\begin{array}{lll}16 & 39\end{array}\right]$ \& 5． 29 \& 2.92 \& \& 30.071 \& \& \& \& 1： \& \& ． $96+$

\hline \& $\left[\begin{array}{lll}17 & 08\end{array}\right]$ \& 1630 \& 2200 \& $\begin{array}{lllll}11 & \text { ¢，} & 17 & 15\end{array}$ \& 6.21 \& 3.96 \& 4.4 \& 1 10．910 \& 0 \& 0 \& 419 \& 30．01－ \& NE 7 \&

\hline 4 \& 531 \& 400 \& 1000 \& $\left[\begin{array}{lll}10 & 5 \\ \hline 8\end{array}\right]\left[\begin{array}{lll}16 & 5\end{array}\right]$ \& 5． 67 \& 3． 79 \& 5.12 \& ． 74 \& 0 \& 0 \& 4.1 \& －31－20 \& SW 1 \&

\hline \multirow[t]{2}{*}{5} \& $\left[\begin{array}{lll}17 & 54\end{array}\right]$ \& 1700 \& $23: 10$ \& $11 \begin{array}{ll}11 \\ \text { 23）} \\ 17\end{array}$ \& 6． 92 \& 4． 67 \& 5.41 \& 11.50 \& E \& 7 \& \cdots \& －lith \& － \&

\hline \& ［ 617 \& 500
1800 \& 1200 \& $\left[\begin{array}{ccc}11 & 11\end{array}\right]$ \& 6． 00 \& 4.33 \& ， 3 \& \％ \& II \& 46 \& 5.4 \& ． \& －1v \& $36+9.2$

\hline \multirow[t]{2}{*}{6} \& 702 \& － 00 \& 100 \& $\left[\begin{array}{cc}12424\end{array}\right]^{18} 43$ \& 5.50 \& 4.04 \& 5.3 \& W， $10 \times$ \& 815 \& S \& 5， 11 \& 80． 215 \& －W \& $3.93+4.31$

\hline \& ［1905］ \& 1930 \& $1: 3171$ \& \& 6． 00 \& 3．3 \& 4.7 \& 3 ． \& 51 \& 10 \& 4.1 \& ． 4 \& NE \&

\hline \multirow[t]{2}{*}{7} \& 74 \& 830 \& 200 \& $\left[\begin{array}{lll}13 & 165] \\ \hline 1850\end{array}\right.$ \& 2． 50 \& 3.13 \& 4． 5 \& ：3： \& NE \& － \& 4.6 \& ． \& NE \& － $16-1.15$

\hline \& $\left[\begin{array}{ccc}201 & 1 & 1 \\ 5\end{array}\right]$ \& 2100
930 \& 14

\square
0 00 \& $\left[\begin{array}{lll}13 \\ 13 & 1: \\ 1 \times 7\end{array}\right.$ \& 6． 25 \& \％ 12 \& 4.6 \& \& ＋ \& ？ \& 4.1 \& $\bigcirc 44$ \& A \&

\hline \checkmark \& ［ $\begin{array}{r}8136 \\ {[201}\end{array}$ \& 930
2100 \& $\begin{array}{r}3 \\ 15 \\ 150 \\ \hline 100\end{array}$ \& \& 6． 25 \& 号 \& 4.21 \& \& NE \& i＇ \& 4. \& 30． 101 \& E \& 6．2！）

\hline \multirow[t]{2}{*}{9} \& ［1187 \& 1000 \& 400 \& $\left[\begin{array}{llll}12 & 59\end{array}\right] 1924$ \& 7．4． \& 号： \& 5.11 \& ． 1311 \& 1 \& 1 \& 5.1 \& － \& NE \& 60．04－130 3

\hline \& $\left[\begin{array}{lll}1 & 1 & 5\end{array}\right]$ \& 况 00 \& 11； 00 \& 123：3 ${ }^{\text {a }}$［1859］ \& 7.50 \& 3.5 \& 5.3 \& 1 ． 6 \& E \& 12 \& \cdots \& － 14.4 \& ， \&

\hline \multirow[t]{2}{*}{10} \& 10 ¢： \& 1100 \& $4{ }^{161}$ \& $\left[\begin{array}{ll}13 & 05\end{array}\right] 18$ ： $3:$ \& \bigcirc \& 只 17 \& － 4 \& disis \& W \& ， \& 5.5 \& ．5te， \& NE \& $60.75-17.39$

\hline \& \& 2309 \& 17 （10） \& 1237［19［5］ \& 7.167 \& 3．75 \& 51 \& ． 41 \& E \& 3 \& \& 9． $4: 4$ \& E 4 \&

\hline \multirow[t]{2}{*}{11} \& 1189 \& \& 500 \& 1837 \& \& 2.33 \& 5． 50 \& ． 37 \& E \& ， \& \& \& \& 61．24－21． 39

\hline \& ［2：355］ \& 1200 \& 18 （00 \& $\left[\begin{array}{lll}13 & 17\end{array}\right]\left[\begin{array}{ll}19 & 07\end{array}\right]$ \& 8． 54 \& 3．63 \& 5． $6:$ \& ．30： \& NE \& 30 \& 5． 5 \& 130．30 \& NE 18 \&

\hline \multirow[t]{2}{*}{12} \& \& 000 \& 7 00 \& 112319 \& －0＂ \& 2． 21 \& 5． 6. \& ． $3 \mathrm{st} \mathrm{m}^{\prime}$ \& NE \& 12 \& 二， 6 \& ． 6 \& NE 1% \& 61．39－23．95

\hline \& 12 ： 2 \& 1200 \& 1.480 \& $\left[\begin{array}{lll}12 & 10\end{array} 0\left[\begin{array}{ll}1-3 & 3\end{array}\right]\right.$ \& 8 \& 3． 63 \& 5.7 \& － 374 \& E \& F \& \therefore. \& ． 3 \& E \&

\hline \multirow[t]{3}{*}{13} \& $\left[\begin{array}{lll}1 & 10\end{array}\right]$ \& 030 \& 700 \& 120810 \& 8． 13 \& － 50 \& 5.2 \& ．201 \& 1： \& \because \& 5.8 \& ． 31 \& NE ${ }^{6}$ \& $61.21-24.74$

\hline \& 1333 \& 1300 \& 19 （19） \& $\left[\begin{array}{lll}12 & 00\end{array}\right]\left[\begin{array}{lll}1 \sim & 00\end{array}\right]$ \& 9.17 \& 3．1ii \& 5.9 \& ． \& NE \& \& 5 \& － \& 1： \&

\hline \& $\left[\begin{array}{ll}2 & 05\end{array}\right]$ \& 100 \& 700 \&	11	97
1		129 \& 8.50 \& ？． 33 \& 的汭 \& －54 \& E \& ＊ \& T．${ }^{\text {c }}$ \& ． 48 \& ， \& 61， $72-23.30$

\hline 14 \& 1437 \& 1400 \& 2000 \& \& 8.71 \& 3．42 \& $\therefore 1$ \& 93，-4. \& E \& 2 \& 5. \& 23n \& E \&

\hline
\end{tabular}

Tetble for the reduction of tides，Mo．1．－Continued．

Dite．	首	n time of－		Lunitidal in－ trrval．	Heigl	ht of－	Low whter．				High waters．				Alomi＇－	
		$\begin{aligned} & \text { E } \\ & = \\ & = \\ & = \end{aligned}$	$\begin{aligned} & E \\ & = \\ & E \end{aligned}$		$\begin{aligned} & \equiv \\ & \\ & \end{aligned}$	$\begin{aligned} & = \\ & \end{aligned}$	$\begin{aligned} & \dot{3} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & y \end{aligned}$	戠	$\begin{aligned} & \text { W } \\ & \\ & \\ & = \end{aligned}$	imh． ＊tonnd		$\begin{aligned} & 2 \\ & \\ & \end{aligned}$	关	ud．		
$\begin{array}{r} 1-7 \mathrm{t} \\ \text { Dec. } 15 \end{array}$	h．m． ［：3 11	7．m．	7．mim	h．m．h．m．			Firl	frites				Curbus．				\bigcirc
	$\left[\begin{array}{ll}3 \\ 15 & 1 \\ 15\end{array}\right.$	14111	800 31101		7．79	3．1i4	5， B． 15	3！	N1		$\therefore 16$ $\therefore .6$		E E			
$11 ;$	［4 4 H	$\therefore 00$	（1） 111	11 2－ 17	$\therefore 86$		4.11	311． 1 II1	NE	？	5.	！	NE		\％1．	1：17－1\％
17	16 ： $3:$	1600	\％（\％）		7．	$\because .71$	4． 3.1	：$\because 111$	NE	． 1	1.10	－311．20	NE			
	$\left[\begin{array}{ccc}4 & 5 & 5\end{array}\right.$	400	9 ： 1	11 \square 10	5，${ }^{2}$	$\because 17$	4． $\mathrm{H}^{\text {a }}$	．$\because ⿰ 口 口$	NE	1．－	4． 4	\＆．3：31	N			$21-1 \because 4$
12	178	161111	$\because!111$	$\left[\begin{array}{lll}11 & 01\end{array}\right]\left[\begin{array}{lll}1-11\end{array}\right.$	1． i .5	\because		（31）．110，	NE	1	4.3	，11．1－3	NE	$1 \approx$		
	$\left[\begin{array}{lll}{\left[\begin{array}{lll}5 & 1 \\ 1-1 & 11\end{array}\right]}\end{array}\right.$	5 18010	11．111）	11 and 17 只	5． 46	3，ili	4．		11	11	4.1	－3！	NE	6		－ 5 2
19		1800 15 18 8		$1 \because 10]$				11.8		，	4． 1	17 ． $5 \cdots$		3		
	1－$\quad . .1$	1s 30	1：200	$\left[\begin{array}{lll}11 & \mathrm{ni}\end{array}\right] 15$ lit	\％． 110	4．14	5． 1%	，	ה11	（1）	5.8	－Snl	SW			
213	$\left[\begin{array}{ll}3 & 17\end{array}\right]$	－ 100	1 119		Si． 00	3． \mathbf{R}^{2}	5．${ }^{5}$	． 1117	SUT		5.	；．7！	s	10	5.5	$1+3.3$
21	1：1：	200	1100	$\lfloor 1: 40] 19115$	1i． 71	4． $3: 3$	5． 31	－－ $2:$	AW	i	5． 3	－	SW			
	$\left[\begin{array}{ll}1 & 5 \\ 1 & 1\end{array}\right]$	31111	总：	1：：	13，只	4．iii）	5.	． P （1）：	NH＇	：	5.3	－． H_{1}	E	1		
2：	［9121	21110 11100	$\therefore 110$ $\therefore 111$	$\left[\left.\begin{array}{lllll}1: 3 & 01 \\ 1: & 19 & 19 & 28\end{array} \right\rvert\,\right.$	（i，12，	1． 293	5．	－$\because 118$	1	1 i	$\therefore 11$	11 ． 115	E	4		
	$[-1:$ 1 15	110 $\therefore 200$ 00			A． $13: 3$	3.48 4.112	5．${ }^{\text {d }}$	－${ }_{\text {a }}$	İ	： id	$\begin{aligned} & 510 \\ & 51 \end{aligned}$			\therefore		＋1：12
23	［11 29	11 101	4190	$1: 3.30\left[\begin{array}{ll}19 & 17\end{array}\right]$	1． 31	：$:$	$\therefore 19$	． $3+1$	NE	i1）	5	． $31 i$	NE	11		$41+17.12$
	$\because 16$	㫛 00	1100		7.110	4．1：	5，：31	． $1111 i$	N＇	1．6	$\therefore 1$	$1.10 \sim$	H	11		
$\because 1$	［101）1：3］	11 m	519	1： $111[19: 3: 3$	7．42	3.4	5． 41	．	N15	111	－ 4	－ $41 \because$	11	0	S1． 1	$16+011.51$
	过 37	昗： 00	1704	$[1240] 1910$	$1 \mathrm{C}, \mathrm{H}_{4}$	\％ 3	5．	，5－21	SE	11	\therefore 为	29－514	以W	14		
－	1101		5161	－．．．．．［1－4i）		$\therefore 11-$	$\therefore 8$	． 1114	NE	1					51.1	$12+8$
	［11	$\begin{array}{rrr}1 \cdot 204 \\ 11 & 30\end{array}$	18.101	$1: 3819$ 易	7． 71	3	5.1 ．	－	NE	$1 ;$	$5:$	（ 818	1	：		
3.1	［11	1； 17	$19: 31$ 19		7． 31	310	S． 11	－ 11.1	E	12	－1． 41	1.411	NE	14	33	；$+\cdots 1.3$
		$\begin{array}{rrr}1 ; \\ 11 & 30\end{array}$	19 ma	1：3 10.3	7． 17	B，$\overline{5}$	5.36	－ 511	E	t	5． 11	．1－3	NE	3		
\because	$\left[\begin{array}{cc}0 \\ \hline 1 & \text { fin }\end{array}\right]$	1：311i	1！ 00		7．17	\because	5，	． 31	E	4	二，\because	－ Si	1	4	S	1－21．71
Q－	10 l	$11: 30$	701	$\left[\begin{array}{lll}11 & , 4\end{array}\right]\left[\begin{array}{lll}1-3 & 3\end{array}\right]$	¢，	\cdots	5．${ }^{19}$	－	E	：	\％．${ }^{2}$	－ 21	2	5		$1+89$
	［1：3：31］	1：3：10	410．1	12．91－	7． 2.8	： 3 ， $1: 3$	5．1－	－ 311	NE	，	－7，	7， 9		3		
99	$\left[\begin{array}{lll}1 & \text { ：}\end{array}\right.$	201	7111	［12：31］［15：01］	6． 5	只 8	$\therefore 1: 1$	． 711	ME	S	$\therefore 1 ;$	． in 1	Ne	7		$1+\underline{2} 04$
	$\left[\begin{array}{lll}1+1- \\ \hline\end{array}\right.$	1.1010	3110	12，14；1－mi	－7，		\％ 5	，¢111	NU	10	二， 2	． $1 ; 11$		5		－1－．．04
30	［15）	吕 101	（1） 111	$\left.\left[\begin{array}{ll}11 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}17 & 4 \\ 1 & 1\end{array}\right] \right\rvert\,$	11．79	$\because 39$	为明	－	NE	1：	5.	－si－	E	12		＋19
	$\left[\begin{array}{cc}1 . & 0 \\ 0 & 0 \\ ; & 2\end{array}\right]$	1.7 $: 111$ $: 110$	$\because 1019$	$1 \because 181810$	7，\therefore－	为动	\cdots	－fillir	E	${ }^{6}$	$\therefore 1$	－．100	1	13		
31	［15 51］	$1 \because 00$	－			为	$\therefore 11$	62－	1	11	5.	，bli	NE	：	\％，	$1+15$
$10 \cdot 2$																
$\text { Jialu, } 1$	413	$\therefore 00$ $1 i 8$	！$\because 114$	$\left[\begin{array}{ccc}11 & 099\end{array}\right]\left[\begin{array}{lll}15 & 18\end{array}\right]$	（18． 51.1	3．1；	5．15	2！－ 01	E	－	5.1.	2．1911	E	4		＋11．15．8
	［10 琼；	16 （19）	$\because \because$	114710	7．33	3.7	5.21	．12：1	L	6	4．	，促：	E	3		11.10
		16：	2919	$\left[\begin{array}{lll}11 & 0.1\end{array}\right] 14$		3，	\therefore	． 1111	0	0	5.8	． 63	NE	1	\％13， 1	$1: 9+1.19$
	54.	44.5	11）	［11号号］［17 10	6， 6	3.2	－14	（i）：	NIL	3	\therefore	． 6	İ	1		
	［1819］	1700	为：${ }^{1}$	$111{ }^{1} 17$	6.71	Bit	$\therefore 1$	．624	NE	3	$\therefore 11$	$\begin{aligned} & \text { ह!! } \\ & \text { fin! } \end{aligned}$		7	31.	＋11． 25
4	13 ${ }^{18}$	（i） 00	1130	$\left[\begin{array}{lll}11 & \text { n，} \\ 1,4\end{array}\right]\left[\begin{array}{lll}17 & 8\end{array}\right]$	B． 13	4．31	5．21	2！ 1.6301	L	2	51	－517	NE	$1: 18$	\％ 3.	－4． 31
\because	18 1 7 15	18 7 in	100	12010， 12	6.75 1.12	$\therefore 137$					5.21	． 614%	E	1		1．
	$\left[\begin{array}{cc}19 & 411\end{array}\right]$		1300	11 4，［1－ 10 ］	（1． 31	1． 21	5．1\％	． 710	SE	4	5.14	． 697	0	0	5m	－119，
13	806	8	$\because 110$		6．：31	3， 3	$\therefore 11$	－ $6: 1$	且	4	$\therefore 1.11$	． $72-1$	11	0		
	［ $\left.\begin{array}{lll}3 & 4 & 34\end{array}\right]$	2116	14	13 5 1－30］	13．1is	4． 2	2， 11	． $7: 11$	灾	3	$\therefore 10$	． 694		\％		
7		！ $1: 11$		10817 1×81	1． $13:$	\because	5111	． 9211	NH^{2}	，	\cdots	． 974	NE	\％		－19．74
	$\left[\begin{array}{lll}1 & 3 & \cdots \\ 10\end{array}\right]$	$\because 1$ ：${ }^{1}$	1.545		4． 83	$\therefore 1.1$		．15－	E	7	$\because 14$	－\％－	11	6	tr．	－19． 71
S	［10 03	10：30	400 10		7.13 .9 7.13	6，7：	5， 31	－1：	F_{F}	\because	$\therefore 3$	，i＝19	E	5	$\text { (31. } 1 \%$	13－30
9	$\left[\begin{array}{cc}11 & 1 \\ 1\end{array}\right.$	－ 0	$\therefore 00$	120，1\％	7．13	3，	5， 31		SE	：	－ 14	220． 741%				
	［ $\because: 341]$	1：00	1－00	［13 足］［［19	9．11－	$\therefore 17$	为 6	－ ，in 1	12	\pm	$\therefore 1.4$	21， 619	E			－ 8
10			1500	1×10	万． 3	$\because 4$	－5， 1	－ 1 ！	NE	41	－ 5.	－1－	NE	$2 ;$	61.	－ 4.411
11	$\left[\begin{array}{lll}10 & 4 & 15\end{array}\right]$		15 1110	1141%	\％．i	3.41 \cdots $-1: 3$	5．31	－ 4	NE	1.3		－ 24	NE	14		
$1 ?$	1：312	1：100	1910	1－1．1 1－1！ 1	8.71	$\therefore 8$（10）	碞：	71.5	$1{ }^{1}$		\cdots	\therefore	NE	：11	16.0	91－2．20
	$\left[\begin{array}{ll}1 & 4 \\ \hline\end{array}\right]$	100	700	114217 小！	7． 14	1．1！	5．${ }^{2}$	6if：	NE	119	\cdots	－	NE：	－		
	$1+18$	1400	311015	$1 \because 1: 2!1-1: 27$	－．$\quad 1$	？	$\therefore 111$	． 18.8	\2	$!$	5．17	㤩	，	\because	16.	－-1×0
$1: 3$	$\left[\begin{array}{ll}3 & 4 i \\ 10 & 1\end{array}\right]$	$\because 1010$	－ 90	1142174	7． 17	1．- ；	5．111	， 210	11	11	$\therefore 11$	注	NE	1		
14	$\left[\begin{array}{lll}15 & 13 \\ {[: 3} & : 3\end{array}\right]$	1.514 300		12 14］［1 1 ： 14$]$	B－	2．${ }^{2}$	5．14	． 719	NE	－	5．13：	721	NE	7		
	［．3．．．］	510	－	11 is	7． 42	$8 \cdot$	$\therefore 17$	29.701	NE	｜21	$\therefore 11$	3，69\％	NE	$: 31$		－－0，

Tuble for the reatuction of tilles, Mo. 1.-Contimued.

[^8]Tuble for the reduction of tides, No. 1.-Continued.

Table for the reduction of tiles, Mo. 1.-Continued.

Table for the retuction of tides, Yo. 1.-Continued.

Table for the reduction of tides, No. 1.-Continned.

Table for the reduction of tides，No．Showing the intreral beturen the lime of the moon＇s upher and lower trensits and the time of high and lom rater ；and also the heights of high and low wetter．

		$=$ $=0$ $=$ $=8$ $=0$ $=0$ $=0$ $=0$ $=0$				$\begin{aligned} & \approx \\ & =0 \\ & = \\ & = \\ & = \\ & =0 \\ & = \\ & = \end{aligned}$				$\begin{aligned} & =0 \\ & = \\ & = \\ & = \\ & = \\ & = \\ & = \end{aligned}$				$\begin{aligned} & 70 \\ & \because \\ & =0 \\ & 0 \\ & 0 \\ & =0 \\ & 0 \\ & =0 \end{aligned}$	
h． m ．	h．m．	Fed．		h．m，	l． m ．	Firt．		h．m．	h．m．	Firl．		l．m．	h．m．	Pct．	
$04:$	$1: 17$	（6．${ }^{2}$		144	1116	5，\times ：		2 小	1112	5.17		5，1	10	（3：）	
11 ゼ号	1 $\because ⿰ 亻 ⿱ 丶 ⿻ 工 二 口 儿$	¢1：		1 \％	$11 \times$	$\therefore 50$		$\because: 1$	11 \％	7.30		$\because 3$	$11 \because$	1． 914	
$1) 15$	1245	7．13：		10.	$1 \because$	7．75		$\because 1:$	$121 *$	7．in		\because 吅	$11: 3$	11	
014	1146	7.71		1.54	12011	$7.7!$		$\because 14$	11 l	7.17		313	1147	7．19	
（） 39	1251	$\times .08$		11.	11 4：	7． ti		$\because 19$	$1210: 3$	7.42		349	11	7．9	
056	1204	7.71		1． 4	12 34	7．13i，		$\because 519$	$1: 14$	S． 01		3	$11: 1$	7.18	
0 （1）	1：52	7．3\％		149	1211	7． 67		Q 3	1206	7．1i，		：11－	115	（6，－3，${ }^{\text {a }}$	
0 int	12：3	S．Sn		1 紋	1：\because	7.46		\because ？	11 －	7.18		$3: 4$	11.11	1i． 04	
026	1：34	6．${ }^{\text {a }}$		115	1910	15.50		\because い2	11 Sim	13． 12		3 ： 5	1040	1i． 511	
0 1s	1242	1． 14		141	$1: 11$	6，$-\cdots$		$\because 4$	$121 \because$	1． 3.1		00	12 （19）	i． 419	
038	1：2 2	13． 90		15	120゙	16，碗		$\because 40$	11 1～	1i．Sis		349	1141	6． 118	
0 \％ 3	1 \because	13． 54		125	1\％	1． 916		$\because 12$	1203	6.64		\because	$11 \because$	5.18	
0 U－1	1 $\because 3$	6.191		$1 \because ゙$	120：	（1， 3 ，		$\because 24$	11 ： h_{6}	5． m_{1}		$3 \because 1$	1101	6． 51	
052	$1 \because 6$	7.04		141	1149	7.15		$\because: 11$	11 ？	7．10		319	1111	6． 61	
010	12：0	7． 24		111	11.59	7． 99		$\because 15$	11 ：	7． 114					
11） 24	19	7．	15	1 －！！	$1 \because 10:$	7． 31	1.5	$\because: 3$	1147	7．0	15	3 3－	11 \％ 2	（i．）is	1
$\left[\begin{array}{lll}0 & 3\end{array}\right]$	［1：3 $3: 3$	［\％．1：1］	15	$\left[\begin{array}{lll}1 & 9\end{array}\right]$	$\left[\begin{array}{lll}12 & 0,\end{array}\right]$	［7， $3-1$	1.5	［\％\％－	$\left[\begin{array}{ll}11 & 46\end{array}\right]$	［8．14］	1.5	$\left[\begin{array}{ll}3 & 3\end{array}\right]$	［11哭］	［10，83］	16
057	$\because 148$	14． 11		$\because 56$	$\because 411$	14．4 4		4 －	吅：	14.06		6 ：4	桀53	1355	
0 \％	$1: 94$	7．\because	30	12 J	1： 11.	7.31	30	$2: 4$	11.16	7.03	30	39	11 ๕゙	6.78	30
451	1039	4.92		547	1013	4． 5 K		651	1339	4.71		7 ： m	13 咜	4.75	
445	1145	6.21		531	11%	1． 512		（i） 39	$11 \because 1$	4.63		7112	12 令	6.00	
433	1127	5.84		524	1136	5.46		（i） 17	1143	13.77		74	1318	6． 25	
413	1147	7.33		54	11 18	6.71		（i） 11	1219	5．7．1		7 \％${ }^{\text {a }}$	13 28	6． 95	
457	1133	7.13		535	11 3	5，－：		（i） 55	1305	6.00		715	1145	6.50	
403	1157	7.00		510	1120	6.67		（1） 27	12 lin	18． 75		70.3	12.18	4． 96	
4 －11	1110	6． 4 ¢		55	114	6.74		619	1141	5.4		74	$131:$	5． 75	
$4 \because 4$	1136	7.17		54%	1118	5.8		6.50	115	13， 3		746	$1: 14$	6． 50	
412	11 4 2	6.54		509	1121	5.60		159	1：31	5． 31		716	124	C． 50	
45	1133	6．1：		5 S	$11: 2$	5.21		184	124	$4 . \mathrm{is}$		78	1408	4.96	
$4 \because 1$	1139	5.14		53	10 法	5． 10		（1）33	10 －	4.54		734	11.81	1.48	
4 4	1118	5.67		529	$11: 31$	5		619	$1: 11$	4.69		708	1：	4.96	
439	$11 \because 1$	5，心，		5 St	110	4.83		68	$1: 0$ ：	4.46		7 m	1：3	5.13	
4%	1048	5.33		501	1114	5． 44		is 34	$1 \because 3$	5． 00		7 \％	12	4．33	
412	1118	6， 00		54	1042	4.96		1； 11	1114	4.1		714	114	4．ss	
$4 \div 0$	1035	5.80		518	11 us	5． 21						700 746	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 5.06 \\ & 5.06 \end{aligned}$	
431	11 20	0.19	16	53	1113	5． $6: 3$	16	$18: 31$	1204	5．$: 1$	16	78	1249	5.43	17
［ 4 4 31 ］	$\left[\begin{array}{lll}11 & 1:\end{array}\right]$	［6，83］	15	$\left[\begin{array}{lll}5 & 31\end{array}\right]$	$\left[\begin{array}{lll}11 & 15\end{array}\right]$	［5．0．2］	$11 i$	$\left[\begin{array}{lll}6 & 3 & 0\end{array}\right]$	［ 11 30］	［5．41］	17	［7：9］	［ $1: 2: 4]$	［5．43］	15
9112	为	12．43		$11 \mathrm{dr:}$		11．45		1301	2： 3 is	10.72		14 5\％	$25: 3$	11.86	
$4: 1$	1116	6.21	31	$5: 31$	1114	5.73	江	630	11.8	5． 3 ）		7 ：	$1 \because 4$	5． 43	32
8 \％ 4	$1 \cdot 30$	4.90		91%	$1 \because 48$	5.42		1100	$1: 00$	5． 4		114.	1215	6.29	
$8: 3$	$12: 4$	6.96		93	1 $\because 33$	7.80		10.81	1209	5.55		11 昭	1237	¢ 10	
$8: 1$	1：$\because: 9$	6． $1: 3$		905	13.5	6.71		10	12：37	7．67		115	13	\％．67	
	12：4	（i， 6 is		95	1：： 10	7.4		1037	13	7.71		11 ）	125	7． 56	
－ 3.1	1350	6．：3；		9 （\％）	$12 \because$	11． 33		1003	$1 \because 3$	7． 13		1100	$13: 0$	8.10	
847	$1 \because 13$	（i． $3: 3$		9 ¢1	13.4	7.9		1011	1349	7． 515		11.30	1310	－ 4.42	
8	1385	15，		951	1209	（1，：31		10 \％	120.5	7.00		11.7	1203	\％．35	
8 \％is	14 10，	7．00		94.5	1： 15	1i．Sis		$10: 34$	13： 3	1i． 13 a		11 ご	13 （15	7.00	
－27	1348	5.17%		9） 41	1319	5．		10411	1：50	5.06		11 ： 3	12\％	6.04	
831	1295	5.17		915	1345	5． $3:$		10 0：	13 隹	5．in		1133	123	6.97	
$\checkmark 41$	1319	5.00		96	1234	5.67		10 4＊	$131:$	6.04		1105	1255	6.76	

Table for the raluction of tilles，No．2．－Continued．
UPPEL TLIANSITMContinued．

			$\begin{aligned} & \text { 荡 } \\ & \text { E } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Lunitilal interval, } \\ & \text { ligh water. } \end{aligned}$	$\begin{aligned} & =0 \\ & =0 \\ & =3 \\ & =0 \\ & =0 \\ & 2 \\ & 2 \end{aligned}$						菑	年		
	$\begin{aligned} & \text { Fert } \\ & 5.01,5 \end{aligned}$			$\begin{gathered} \text { h. m. } \\ 13: \\ \hline 1 \end{gathered}$	$\begin{aligned} & \text { Fey } \\ & 5.16 i \end{aligned}$		$\begin{array}{ll}h . \\ 10 & \text { m } \\ 10 & 17\end{array}$	h． 11.	Fect． 6．：11		h．m．	h．m ． 12 ：in	$\begin{aligned} & \text { Firt } \\ & \text { (i. } 12 \end{aligned}$	
－1゙3 129	5.13		911	1314	5.85		1011	1：： 19	6.91	－－－－	11 li	$12:$	6.41	
$\times 471013$	5．		9 4＇	1312	1． 00		105%	1304	6． $2: 3$		11 1～	$1 \because 40$	（6． 6.4	
－31 130	5.9		9 3	1：5	$\therefore 40$		10 ： 3	1 $\because 2$	6．39		11 1：3	$1: 24$	（i． $6: 3$	
			\％16	1314	6． 4		$10 \geqslant 1$	1 $2: 3$	（i， 19		11 ：	$1 \because 40$	7.33	
							1001	1：59	6．73					
							1047	13	7.15					
	5．－ 4	1.5	！ 31	$1: 30$	6． 0^{1}	16	10%	1311	13． 2.3	1 1－	11%	1 小゙	7.119	16
［ $\left.\begin{array}{cc}-\cdots-1 ;\end{array}\right]\left[\begin{array}{lll}1: 3 & 0\end{array}\right]$	［3． $1: 9.9]$	18	$\left[\begin{array}{lll}3 & 31\end{array}\right]$	［1：3 0.5		17	［ $\mathrm{l}_{1} 1131$ ］	$\left[\begin{array}{lll}120\end{array}\right]$	［i．71］	16	$\left[\begin{array}{lll}11 & 29\end{array}\right]$	$[1 \because 41]$	［7．11．5］	16
	11． 5		185 $\%$	$\because 13$	$1 \because 4$		205	4－5 5	1324		22 54	品	$1+11$	
$\therefore 2200$	5.30	：$:$	9	$1: 307$	6．33	$\because:$	10	1 5 5	6.12	34	11 ？	$1 \because 44$	7.07	\％

Tuble for the rerluction of tirles，No．2．－Continued．
LOWER TLANSIT－C＇ontimmed．

							$\text { suoplenias jo yo } 0 \mathrm{~N}$						烒		
h．m ．	f．m．	Fill		h．m．	h．m．	Frad．		h．m．	7．m ．	Fret．		h．m ．	h．m ．	Fint．	
－ 01	1：30． 0	4． 23		936	1：3 34	5		10	13 \％${ }^{5}$	5． 617		1112	124 4	6． 36	
84	$1: 312$	5.17		911	125	7．1＂		10 \％ 3	1387	＊． 4		115	1205	¢．	
－ 12	1314	6． 5		85.5	1305	S． 110		10 1：	1247			1101	1：	7.31	
¢ 4 ：	1317	（1． 5.8		98	13：3；	7.010		10 33；	13	！109		1151	12 2	7.17	
¢ 34	10 for	13．13：		9	135	7．（i．）		10 ： 3 ；	$13: 1$	B． 178		1141	$121!$	8.50	
－10	125	5． 71		916	1314	（i．（i）		10 ¢4	12.1	7．50		119	13 U5	7.50	
857	13 ${ }^{\text {（1）}}$	6． 13		919	$1 \because 41$	6． 69		10111	1250	5． 69		1120	$1: 49$	7.71	
$811 ;$	1244	1，5，5		910	$1 \because 40$	6． 85		10 mm	13 E	6.17		1145		6．	
¢ 30	1：3：0	5． Si $^{\text {a }}$		911	1319	1i．1，${ }^{\text {a }}$		1011	1：304	6． 33		11 （1）	1：3 17	6．	
8112	1343	4.50		！ 3	1： 21	5．1：；		10 ：	1：3	5． 42		11.11	1：4！	5.75	
－8：1	$13 \because 4$	4.97		98	12：	6． 5.4		1041	12：1	6.19		11.16	$1: 4!$	5）（\％）	
\＆10；	1242	5． 50		9104	13：319	4.3		$10: 3$	$1 \because 5$	（i．）111		11 ！ 1	12：31	7．${ }^{\text {e！}}$	
\＆ 59	1301	（1．19		949	13%	5．${ }^{\text {d }}$		1011	$124!$	16． 47		11 1！	$1 \because 41$	7．3x	
－ 18	1：312	4.95		9 9	1310	（i． 4.1		1056	$1 \because 34$	6.17		1141	1：19	6．1． $1 \times$	
$8: 3$	$1 \because 53$	6． 00		（1） 19	$13 \because 1$	5． $10 \times$		1045	1313	7.14		11.11	12：1	7．	
¢ ${ }^{4}$	1300	4．$-\cdots$		！5i	1319	5.46		$10 \stackrel{3}{4}$	1206	6.4		1111	1234	（i，5， 1	
$\bigcirc 015$	120f	1． 1.3		939	12．1	1i．${ }^{1}$									
s 5.4	1951	6．${ }^{1}$													
8：	$13 \mathrm{11i}$	5.69	18	$9: 3$	1305	1．	17	10.31	1：5	6.31	111	119	$1 \because 41$	7.05	16

UPPER TRANSIT．

	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & =0 \\ & =0 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\text { suoptenasqo jo } 0 \mathrm{O}$					$\begin{aligned} & x \\ & 0 \\ & 0 \end{aligned}$							
h．m．	h．m．	Fow．		h．m．	h．m ．	Fret．		h．m ．	h．m．	Fict．		h．m．	h．m．	Fert．	
043	1717	0．		144	1746	11．${ }^{\text {a }}$		$\because 4$	1712	0．7．7		3.1	1709	1．33	
0×2	10：30	\％ 01		1 ：3：3	$17: 7$	9．33		$2: 17$	173	2， 678		$3: 3$	172	2，$: 3$	
0 15	1745	\％ix		10.7	1－55	3.63		$\because 42$	1＊	3.5		$\because \because$	1\％15	3.8	
${ }^{16} 14$	17 lfi	2.13		1.51	1－06i	3.75		$\because 1 \times$	1742	1．๕ ：		313	1747	2.81	
$010: 1$	19.1	3． 54		1 12	1742	1． $5:$		212	17 小	？ 67		340	1×125	3，\because ，	
11.10	1×04	$\because 00$		$1: 6$	1834	2．		$\because 56$	1804	3． 21		3%	17 ： 11	2． 17	
0 昭	1＊－2	2．\because		119	18． 11	1，－3		$\because 39$	17 ： 76	2． 0.8		3 וֹ	17.5	1.67	
0 － 4	1－：36	： 3		1 ：	1－92	$\because 10$		2 2 ：	1－	1． 41		3 if	1741	\％ 04	
11.10	1319	0.10		115	1×30	1． $3: 3$		212	17 5	1． 58		35	1705	1． 17	
0 LH	$18: 7$	0． 65		114	$1 \checkmark 11$	11.35		24	1742	2.00		300	1《00	2.11	
0 \％ 3	1世 ： 7	1.14		159	$175: 3$	1．133		9 4：	$171 \sim$	0．- －		319	1785	2.68	
$11: 3$	1＊97	0.93		1 12－	$1-05$	1．50		$\because 12$	1－03	1． 1.5		3 3－	1705	0.16	
$\begin{array}{ll}10 \\ 0 & 0.4 \\ 0\end{array}$	15	1.71		13	174	1）． 31		$\because \because 1$	17 ： 6	0.33		$3: 1$	1739	2．mis	
$\begin{array}{ll}0 & 5 \cdot \\ 10 & 10\end{array}$	18 隹	2．10		141	$1 * 04$	$\because 60$		$\because 31$	17%	2.88		319	$17: 1$	1.4	
（） 10	1－2：0	1．${ }^{2}$		111	1×04	1.46		$\because 15$	$17: 0$	1． 60					
11919	1－	1．	15	139	1－06i	$1 . \times 1$	1.5	23	1744	1.14	1.	？ S_{4}	17	2． 16	
$\left[\begin{array}{llll}0 & \sim & -\end{array}\right]$	［18：31］	［1，－ 7 ］$]$	1.3			［1．90］	1.5	$\left[\begin{array}{lll}3 & 2\end{array}\right]$	$\left[\begin{array}{ll}17 & 45\end{array}\right]$	［2．14］	1．i	［ 30830	$\left[\begin{array}{lll}17 & : 1\end{array}\right]$	［2．31］	16
1）	36 5if	3．fi		\because ¢	3611	3．7！		45	$\therefore 9$	4.02		657	：is． 111	4.4	
0 0		1． 24		126	180.5	1．－！	；0	3	1745	？．01	： 11	34	17×7	$\because 4$	30

Table for the reduction of tides，No．2．－Continned． upfer transic－Coutimpad．															
									$\begin{aligned} & \text { n } \\ & 0 \end{aligned}$		No. of olservations.		$\begin{aligned} & \text { an } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	E 0 0 0 0 $=0$ 3 0 0 0	No．of olservations．
h．${ }^{\text {m }}$ ．	h．${ }^{\text {m }}$ ．	Fcit．		${ }^{\text {h．}}$ ．${ }^{\text {ar }}$	h．m．	Fert．		${ }^{\text {h．}}$ m．	h．${ }^{\text {m }}$ ，	Tret．		${ }^{\text {h．}}$ ，m．	h．m．	Fert	
451	17109	2． 00		547	1713	23.4		651	1939	2． 613		733	195	2．118	
445	1715	3.96		531	1759	4． 67		6 ： 31	17.11	2． 50		$7{ }^{102}$	1858	3． 13	
4 3：3	1658	2． 17		54	$17: 36$	3.00		（6） 17	1\％ $4:$	4.04		7 7－	1913	豕	
413	1517	3.25		54.2	17 45	3． 64		611	1749	4． 04		7 z	19 哭	4．	
457	1－4 13	3．x		5	175	3：		65	19 吅	4．3：3		51.5	14.5	3.19	
$40: 3$	17 ：	2.65		510	1750	： 200		83	18 濐	3.67		？ 10	1,8	3.8	
451	1710	2		55	1－1：3	3－2		（1）19	1741	3． 42		217	19 1：3	4． $1: 3$	
$4{ }^{4} 4$	17 ：3if	3.10		54	1715	3.7		15.11	1． 10	3． 6.		746	184	83， 3	
412	1718	$\because 46$		$\bigcirc 09$	17%	3.50		（6 \％	1746	4． 72		716	1544	5， 3	
457	1703	3.31		5 5．m	1747	3．75		6． 47	1943	3． $6: 3$		$3: 17$	9083	3.85	
$4 \% 1$	1739	2． 67		5 5 5	165	$\because 6$		633	17 97	2． 415		731	17 5ri	9．ii	
$4: 3$	17 13	1．5m		5 5	1731	3.8		619	1×96	3． 25		8103	19 5	3.31	
439	1721	3.8		$5 \cdots$	$11 ; 47$	208		697	17 ：$: 3$	\cdots		75	$2{ }^{20} 05$	哭 79	
4 t	14i 4	1．53		$5{ }_{5} 01$	17×9	3.17			15：36	29		7	14．3	ㄷ．5	
412	17 ： 3	－ $2 \cdot 3$		54	17%	3．1：3		（i） 11	$17 \% 4$	2．7		$\stackrel{1}{6}$	19 ＋	$21:$	
4310	1710	1． 92		518	17%	$\because 1$.						$\begin{array}{r}700 \\ 7 \\ \hline 115\end{array}$		8． 29	
131	17.24	2.71	16	5	1731	3． 15	16	C） 31	1×19	3.36	15	7 7 3	19 129	？	17
［431］ $\left.\begin{array}{ll}4 & 31\end{array}\right]$	$\left[\begin{array}{lll}17 & 20\end{array}\right]$	［2．81］	15	［5：31］	［17：：10］	［3．15］	11.	$\left[\begin{array}{llll}6 & : & 1\end{array}\right]$	［ 1×10 16］	［3．44］	［17］	$\left[\begin{array}{lll}7 & 3\end{array}\right]$		［ $3: 3 ; 3]$	1．：
！以	3449	5.52	\ldots	1103	3501	6.311		1301	36	C．${ }^{\text {ce }}$		145	3＊ 07	（6． 61	
431	1725	2.76	31	531	1731	3． 15	：	$6: 3$	1＊1：2	3.40	3	7 \％	1919 ：	3.11	边
804	19 ：3i	1．－8		（1） 12	19 1－4	1.00		10 191	1901	0.51		11 4	17.5	11． 2	
\therefore ：${ }_{\text {a }}$	19.24	吕3x		98	153	9． 17		10 －1	1，409	0.10		11%	19 湤	921	
$\times 21$	19 ？	4.0		93	1230	4.13		10 ¢！	1＊：	\％ 3		11 号	1935	3． 3.	
$\bigcirc 06$	15.4	2.97		950	1910	3． 12		10 ： 1	19%	3.75		110.	1－5！	9． 17	
$8: 4$	19	4.13		902	155	2.83		10 1：：	1， 5.7	4.41		1100	1900	4．${ }^{\text {a }}$	
847	1913	2． 156		921	19 ： 3	4.50		10 11	1949	3.96		11.	1910	4． 111	
80.5	210	4.44		951	19 （19）	2.46		10 －5．	190	3.31		1157	1818	2．：31	
8 56	2005	4． 42		9 4，	（2） 5	3	．．．	$10: 3$	193	2.41		112	155	2.71	
840	19%	2，		941	1919	2.110		1040	1850	1．4：		11 ：	12－2．	0.12	
827	2003	3.50		915	（2） 00	$2{ }^{2}$		10 （\％）	19	1.15		11 ： 3	18	1． 166	
831	1844	2.51		92	1－3：4	2.13		10 䫆	1919	1.50		11.	1， 414	1．6	
$\times 41$	1989	1． 69		93	？ 04	1． 13		1017	182	1.71		11 是	18 3	1．${ }^{\text {a }}$	
${ }_{8}^{8} 13$	184\％	2．${ }^{2}$		901	1259	$\because 4$		1011	$194:$	1． 516		1143	103 3	（1．） 1.1	
$8 \times$	19	2.4		9 4－	19.12	1.96		105	1904	1．3：3		11 1－8	154	1． 511	
－4 4	19	1． 43		9	$19.2 \sim$	10．12		10 3：3	1－5	1.3		1113	1242	1.04	
$8: 11$	185	29		916	1914	只 $-\cdots$		1021	18：31	1.17		11 ：	14.40		
								$\begin{aligned} & 1001 \\ & 1047 \end{aligned}$	$\begin{aligned} & 1859 \\ & 1-43 \end{aligned}$	$\begin{aligned} & 28 \\ & 2.79 \end{aligned}$					
	1927	2.91	16		191818	256			19 （12		$1 \times$	11 ！！	1817		16
	［1917］	［ 3 ！！i ］	1＊＊	［931］${ }^{3} 81$	［19191］	$\left[\begin{array}{lll}2 & 13\end{array}\right]$	17	［1031］	$\left[\begin{array}{lll}19 & 11\end{array}\right]$	［2．3：3］	16	［111939］	［1－4 417	［ 3.100^{1} ］	$11 ;$
16 5if	沙4 4	5.47	\cdots	185	3	519		305－	：－10	4.34		边	：14 3：3	4．13：	
${ }^{\times} \times$	$19 \pm$	2.4	34	939	19 14	259	33	10×1	1910：	2． 17	\because	11 㫛	10．4	2.64	：2
						Low	WER	dintit．							
014	1846	1． $3:$		113	17 分	1.17		\％16	1744	1.42		380	1740		
1140	1×2	2． 63		$1{ }^{16}$	1800	3： 17		210	175	3． 4		3 （1）	17 5		
046	1214	3.110		$1: 10$	17 ：30	？ 5		$2{ }^{1 \times}$	174%	2.9		： 1.5	1165	\％－	
${ }_{0}^{0} 15$	$1{ }^{\circ} 4$	3.12		1 ¢	$1{ }^{1} 12$	号		$\because 46$	1214	2.5		381	$17{ }^{17} 9$	3． $1: 1$	
0 0	184	－ 510		$19:$	17 \％ 5	㫛碞		学：34	17 \％ 21	\％		\％	175	3.00	
031	15	2.89		149	1811	20		$\because 14$	1\％ 01	®． 50		318	1743	3.21	

Teble for the reduction of tide:s, X. 2.-Contimned.
LOWER 'Tl:INSIT-I'ontimmd.

SEMI－MENSUAL INEQUALITY．

The preceding＂Tables for the reduction of tides，No．s, ＂contain all the observed lunitidal intervals and heights of high water and low water depending on the preceding upper and lower transits of the moon．The few interpolated values are marked by asterisks．None of the observed values were rejected．To obtain the ralues for the elncidation of the semi－mensual or half－monthly inequality in time and height，all the columns in these tables were summed up and their means taken．The meau values for upper and lower transits corresponding to the same or nearly the same bours of transit were again added，separately，for high water and low water，and their arerage values found．These latter coustitute the values of the semi－mensual inequality in time and height． They are given in the following tables for high water and low water separately in the third，sixth， and ninth columns．The means of the twelve values of intervals and heights are the corrected or mean establishments，and the meau heights of high water and low water，respectively．

Semi－mensual or half－monthly inequality in time and height of high water．

Mean hour of moon＇s transit．			Lunitidal interval de－ pending on－			Height of high water follow－ ing the pre－ ceding－		
Upper．	Lower．		$\begin{aligned} & \text { Upper tran- } \\ & \text { sit. } \end{aligned}$	Lower tran－ sit．		Upper transit．	Lower trausit．	
h．m．	h．m．	h．m．	$h . m$ ．	h．m ．	h．m．	Fret．	Fept．	Feet．
029	028	028	1225	1223	1294	7． 2.5	7.19	7.22
129	127	128	1203	1208	1205	7.20	7.28	2． 24
230	228	229	1147	1146	1146	7.02	7.04	7.03
328	329	329	1126	1127	1127	6.67	6.88	6.78
431	431	431	1120	1112	1116	6.19	6.23	6.21
532	531	531	1113	1115	1114	5.63	5.82	5.73
631	630	631	1208	1150	1159	5.34	5． 44	5.39
798	727	728	1249	1234	1242	5． 43	5.43	5.43
898	828	828	1305	1306	1306	5.89	5.69	5． 79
926	931	929	1308	1305	1307	6． 31	6． 25	6.23
1027	1031	1029	1300	1258	1259	6.53	6.71	6.62
1129	1129	1129	1248	1241	1245	7.09	7.05	7.07
Mean establishment of high water ．．．．．．．．．．．．．．．．．．．．．．					1214	Mean h high	ight of water．－	6.39

Semi mensual or half－monthly inequality in time and height of lor water．

Mean hour of moon＇s trausit．			Luuitidal interval de－ peuding on－			Height of low water follow－ ing the pre－ ceding－		
Upper．	Lower．		$\underset{\text { sit．}}{\substack{\text { Upper tran－}}}$	Lower tran－ sit．				
h．m．	h．m ．	h．m ．			h．m．	Feet．	Fet．	Feet．
029	028	028	1825	1831	1828	1.82	1.86	1.84
129	123	126	1806	1805	1805	1.81	1.98	1．8！
229	228	229	1744	1745	1745	1.94	2.14	2.04
328	329	399	1735	1739	1737	$\because 16$	2.31	2.24
431	431	431	1724	1725	1725	2.71	2.81	2.76
532	531	531	1731	1730	1731	3.15	3.15	3.15
631	630	630	1819	1806	1812	3.36	3.44	3.40
72 x	727	728	1908	1859	1903	3.28	3.33	3.32
829	828	829	1927	1917	1922	2.91	$\because .96$	2.93
9 9	${ }^{9} 31$	19 10 109	1918	1917	1918	2． 56	？．63	2.59
1027	1031	1029	1902	1908	1905	2.01	9.33	2． 17
1129	1129	1129	1847	1846	1846	$\bigcirc .06$	9.07	2.06
Mean establishment of low water					1823	Mean he low	eight of ater ．．．	2.53

9 H

The recapitalation of the results obtained so far from the preceding tables is as follows: From and observed bigh waters and trom sisu observed how waters we find-

Meath establishment of high water	121 $14^{\text {m }}$
Me:m establishment of low water	15
Hean duration of the tall of the tides	6
llean duration of the rise of the tides	(i) 1.5. 4
Mean height of high water	
Mean height of low water	
* Mean between mean high-water and low-water levels $1.34+2.3$	4.46
Mean rise and fall of the tide 6.39 - 2.3i3	3.81
Mean high-water springs	7.84
Mean low-water springs	1.81
Hence spring tide range	$\therefore .10$
Mean bigh-water neaps.	- , 3 31
Mean low-water meaps	:
Neaphtide rauge	1.99
Highest high water in the whole series	9.17
Lowest high yater in the whole series	
Extreme fuctuation in high-water level	
Highest low water in the whole smies	
Lowest low water in the whole series	110
xtreme fluctuation in low-water	

We shall now proceed to the investigation of the semi-mensmal inequality as deduced in the preceding tables. The inequality or variation of the intemats or heghts daring the semi-lunation is usually expressed by the ditferences between the mean extablishments or mean heinhts and the intervals or heights for each hour of the moons transit.

Aecording to the "ware theors" (Burcelopedia Metropolitana, artiele "Tides and Wrare" by (G. 13. Airy), the semi-mensual inequality in time can be expressed by the formula-

$$
\begin{equation*}
\tan 2[\theta-\lambda]=-\frac{\mathrm{S}_{2} \cdot \sin 2[m-s-\alpha]}{\mathrm{M}_{2}+\mathrm{S}_{2} \cdot \cos 2[m-s-a]} \tag{1}
\end{equation*}
$$

and that for the height by-

$$
\begin{equation*}
h= \pm \sqrt{M_{3}^{2}}+\mathrm{S}_{3}^{2}+2 \overline{\mathrm{M}}_{3} \cdot \mathrm{~S}_{3} \cdot \overline{\cos 2[m-s-\alpha]} \tag{II}
\end{equation*}
$$

In equation I, the effect of the sum and moon on the chevations of the tidal spheroid is represented by S_{2} and M_{2}, respectively; ($m-s$) if expressed in are is the angular distance of the moon from the smo ; or it is the time which has elapsed since the moon has aphently passed the meridian of the place. θ is the angular distance of the pole of the tidal ipheroid trom the moon. This pole follows the moon at a certain distance or interval of time $=a$, which is to be fomud from ohser vation.

The mean lunitidal interval or mean establishment λ corresponds to an hourangle of the moon of $[m-s]-\alpha$. This angle α is called the angle of retardation, and from it the age of the tide or the time elaped hetween the moon's transit, which originated the tide, and the aprearance of the tide itself, becomes known.

Determination of the Constants for the Inequalities in Time.-From the preceding tables we found-

Mean establishment of high water $12^{h} 14^{\prime \prime \prime}=\dot{A}$
Mean establishment of low water is :3 $=1$.

[^9]The angle α if expressed in time, is that hour-angle of the moon's trausit which corresponds to the interpolated mean establishment or intercal ; consequently, For high water, the mean establishment $12^{\mathrm{h}} 14^{\mathrm{m}}$ corresponds to a transit of the moon at $0^{\mathrm{l}} .53^{\mathrm{m}}=a$ For low water, the mean establishment $18^{\prime \prime} 3^{\prime \prime \prime}$ corresponds to a transit of the moon at $0^{\prime \prime} \cdot 2^{\prime \prime \prime} .0^{\prime \prime}=\alpha$

The values of S_{2} and H_{2}, are dednced theoretically from the greatest range of the inequality by making $\frac{\mathrm{S}_{2}}{\mathrm{M}_{2}}$ equal to the sine of the difference between the least and greatest lunitidal intervals. Practicalls, however, it is preferable to deduce the range of the inequality graphicalle, as the numbers in the table are not free from incidental irregnlarities.

The values thus found are-

$$
\begin{aligned}
& \text { For high water, } \frac{\mathrm{S}_{2}}{\overline{I_{2}}}=\sin \left[1^{\mathrm{h}} 57^{\mathrm{m}}\right]=0.48862=\frac{1}{2.0466} \\
& \text { For low water, } \frac{\mathrm{S}_{2}}{\bar{I}_{2}}=\sin \left[1^{\mathrm{b}} 58^{\mathrm{m}}\right]=0.49242=\frac{1}{2.0307}
\end{aligned}
$$

Substituting the emmmerated constants in equation I tre have-

$$
\begin{aligned}
& \text { For high water, tall } 2\left[\theta^{\mathrm{b}}-19^{1 \mathrm{~h}} 14^{\mathrm{m}}\right]=-0.48862 \sin 2\left(m^{\mathrm{h}}-s^{\mathrm{l}}-53^{\mathrm{m}}\right) \\
& =-\frac{\sin 2\left(m^{\mathrm{b}}-s^{\mathrm{h}}-53^{1 \mathrm{n}}\right)}{2.0 t 6 \overline{5} 8 \cos 2\left(m^{\mathrm{h}}-s^{\mathrm{h}}-53^{\mathrm{m}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{\sin 2\left(m^{\mathrm{b}}-s^{\mathrm{h}}-42^{\mathrm{m} .6)}\right.}{2.0307+\cos 2\left(m^{\mathrm{L}}-s^{\mathrm{L}}-42^{\mathrm{m}} .6\right)}
\end{aligned}
$$

With these formolie we computed the semi-mensual inequalities in time to the nearest minute. The result is giren in the following table, and also graphically in the annexed diagram.

Semi-mensual inequality in time.

The result, especially that for the low-water inequalities, appears satisfactory, the largest differences being not more than $6^{1 u}$ and 4^{m}, respectively.

Semi-mensual inequality in time.

Determination of the Constants for the Inequality in Height.-In the expression for the iuequality in height as giren in equation II, the value $\frac{\mathrm{S}_{3}}{\mathrm{M}_{3}}$, or the ratio of the solar to the lunar tide, is deduced from the observed mean high-water and low-water springs and neaps as follows:

$$
\mathrm{M}_{3}=\frac{5.40+199}{2}=3^{\mathrm{ft} .695}, \text { and } \mathrm{S}_{3}=\frac{5.40-1.99}{2}=1^{\mathrm{ft} .705} ;
$$

$$
\text { Hence the ratio } \frac{\mathrm{S}_{3}}{\mathrm{M}_{3}}=\frac{1.705}{3.695}=0.4614 \text {. }
$$

This ratio is exceptionally large in comparison with the values of $\frac{\mathrm{S}_{3}}{\mathrm{M}_{3}}$ deduced for other places; however, it seems to be quite in accordance with the large time values of $\frac{\mathrm{S}_{2}}{\mathrm{M}_{2}}$. The ratio deduced from the heights is usually smaller than that deduced from the times, which is also the case with our values, although the difference is not great.

For the computation of the inequality in height of high water, S_{3} was made equal to half the difference between the observed mean high-water springs and high-water veaps, or-

$$
\mathrm{S}_{3}=\frac{7.24-5.39}{2}=0.925 .
$$

With the ratio above found, we get, then-

$$
\begin{aligned}
\mathrm{M}_{3} & =\frac{0.925}{0.4614}=2.0047 . \\
\mathrm{S}_{3}{ }^{2}=0.8556, \mathrm{M}_{3}{ }^{2} & =4.0192, \mathrm{~S}_{3}{ }^{2}+\mathrm{M}_{3}{ }^{2}=4.8748, \text { and } \\
& 2 . \mathrm{S}_{3} . \mathrm{M}_{3}=3.7087
\end{aligned}
$$

The augle of retardation α is determined from the heights by making a equal to that hour angle or value of $(m-s)^{h}$, which corresponds to the maximmm height; or, by taking for a that value of $(m-s)^{h}-6^{\text {b }}$ which corresponds to the minimum height. It is best bowever, to take the mean of the valnes thus found, which in our case is $0^{\mathrm{h}} 50^{m \mathrm{~m}}=\alpha$.

Substitnting the constants determined above in equation II, we obtain for high water-

$$
h=+\sqrt{ } 4.5745+3.70 \mathrm{~s} \cdot \cdot \overline{\cos 2}\left(\left(m^{\mathrm{h}}-s^{\mathrm{l}}\right)-0^{\mathrm{h}} 56^{\mathrm{m}}\right)(\mathrm{A})
$$

where h expresses the elevation of the pole of the tidal spheroid abore a fixed level.
In the computation of the low water inequality in beight, we take tor s_{3} half the difference between the mean low-water weaps aud low-water springs, which makes-

$$
\mathrm{S}_{3}=\frac{(3.40-1.8 t)}{2}=0.78
$$

consequeutls, we obtain-.

$$
\begin{gathered}
\mathrm{Ml}_{3}=\frac{0.78}{0.4614}=1.6905 \\
\mathrm{~S}_{3} .^{2}=0.6084, \mathrm{M}_{3}{ }^{2}=2.7227, \mathrm{~S}_{2}{ }^{2}+\mathrm{M}_{3}{ }^{2}=3.3331 \text {, and } \\
2 \mathrm{~S}_{3} . \mathrm{H}_{3}=2.5972 .
\end{gathered}
$$

The angle of retardation a for low water was deduced in the same way as that for high water, and corresponds to $0^{\mathrm{h}} 48^{\mathrm{m}}=\alpha$.

Substituting these ralues in equation II, we have for the expression of the low-water inequality iu height--

$$
h_{1}=-\sqrt{3.3331+2.5972 \cos 2}\left(\left(m^{\mathrm{L}}-s^{\mathrm{l}}\right)-0^{\mathrm{L}}+8^{\mathrm{m}}\right)(\mathrm{B})
$$

where h represents the depression of the pole of the incerted tidal spheroid below a fixed level.
With these two formule, A and B, we computed the values of h and h_{1}. To obtain the inequality proper, the mean value of h and h_{1}, of the two computed series, has to be found aud subtracted from each single value of h and h_{1}, respectirely; the differeuce will be the corresponding iuequality.

The close agreement betweeu observed and computed ralues is shown in the table given below, and also in the diasram.

The largest difference betweeu the observed aud computed high-water aud low. water inequality amounts to $1^{\text {in }}$ only.
semi-mensual inequality in height.

Semi-mensual inequality in height.

The mean rise and fall of the tides deduced from observation was found to be $6^{\mathrm{ft}} .39-2^{\mathrm{ft}} .53=$ $3^{\mathrm{ft}} .86$. The computed mean elevation of high water above a fixed level is $h=2^{\text {ft }} .11$, and the mean depression of low water $h_{1}=-1^{\mathrm{ft}} .74$. This gives mean elevation minus mean depression, or mean rise and fall from computation, $2^{\mathrm{ft}} .11-\left(-1^{\mathrm{ft}} .74\right)=3^{\mathrm{ft}} .85$, which agrees within $\frac{1}{10}{ }^{\text {in }}$ with the value from observation.

In the following diagram we use the values of h and h_{1} of the preceding table for the construction of the curres of the semi-mensual inequality in height, for the purpose of determoning the semi-mensual inequality in the mean levels between high water and low water, corresponding to the same hour of the moon's transit.

The diagram is constructed thas:
From a tixed level, FF, the values of h and h_{1} are measured off as ordinates, respectively, for high water above and low water below FF for each hour of transit. The points thus obtained are connected by full lines, and represent the curves of the computed semi-mensual inequality of high water and low water, aud the vertical distances between them represent the rise aud fall for each hour of transit. For comparison with the observed values we measure off $h=2^{\mathrm{ft}} .11$ as ordinates above and $h_{1}=-1^{\mathrm{ft}} .74$ below FF, and find MM, the mean of h and h_{1}. Below this meau level MM we measure $4^{\mathrm{ft}} .46$, which is the mean between the average high-water and low-water levels as found from observation-

$$
\left(\frac{6^{\mathrm{ft}} .39+2^{\mathrm{tt}} .53}{2}=4^{\mathrm{ft}} .46 .\right)
$$

This gives us a line of reference from which the obsersed heights of high water and low water as given in the preceding table were plotted as ordinates and represented by points.

To obtain the variation or semi-mensual inequality in the mean level between high water and low water, the mean height between each high-water aud the corresponding low-water level was fonnd. The points derived from the computed values are connected by full lines, those from the observed valnes are represented by dotted ones.

The semi-mensual inequality in the mean level is very distinetly expressed by the numerical values derived from the observations and represented in the diagram. Its range is verv small, amounting to about $2^{i n}$ only. For hours of transit between 11^{h} and $5^{\text {h }}$ this inequality is positive, or above its mean, while it is negative for the remaining hours. The appended table gives the result for each hour of transit:

Hour of moon'stransit.	Mean level.		Inequality.		Difference.
	Observed.	Computed.	Observed.	Computed.	
h. m. $0 \quad 28$	Fret. 4.830	Feet. 4.520	Feet. $+0.070$	Feet. $+0.060$	$\begin{gathered} \text { Feet. } \\ +0.010 \end{gathered}$
$\begin{array}{ll}1 & 28\end{array}$	4. 565	4.525	+0.0.105	+0.065	+0.010 +0.040
$2 \quad 29$	4.535	4.525	+0.075	+0.065	+0.010
$3 \quad 29$	4.510	4.505	+0.050	+0.045	+0.005
431	4. 4.5	4. 470	+0.025	+0.010	$+0.015$
531	4. 440	4. 435	-0.020	-0.025	+0.005
$6 \quad 30$	4.395	4.395	-0.065	-0.065	± 0.000
720	4. 375	4. 390	-0.085	-0.070	-0.015
$\bigcirc 28$	4. 360	4. 385	-0.100	-0.075	-0.025
	4. 410	4. 430	-0.050	$\bigcirc 0.030$	-0.020
$10 \quad 29$	4. 395	4. 460	-0.065	± 0.000	-0.070
$11 \quad 29$	4.565	4.495	+0.110	+0.035	+0.060
$\left.\begin{array}{l} \text { Mean } \\ \text { values } \end{array}\right\}$	4. 463	4. 461		$\left.\begin{array}{c} \text { Mean } \\ \text { error } \end{array}\right\} \ldots$	± 0.023

Note.-The third decimals are only approximate.
AGE OF THE TLDE.

The mean retard of the tide as deduced from the time inequalities is $\alpha=\frac{1}{2}\left(0^{\mathrm{h}} 53^{\mathrm{m}}+0^{\mathrm{h}} 42^{\mathrm{m}} .6\right)$ $=0^{\mathrm{h}} 47^{\mathrm{m}} .8$. The age of the tide is found by dividing this quantity α, expressed in minutes of time, by 48.8 , (the mean separation in right ascension of the moon from the sun in a solar day.) This gives for the age of the tide $\frac{47.8}{48.8}=0.9795$ days, or 23.5 hours. The mean value of a from the height inequalities is $\alpha=\frac{1}{2}\left(0^{\mathrm{h}} 56^{\mathrm{m}}+0^{\mathrm{h}} 48^{\mathrm{m}}\right)=0^{\mathrm{h}} 52^{\mathrm{m}}$; therefore the age of the tide is $\frac{52}{48.8}=$ 1.065 days, or 25.5 hours. The mean age therefore is $\frac{23.5+25.5}{2}=24.5$ hours.

As the semi－mensual inequality deduced in the preceding discussion is not a coustant ralue， but dependent on the rarying declinations of the sun and moon，and on their distances from the earth，a certain correction will be required on that account．It has been fully proved by Mr． Whewell，in accordance with the theoretical law，that this correction depends on the simple ratio between the moon＇s parallax and its mean value．In the iuvestigation of this subject it was fonnd by others that the best results are obtained by making use of the parallax corre－ sponding to an epoth anterior to the time when the effect takes place，by the amount of the retard of the tide．We found the mean retard of the tides at Polaris Bay to be about 24 hours．The parallaxes were accordingly taken from the Nautical Almanac for a time earlier by 24 hours than each correspondiug high－water or low－water epoch of the series．The lanitidal intervals and beights were then classed for hours of moou＇s transit between 0^{h} and 1^{h} ， 1^{h} and 2^{3} ，\＆c．， and the mean parallax for each hour found．The mean parallax for the series from the values for each hom is $57^{\prime} .22$ for both high water and low water．In order to obtain as may values as possi－ ble in a gromp we separated the lunitidal intervals and heights for each hour into two groups only， viz，the values corresponding to parallaxes below and those above the mean value for each bour． The resulting means of the separated groups are given for time and lieight in Table A for high water，and in Table B for low water．For the sake of comparison we also give the values of the semi－mensual inequality in the middle groups of the tables．

Table A．－For the determinution of the effeet of the moon＇s purallux on the semi－mernsual incuuality of highe water．

Average mean parallax $=$														
$55^{\prime} .26$.					$57^{\prime} .29$.					59＇．19．				
				No. of observations.		Lunitidal interval，					Lunitidal interval．			成
h．m．	h．m ．	Fect	1 ，		h．in．	h．m．	Feet．	，		h．m ．	h．m．	Feet．	，	
026	1＊30	7.14	55.54	15	028	$12: 4$	7．22	54.75	30	030	12 1＊	7.31	59， 99	15
1 120	1214	7．15	55.67	16	13	1245	7． 24	17． 79	30	128	11 \％	7． 16	60.21	14
230	11 5：	6． s －	55． 61	15	229	1146	7．03	157．72	30	－ 29	1141	\％． 17	59.84	15
328	1135	6.50	55． 55	15	39	1127	6．78	158.83	30	329	1118	7.00	59，．81	15
431	1125	6.13	55． 40	16	431	1116	6． 21	｜ 57.2	31	430	11 17	6． 26	59． 20	1.5
531	1111	5.68	5is． 04	17	531	1114	5．73	56．6i	［2	$5: 31$	1117	5.77	－2． 49	15
$6: 1$	1204	5.11	55． 03	16	631	11.99	5． 39	56． 13	32	639	1153	5． 6 c	58． 22	16
732	1254	5． 26	55． 114	17	728	1242	5． 4.3	56， 58	32	72	$1: 26$	5．62	－30	1.5
$\times 29$	13 ？4	5． 56	54.93	17	8 8	1306	5.79	56． 62	33	8－21	1245	6．92	5 Sc 41	16
$9: 7$	1318	6.10	55． 08	15	929	$1: 3118$	6． 9	$57 . \because 1$	33	$9 \geq 9$	12．）	6.33	5－94	15
1029	1310	6.46	55． 24	17	1099	1259	6.62	57.34	34	1030	$1: 48$	6.76	59.44	17
11 圌	1256	6.95	55． 00	15	1129	1244	7.07	57.50	32	1130	1235	7． 17	59．6	17
$\left.\begin{array}{c} \text { Mean } \\ \text { values } \end{array}\right\}$	1223	6． 94	55． 26	Total， 191	Mean values $\}$	1214	6．39	50.22	Total， 379	$\left.\begin{array}{c} \text { Mean } \\ \text { values } \end{array}\right\}$	1205	6．54	59.19	Total

TABLE B．－For determining the effect of the moon＇s parallax on the scmi－mensmal inequality of low water．

Mean ${ }^{\text {faxallax }}=$														
55＇．29．					57＇．22．					$59^{\prime} .20$.				
							$\begin{aligned} & \underset{\sim}{*} \\ & \mathbb{E 0} \\ & \mathbb{H} \end{aligned}$				3 3 3 3 3 3	等		免
h．m．	h．m ．	Feet．	1		h．m．	h．m ．	Fect．	；		h．m．	h．m．	Ftet．	1	
0	1834	2． 16	55.54	15	08	18 ： 2	1． 4.	58.78	30	029	1821	1.51	59.96	15
127	1810	2.07	55．5．55	15	13	18 ln	1． 89	57． 80	30	130	1801	1．72	60.00	15
231	1747	$\stackrel{2}{2} 19$	55.60	15	29	1745	9． 04	57.70	30	2 28	1744	1．	59.78	15
328	1739	2． 49	55.64	16	399	1737	$\because 24$	57.47	30	329	17 洼	2.145	59.55	14
430	1726	3.06	55．48	17	431	1725	2.76	57.13	31	431	1724	2．39	59.12	14
531	17 28	3． 45	55.03	17	531	1781	3．15：	21． 60	：	59	17.34	2.81	58.38	15
633	18	3.46	55.11	17	630	1812	3． 10	56.50	32	6 98	1757	3．34	56.24	15
729	19	3.49	55.06	17	78	1903	3， 3	5，4． 60	32	7 \％	18 4：	3.15	58.35	15
828	1935	3.15	54.97	13	829	19 P？	？ 3	54． 35	34	829	1967	2.72	58． 54	17
929	1929	2.79	55.13	15	99	19 18	$\because .59$	57．30	33	9.97	1908	2． 43	59.10	18
1026	1914	2.28	55． 39	18	10.9	1905	2.17	57.41	34	1031	1854	2． 02	59.68	16
1128	1852	2． 39	55． 04	15	1129	1847	2．01；	57.53	32	1131	1840	1.78	59.74	17
$\left.\begin{array}{l} \text { Hean } \\ \text { value } \end{array}\right\}$	1830	2.75	55.29	Total，	$\left.\begin{array}{l}\text { Mean } \\ \text { value }\end{array}\right\}$	$18 \quad 23$	2． 5.3	57．	Total， 380	$\left.\begin{array}{l}\text { Muan } \\ \text { value }\end{array}\right\}$	1816	2.31	59． 20	Total，

From the above tables it appears that the non－periodical effect of a chauge in the lunar paral－ lax on the mean establishmeuts and mean heights of high water and low water is very nearly expressed by the following formula ：

$$
\begin{gathered}
12^{\mathrm{h}} 14^{\mathrm{m}}-4^{\mathrm{m}} .6\left[\mathrm{P}-57^{\prime} .22\right] \text { for high-water establishments. } \\
18^{\mathrm{n}} 23^{\mathrm{m}}-3^{\mathrm{m}} .7\left[\mathrm{P}-57^{\prime} .22\right] \text { for low-water establishments. } \\
6^{\mathrm{f}} .39+0^{\mathrm{t}} .078\left[\mathrm{P}-57^{\prime} .22\right] \text { for mean high-water heights. } \\
2^{\prime \prime} .53-0^{\mathrm{t} .} .113\left[\mathrm{P}-57^{\prime} .22\right] \text { for mean low-water heights. }
\end{gathered}
$$

Or，in other words－
（a．）For the times：As the parallax increases，the mean establishments decrease for high water on the average by nearly $4^{\prime \prime} .6$ ，and for low water by nearly $3^{m} .7$ ，for 1^{\prime} of parallactic change．
（b．）For the heights：：As the purallax increases 1^{\prime} ，the mea＇m heights of high water inorease at the rate of nearly $0^{\text {th}} .078$ ，while the uman heights of low water decrease at the rate of about $0^{\text {th }} .113$ ．

The angle of retardation a ，and，consequently，the age of the tide，inereases with an increase of parallax for times as well as for heights．

The periodical effect on the semi－mensual inequality in time and height is exhibited in Tables \mathbf{C} and D ，which contain the differenees or inequalities of each lmitidal interval or height from its mea n value in the last horizontal lines of the preceding tables．

10 H

Table（：－Periorlical effect of the moon＇s parallere on the semi－mensual inequality of high weter．

Table D．－Periodical effect of the moon＇s purallux on the semi－mensual inequality of low water．

On the thics of low witler．						On tue heights ur low water．					
Parallax $=$						Parallax $=$					
$55 \cdot 8$		57．22		$59^{\prime} .20$		55.89				59＇．20	
0 0 0 0 0 0 0 0 0	$\begin{aligned} & \text { E } \\ & \stackrel{E}{E} \\ & \text { E } \end{aligned}$		害		范		总			$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	关
h．m．		h．m．		h．m．		h．m ．	Fet．	h．m．	Fret．	h ．m ．	Feet．
$0 \quad 37$	＋ 4	0 9	＋ 5	$\begin{array}{ll}0 & 29\end{array}$	＋ 5	$0 \quad 77$	－0． 59	0 O	－0．60）	$0 \quad 29$	-0.80
127	－ 20	126	－ 18	130	－ 15	127	0.68	126	0.64	130	0.59
231	4：）	299	38	2 28	32	2 31	0.56	$\because \quad 49$	0．49	\because	0.49
	51	329	46	$3 \quad 29$	41	3 织	－0． 24	3 \％	－ 0 －	$\because 3$	－0． 25
430	64	$4 \quad 31$	58	431	52	430	＋0．31	$4 \quad 31$	＋0． 33	431	＋0．08
$5 \quad 31$	62	$5 \quad 31$	52	529	42	$5 \quad 31$	0.70	$5 \quad 31$	0．62	5 201	0.50
633	－ 5	（1） 30	-11	$6 \quad 28$	-19	$6: 3$	0.71	（i）： 3	0.67	\％ 88	1.03
7 8！	＋52	728	＋ 40	7 2	＋ 27	7 9	0.34	7 \％	0．$\times 1$	7 \％	0.84
8 豕	65	$8 \quad 29$	＋ 59	89	＋ 51	x－	0.41	－ 29	0． 40	\bigcirc ¢ ${ }^{8}$	0.41
9 9 3	59	$9 \quad 29$	55	$\begin{array}{ll}9 & 27\end{array}$	52	9 9919	＋0． 111	9 29	＋${ }^{10.06}$	$\begin{array}{ll}9 & 27\end{array}$	＋0．19
10 － 6	44	10 29	42	$10 \quad 31$	38	10 －	－0． 47	111	－0． 36	$10 \quad 31$	－0．29
11 92	＋ 2	1189	＋ 24	1131	＋ 21	11 号	－0． 3	11 只	－0．47	1131	-0.53
Rentige．	101		117		104	R：11以	1． 42		1.56		1．83

The inequality ranges，as given in these tables，are the algebraical differences between the largest inequalities with opposite sighs．They will difier somewhat from the true ranges on account of incidental irregularities in the numbers of the tables，and when deduced graphically the ranges
will probably be more approximate．The ranges appear to be governed by the following general law：
（a．）For the times：As the parallax increases the ranges decrcase both for high water and low water．
（b．）For the heights：An increase of parallax appears to decrease the range of the high－water inequalities，while for low water the range will incrense．

The law respecting the ranges，as deduced from the tides at Port Foulke＊（latitude $78^{\circ} 18^{\prime} \mathrm{N}$ ．， longitude $73^{\circ} \mathrm{W}$ ）．，is the same as the abore for high－water and low－water times and for high－water heights；for low－water beights，however，the law is the reverse，although，as stated in the discus－ sion，this result is not regarded as fully established．

In the following table the periodical effect is also shown in form of a correction to be applied to the semi－mensual inequality in time and height，as deduced approximately from the ratio between the values，when P is below and above the mean parallax $57^{\prime} .22$ ．The correction in the column headed＂ $\mathrm{P}=57.2:$＂has to be added to the semi－mensual inequality，which is also given in the table．The adjoining column contains the approximate correction for each miunte of parallactic increase or decrease，to be added to the semi－mensual inequality for $\mathrm{P}=57^{\prime} .22$ ，the former with the upper the latter with the lower sign：

Correction of the somi－mensiul inequelity in time and height for the periodical effect of changes in the moon＇s perallex．

	Fone migh water．						for low water．					
	Semi－mensualin－ equality iu－		（Correction of the semi－mensual inequality－				Semi－mensual in－ equality in－		Correction of the semi－mensual inequality－			
			 Time．Height．		For each minute increase or de－ crease of $\mathrm{P}=$ $57^{\prime} .20$ for－				For $\mathrm{P}=57^{\prime} .22$.		For each minute increase or de－ crease of $\mathrm{P}=$ $57^{\prime} .22$ for－	
	Time．	Height．			Time．	Height．	Time．	Height．	Time．	Height．	Time．	Height．
h． 0 m．	m． +10	$\begin{gathered} \text { Fort. } \\ +0,0 \end{gathered}$	m＇． +1.5	$\begin{aligned} & \text { Fert. } \\ & -0.012 \end{aligned}$	m． ± 2.7	$\begin{aligned} & \text { Feet. } \\ & \pm 0.0 \mathrm{~m} \end{aligned}$	m． +5	Feet． -0.69	m． +1.6	$\begin{aligned} & \text { Feet. } \\ & +0.08 \end{aligned}$	m． ∓ 2.9	Feft ∓ 0.147
130	－9	0．0	¢， 1	0.05	${ }_{3} 3.7$	${ }^{0.090}$	－18	0.64	1.2	0.05	2.0	0.0 ± 1
230	28	0.64	1.2	0．0：3	2.6	0.1192	38	0.49	0.3	0.04	0.7	0．088
$3 \quad 30$	47	＋0．39	1.3	-0.03	4.3	0.111	46	－0．29	＋0．2	＋0．03	1.0	0.110
$\begin{array}{ll}4 & 30 \\ 5 & 30\end{array}$	50	-0.18	＋1．1	± 10.101	干4．7	0.023	5	$+0.23$	± 0.0	－0．02	∓ 0.5	0.184
530	60	0.66	－0．9	＋0．01	± 1.7	0.026	52	0.62	－1．1	0.12	± 1.8	0． 191
6 7 7 80	－15	1.00	2.0	0.10	平3．4	0． 179	－11	0.87	5.7	0.02	∓ 8.9	0.035
$7 \quad 30$	＋28	0.95	5.6	0.07	8.6	0.110	＋40	0.81	7.4	0.06	11.9	0． 103
830	52	0.60	－6．7	＋0．06	11.2	0．132	59	0.40	－3．7	-0.06	7.8	0.120
$\begin{array}{rrr}9 & 30 \\ 10 & 30\end{array}$	53	-0.16	± 0.0	± 0.00	5.6	0.050	55	$+0.06$	＋0．4	$+0.01$	5.3	0.088
$\begin{array}{ll}10 & 30 \\ 11 & 30\end{array}$	45	＋0．23	＋0．6	-0.01	5.3	0． 070	42	－0．36	1.1	0.01	4.7	0.060
$11 \quad 30$	＋30	＋0．6．6	＋1．3	-0.01	干4．5	$\pm 0.04{ }^{\text {a }}$	＋24	-0.47	＋0．8	＋0．04	干2． 6	∓ 0.129
Mean \}			＋0．6	$+0.01$	干4．6	$\pm 0.0 \times 0$			－1．0	± 0.0	∓ 3.8	∓ 0.111

From the above table it appears that the corrections for the times are positive or negative， according as the parallax decreases or increases，for all hours of transit，except for that between 5^{h} and 6^{h} ，where the reverse is the case．This exception does not appear to be due to in－ cidental irregularity in the numbers，as it is noticeable for both high－water and low－water times for the same hom of transit．The corrections for the bigh－water heights are positive，and those for low water heights negative，for all hours of transit for increasiug，and the reverse for decreasing parallax．

[^10]The effect of changes in the sun's porrollur on the semi-menswal inequality is smaller than that of the moon, aud, therefore, it is more difficult to trame. As no reliable results conld be obtained from so short a serias of olservations as ours, this sulbject was not investigated.

EFFEUT OF CHANGES IN THE MOUN' DECLINATION ON THE SEBI-MENSIAL INEQUALITY IN TIME AND HEIGHT OF HIGII WATER AND OF LOW WA'IER.

To obtain perfectly reliable results of the declination effect of the moon, a much longer series of observations is needch than the one on hand. Onr results, theretore, will only be approximate, especially those concerning the periodical effect or variation of the semi-mensual inequality for different values of declination.

The method used in the inventigation of this effect is the same as for the parallactic effect. We first found the mean declination D for wheh hour of transit, and then separated the lunitidal intervals and locights into two groups of values corresponding to \mathbf{D} below and \mathbf{D} above the mean declination for each hour of transit. The number of observations was too small to allow us to form more than two groups. The declinations were taken from the Nautical Almanac for a period earlier by 24 hours, or by the amome the ag of the tide, than the corresponding time of high water or low water. No distinction was made in the tabulation between uper and lower transits, nor in regard to the sign of declination. Table A contains the resulting mean values for each bour of transit for the times anl heights of high water; and Table B for those of low water. For convenience' sake, the lnuitidal intervals and heights of the semi-mensual ineruality are also given.

Table A.-For the determinution of the effect of the moon's declination on the semi-mensual inequality of high reter:

For times and heigilts di higil wateis.												
	Average mean doclination $=$											
	70.8.				15.5				$21^{\circ} .5$.			
		皆								\#		
h. m.	h. m.	Fret.	\bigcirc		h. $\quad 1$.	- Firt.	u		h. m.	Fect.	\bigcirc	
$0 \quad 30$	$1 \cdot 2$	6. $-\sqrt{\prime}$	8.7	13	1 $\because 4$	-7. ${ }^{\text {2 }}$	15.4	30	12 22	7.4.	20.4	17
130	$1 \because 11$	6. ${ }^{2}$	7.4	13	$1: 35$	7. 24	15.5	30	$1 \geqslant 02$	7.51	21.6	17
$2 \quad 30$	$\begin{array}{ll}11 & 55\end{array}$	7.101	8.5	14	1146	7.03	15.9	30	1140	7.04	29.3	16
330	11 织	6.94	3.7	13	$11 \quad 27$	6.72	16.4	30	11 : 3	6. 62	20. 4	17
430.	11 32	6.75	8.5	13	11 16	6. 21	16.6	31	1105	5.82	29.5	18
530	1133	6.34	7.1	12	$11 \quad 14$	5.73	11.9	3	1102	5.8	29.5	20
630	1158	6.09	8.8	14	11 \%	5.39	16.0	:	1159	4, 8.5	21.6	18
$7 \quad 30$	1244	5. 61	7.6	15	1: 42	5.43	14.6	32	1240	5.09	20.9	17
830	1300	5.n)	7.8	16	1:3 06	5. 79	14.9	33	1313	5. 67	21.5	17
930	1309	6.21	7.4	17	1307	6.	14.0	3	$1: 303$	6.84	$\because 1.0$	16
$10 \quad 30$	1248	6.41	6.7	15	1259	1i.62	14.3	34	13 l	6.77	-1.0	16
1130	1240	6.61	6.2	14	1244	\%. 07	1.3 .7	38	1249	6.78 7.43	20.6 20	19
$\left.\begin{array}{c} \text { Mean } \\ \text { values } \end{array}\right\}$	$12 \quad 17.5$	6.49	7.8	Total, 169	1.) 14	6.39	15.5	$\begin{gathered} \text { Total, } \\ 379 \end{gathered}$	1212.2	6.32	21.5	
												210

Table B.-For the determination of the effect of the mom's declination on the semi-mensum inequality of lon water.

FOR TIMES AND HEIGIITS UF LOW WATER.														
	Average mean declination $=$													
	8.1					15.5					91.6			
			$\begin{aligned} & \underset{3}{E} \\ & E \\ & E= \end{aligned}$		8 3 3 3 3 3 3 3 3 3 3			-		$\text { sIIGlpBitokigo jo o } 0 \mathrm{~N}$				
h. m.	h.		Ftt t.	\bigcirc				Fret.	\bigcirc		h. m.	Feet.	\bigcirc	
$0 \quad 30$	18		1.30	c.9	13			1.54	15,5	30	1. 26	9.95	20.5	17
130	13	13	1.48	8.0	12			1.89	16. 1	$: 30$	$17 \quad 59$	-. 17	21.5	18
$\bigcirc 30$	17	50	1.93	7.4	12			$\because .04$	15. 9	30	17 4)	- 13	91.6	18
$3 \quad 30$	17	4.5	$\because .37$	9.3	14			$\because .24$	16, 3	30	$1 \% 30$?. \because	2. 2.5	16
430	17		:3.13	7.	13			$\because 26$	16.0	$: 1$	1717	$\because .4$	2.2. 2	18
$5 \quad 30$	17	47	3.54	8	14			$\therefore 15$	16. 4	\because	1\% $1 \times$	\cdots		18
630	18	09	3.7\%	9.0	13			3.40	15.6	32	$1-14$	3.15	2.) 3	19
730	19	00	$\because 3$	8.1	16			3. S^{2}	14.4	23	1906	3. 37	20.7	16
- 30		17	3.62	\%. 0	17	19	3.	$\bigcirc .93$	15.0	34	18 \%	3. 34	21.4	17
930	19	11	2. \because	6.9	16	19	1:	4. 50	14.0	33	19 ?	6. 94	20.6	17
1030	15	55	1.53	7.0	16			$\because .17$	14.4	: 14	19 13		30.9	18
1130	18	37	1. 16	8.9	15			$\because .06$	15, 9	3	1-54	$\bigcirc \cdot 80$?. 0	17
$\left.\begin{array}{c} \text { Mean } \\ \text { vitues } \end{array}\right\}$			$\because 40$	$\therefore 1$	Total, 1.1	18		9.\%)	15.5	$\begin{gathered} \text { Total, } \\ 380 \end{gathered}$	18 ジ	2.66	21.6	Total 209

The results for the nou-periodical effect as expressed by the mean establishments and mean heights in the preceding tables are as follows :
(a.) For the times: When the moon's declination increases the mean intervals decrease for high water and for low water. The total decrease betreen zero and maximum decliuation is, approsimatels, from 6 to 7 inches for high water, and 3 to 4 inches for low water.
(b.) For the heights: An increase in the moon's declination appears to be followed by a slight decrease in the mean heights of high water, and hy an iucrease of abont 5 in betweeu zero and maximum declimation in the mean heights of low water.
(e.) For the angle of returdution or age of the tide: By a graphical process we fiud that an increase of declination corresponds to a decrease in the augle of retardation α, for the times as well as for the heights of high water aud low water. The decrease is nearly the same for the times of high water and low water, and amounts to about 5 minutes between $\mathrm{D}=8^{\circ}$ and 150.5 , and to about 4 minutes between $\mathrm{D}=150.5$ and 210.5 .

Periodical effect: The periodical effect of chauges in the moon's declination is exhibited in Tables C and D for bigh water and low water separately. The inequalities wre the differences between each lunitidal interral and height and its mean ralue in the last borizontal line of each of the preceding tables.

TABLE（－P－Priodical effect of the moon＇s dectinution on the semi－mensual ineruality of high urnter．

	FOR TIIE	IVS OF IIIG	ATER．	IS TIIE III	ITS OF＇II	WNJTAR．
	\％	150．5．	こ．	70.8.	15\％	21.5
$\begin{gathered} \text { h. m. } \\ 0: 30 \end{gathered}$	$\begin{array}{r} m \\ +11 \end{array}$	m +10	$\begin{array}{r} m \\ +\quad 10 \end{array}$	$\begin{aligned} & \text { Ircel. } \\ & +0.39 \end{aligned}$	$\begin{aligned} & \text { lify. } \\ & +0 . r . ; \end{aligned}$	$\begin{aligned} & \text { Frct. } \\ & +1.16 \end{aligned}$
130	－6	－ 9	－10	0.10	0．0．\％	1.19
93	22	28	\because	0.52	0.65	0.72
3.30	4.1	47	417	0.80	＋0．：3！	＋0． 30
430	4.5	50	617	＋10．90	－0．1\％	－11． 50
5.30	44	10	70	－ 11.15	0.66	0.97
$6: 30$	－19	－ 1.	－13）	0.40	1.00	1． 17
7311	＋	＋	＋20	0.63	0.96	1．$\because:!$
8	43	5：	61	0.69	0.60	0． 16
930	5\％	53	$\cdots 1$	11． 9 r	－0．16	$-0.11=$
1030	31	45	51	－0．118	＋0．9゙っ	＋0．45
1130	＋23）	＋31	$+37$	＋0．12	＋0．6\％	＋1．11
Range．	97	113 ｜	131	1． 0^{0}	1．8）	2.635

Table D．－I＇criorlicul effect of the moon＇s declination on the semi mensunt inmunlity of lon woter．

	For the thates of how withel．			FOR TILE HENAHIS OF LOW WATER．		
	Declination $=$			Declination $=$		
	＜1．	15，5．	21.6	－1．	15．5．	210．6．
h．m ．	m ．	m ．	m．	Fect．	Feet．	Tiret．
030	＋ 5	＋ 5	＋ 4	-1.11	－0．69	-0.41°
130	－ 11	-18	－ 23	0.93	11． 64	0.49
12：31	34	：	42	0.48	0．4！	0.53
330	31	46	5	－0． 111	－0． $2 \cdot$	0.44
430	$4!1$	S－	（i）	＋0．73	＋0．23	－0．18
5.30	：it	\therefore	1.4	1．1\％	11.62	＋0．21
（i） 30	－ 15	－ 11	－ 8	1． $2 \cdot$	0.87	0．52
$7: 10$	＋$: 3$	＋ 40	＋ 44	0．-9	0.61	11． 71
8.311	53	59	63	＋0． 2.2	0.40	0．5．
9， 30	47	55	61	－0．10	＋0． 116	0．2＊
$10: 10$	3.4		0	0.5	－0．36	$+0.06$
1130	＋13，	＋34	＋	－0．72	－0．47	－0．26
Range．	102	117	19 x	¢． 43	1.56	1． 24

The ranges as gireu in the last horizontal line of each table are merely the algebraical differences between the largest positire and negative inequality values in each column．

From the abore tables it becomes evident that－
（a．）For the times：An increase of the declination is followed bs an increase in the range of high water and of low water；the increase appearing to be larger for the former than for the latter．
（b．）For the heights：An increase of declination inereases the range of ligh water while it decreases the range of low water．

By comparing the abore ranges with those of the parallactic effect we find them to follow the contrary law，when both declination and parallax increase or deerease．

Before closing this subject we will add the result of a seeond investigation of the deelination effeet，inteuded mainly as a eheek upon the first．The method we followed was similar to the one used before，onls that we separated the lunitidal intervals and heights into three groups of values for deelinations between 0° and $12^{\circ}, 120$ and 21° ，and 21° and 25° ．

As it would require too much spaee to print the complete tables，we merely give the condensed result in the following table of the mean intervals，mean heights，and ranges of inequality in time and height，to which we add the values of the first investigation to facilitate comparison．

Tuble of mean establishments，man heights，and incurulity ranges depending on changes in the moon＇s declination．

It is eass to perceive that the non－periodical effect increases or lecreases rerr regularly as the declination changes，thms showing that the values of the mean establishments and mean hei，hts of bigh mater abd low water for the different values of D are reliahle．The inequality rances， which are in every case the algebraical differences betreen the largest positive and negative ralues of each group appear less regular，except the rauges for high－water heights，which are more harmonious．The general law，however，mas clearly be traced，viz，increasing declination will increase the range of the time and height inequality，except in the case of low water beights， for which the law is reversed．Tbis irregularity in the ranges is donbtless due to incidental ir：er． ularities in the numbers from which the ranges are deduced and which would disappear if the observations were extended over a longer period of time．The periodical effect on high－water and low－water times and heights is given in the tables below in the form of a correction to the lunitidal intervals aud heights of the semi－mensual inequality，so that the reader will find no difficulty in constructing，from the ralues derived from the second in restigation，tables of the same form as the preceding ones．The result of the first investigation is also giren．

Correction to the semi－mensual inequality in time for the cffect of changes in the moon＇s dectination．

$\stackrel{3}{5}$	FOR HLiH－WATter thaes．						FOR LOW－Whter thies．					
${ }^{2}$	Average declination $=$						Arerage declination $=$					
$\stackrel{3}{3}$	50.9	70．	160．A．	$\because 1 \%$	－3．		6.01.	$\bigcirc 1.1$	16\％	21.6.	シャッ5	\＃
\cdots				\bigcirc								－
$\stackrel{\Xi}{\Xi}$	官	is	6		3		\because	：	5		5	矿
5	$=$	\cdots	2	\％			三－		云	\cdots	$亏$	\cdots
\cdots	－	－	－	会	商		＋	\＃	范		－	交
h．m．	m．	m.	m．	m ．	m，	h．m ．	m ．	m．	m.	m．	m．	h．m．
030	＋1	＋ 4	＋2	-2	－ 8	1294	＋3	＋1	－6	－	＋	189
130	6	6	-4	3	± 0	1205	$\stackrel{\square}{9}$	－	± 0	6	-6	1805
$\because 30$	9	9	＋	6	－12	1146	9	5	＋ 3	5	17	17 Lis
330	15	\％	-4	4	10	11	16	－	－ 4	7	8	17 is
430	11	16	$+3$	11	10	1116	4	10	＋13	8	13	17 \％
$5: 0$	1.7	＋19	－	－12	16	11 14	13	＋16	5	－13	17	1731
680		-1	＋	\pm	－16	11.79	＋3	－3	\because	＋	－8	181：
730	＋	＋	-12	－？	＋13	1242	－	3	＋ 8	3	＋1	1903
S：	－11	－6	＋1	＋ 7	11	1306	4	5	－	3	$1:$	19
93	＋3	$\stackrel{?}{\square}$	-12	－－4	3	130	6	7	9	5	17	1918
1030	－5	11	＋1	＋ 9	5	125	8	7	－	7	14	1905
1130	－5	-1	－3	$+5$	＋11	1.34	－10	－10	± 0	＋i	＋6i	151\％
Means．	$+3.6$	$+3.0$	－0．3	-1.9	－ 90	1214	＋2． 2	$+1.1$	-0.2	-1.1	-1.4	1838

Correction to the semi－mensual incqulty in height for the effect of changes in the moon＇s Arclination．

FOR IIIGII－WATER HEIGHTS．							FOR LOW－WATER Iheights．					
B	Average declinatiou＝						Average declination $=$					㐌
4	50.9	\％o．${ }^{\text {\％}}$	16.8	$\because 1.5$	$23^{\circ} .3$		$6{ }^{\circ} \mathrm{P}$ ．	$8^{\text {c }} .1$.	$16^{\circ} .8$	$21^{\circ} .6$	$23 * 5$	
\bigcirc		15		\bigcirc				\therefore		8		
\％	$\stackrel{0}{6}$	－0	6		4		8	足	61		5	
信			\％		，		1	－	62	8	－	
$\stackrel{\text { 岂 }}{\stackrel{~}{4}}$	$\stackrel{\oplus}{\oplus}$	令	䔍	華	$\stackrel{+}{*}$		㞻	－	シ	－	華	
h．m．	Fret．	Ftet．	Fied．	Feet．	Fiet．	Feet．	Feet．	Feet．	Feet．	Feet．	Fert．	Feet．
（1）30	＋0． 12	$+0.49$	＋0．64	＋1．09	＋1．51	7．80	－1．42	－1．${ }^{1} 4$	－0．81	－0． 2	＋0．25	1．${ }^{1.4}$
130	0.4%	0.50	0.68	1.12	1.44	7.94	$1.1 \times$	1． 05	0.883	0.36	－ 11.00	1．89
230	$0.1 \times$	0.68	0.76	11． 65	0.66	7.03	0.58	－0．61	0．39\％	0.10 0.31	0.47 0.40	2.04 9.21
330 430	0.70 0.43	0.60 +0.36	$+0 .: 36$ -0.27	＋0．3	+0.17 -0.54	6.78 6.91	-0.13 +0.56	-0.16 +0.60	-0.15 +0.35	0.31 -0.0 .3	0.40 -0.16	2.91 2.76
${ }_{5}^{4} 30$	＋0．0．	－0．0．5	0.46	1.04	1.2	5.83	0.83	0.99	0．<1	＋0．：3	＋0． 3	3． 15
630	-0.30	0.30	0.07	1．54	1.78	5.39	1． $3: 3$	1． 19	0.81	0.65	0.45	3． 40
730	0.42	0．5－	1．12	1.30	1.53	5． 43	0.08	0.76	0.45	0.04	1.11	3． 3
830	0.36	0.50	0.5	1）．7\％	0.64	5.79	－-0.02	＋0．09	0.29	0.71	0.99	$9^{2} .93$
930	0.1 is	－0．14	-0.03	－0．15	－0．94	6． 33	－0．43	－0．31	＋0．33	0.41	0.63	$\because 59$
$10: 30$	－ 0.13	＋11．122	＋0．44	＋0．38	＋0．40	6． 62	1.13	1.00	－0．$\because 7$	0.19	0.42	2． 17
1130	$+0.23$	＋0．	＋0．5x	＋1．04	＋1． 32	7.07	－1．44	－0．	－0．73	＋0．13	＋0．68	2.06
Means．	＋0．11	$+0.10$	－0．01	－0．05	－0．04	6． 39	－0．19	－0． 13	－0．01	$+0.15$	＋0． $3: 3$	2.53

The ralues in these tables are additive to the lmnitidal intervals and heights of the semi－men－ sual inequality for the respective hours of the moon＇s transit．For convenience＇sake，the semi－ mensual inequality is also added．As the periodical effect from so short a series can give but an approximation to the true result，the values for some hours of transit appear to be more or less irregular in the above table．By combining the values of the first and second investigation and taking the means，the resulting valnes would probably be more approximate．

We also investigated the declination effect ou the variation in the semi－mensual inequality of the arerage mean level between high water and low water．While we find that the arerage mean levels of the different groups increase by a small amount between zero and maximum declination， when D increases，the range of this inequality is a minimum for a mean ralue of $D=15^{\circ} .5$ and increases when D is below or above 150.5 ．The resulting arerage mean values of the levels for the different declination valnes and also the ranges of this inequality are shown in the appended table．For comparison we also add the result of a similar investigation with regard to the paral－ lactie effect．

Table of the average mean levels between high－water and Tow－water heights for different values of declination and ranges of the srmi－mensumbl inequality in these levels．

For declination effect．	Arerage declination $=$						For parallactic cffect．	Average parallax $=$		
	6.	8°.	150.5.	$16^{\text {P．}} 8$.	21.5	23.4		55＇．27．	57＇．22．	59＇．20．
Average mean level．．．	$\begin{aligned} & \text { Fcet. } \\ & 4.440 \end{aligned}$	Fect． 4.444	$\begin{aligned} & \text { Feet. } \\ & 4.463 \end{aligned}$	$\begin{aligned} & \text { Fect } \\ & 4.4 .0 \end{aligned}$	$\begin{gathered} \text { Feet. } \\ 4.493 \end{gathered}$	$\begin{aligned} & \text { Foct } \\ & 4.597 \end{aligned}$	Average mean level．．．	$\begin{aligned} & \text { Fect. } \\ & 4.497 \end{aligned}$	$\begin{gathered} \text { Feet. } \\ 4.463 \end{gathered}$	$\begin{aligned} & \text { Feet. } \\ & 4.443 \end{aligned}$
Range of the semi－men－ sual inequality ．．．．．	1．125	0.900	0.250	0.475	0.970	1． 665	Range of the semi－men－ sual inequality ．．．．	0.385	0.250	0． 300

THE SITNS DECLINATION EFFECT.

The same reason that prevented us from inrestigating the sur's parallactic effect led as to omit the investigation of the effect of changes in the sun's declination on the semi-mensual inerualit.s.

We merely limit ourselves to the statement that the snu's effect is much smaller than that of the moon, the correction amonnting to from $\frac{1}{6}$ to $\frac{4}{n}$ of that of a corresponling value of the mom's declination.

DIURNAL INEQUALITY:

The diurnal inequality in beight and time is the difference in beight and in the lunitidal interval between the morning and afternoon tides, respectirely. This difference or irregularity being caused by the interference of two independent waves ealled, on account of their periods of oscil. lation, the semi-diurnal and diurnal waves, has been found to depend closely on the rarying declina tions of the moon and sun. This inequality goes through its changes in a semi-lunation, reaching its maximum at the epochs of the moon's greatest north or south declination and ranishing when her declination is zero. Practically, however, the epochs of maximum and minimum inequality do not, in most cases, coincide with the epochs of the moon's highest or zero declination, but are usually retarded.

Diurnal Inequality in Height.-The diurnal inequality in height was male out by a graphieal process in the following manner:

First, the observed epochs and heights of high water and of low water were laid down as abscisse and ordinates ou a systew of lines drawn tor this purpose on Plates I and II. To obtain the high water inequality the high waters next following the moon's upper transit and those next following the lower transits were connected by separate anxiliary lines. The vertical distances between these auxiliary lines were then plotted on a straight axis as abscisse on Plates III and IV, and their extremities connected by curves. The ordiuates of these curves represent the values of the diurnal inequality in height of bigh water. To obtain the diurnal inequality in height of low water the same process was applied to the low waters.

On Plates III and IV the low-water height inequality is shown below the high-water height inequality of each month. The vertical distances belonging to the high water's and low waters next following the moon's upper transit are comected by full lines, those belonging to the lower transit by broken ones. It must be rememberel that in north latitudes the south transit of the moon is the upper, the north transit the lower one. The phases of the moon and the epochs of the moon's zero and maximum declination are also indicated on the plates.

The diurnal inequality in height appears to be governed by the following rule :
For north declination that high water or low water which follows the moon's upper transit, on the average after an interral of $12 \frac{1}{4}$ hours for the former and of $18 \frac{1}{3}$ hours for the latter, will be the higher one of the two high waters or the two low waters of that day; while if the moon's declination be south it will be the lower one. This rule requires a certain correction, to be given hereafter, as the epochs of the moon's zero declination and of the disappearance of the diurnal inerual ity do not coincide. The same rule was found for the Port Fouke tides, but properly for the high waters only, the diurnal inequality in height of low water presenting the anomaly of disappearing at about the time when the diurnal inequality in height of high water reaches its maximum value. We further find that a high low water is as a rule followed by a low high water,* with exceptions, however, at about the time of the moon's crossing the equator. For the coasts of Europe this rule is different, a bigh low water being usually followed also by a high high water.

The diurnal inequality in the heights is very small, being less than half of that for Port Foulke and Van Rensselaer Harbor, which are the two next stations sonth of Polaris Bay where tides have been recorded. The inequality curres of onr series are irregulanly shaped lines, intersecting the axis near the epochs of the moon's zero cleclination. In conformity with the rule given abore, the curves depending on upper transits fall above the axis, or their ordinates are positive, when the moon's declination is north; and they fall below the axis, or are negative, when it is south. The difference

[^11]between the aremse fage of the high－water and low mater inequality is rery small，the mean maximm dange amonnting，by measurement of the rurves．for both high and low water to ahout 1 foot．This small range appears to be qnite in conformity with the tidal theories，aceording to which the inequality is small in high latitudes．The interval between the epochs of the moon＇s zero declimations and the epochs of disappearance of the dimmal inequatity in height is exhibited in the following table：

Table shoring the epochs when the diurnal inequality in height runishes，and also the interrals betreen these epochs and those of the momis zero dectination．

Dhon＇s arodechina－ tion，meal time． Polaris Bay．	The dimmal ineguality in height ranishes－		Interval－	
	For himh water．	For low water．	For high water．	For low water．
	Sove $11^{\text {d }} 14^{\text {h }}$		$+1^{d} 19{ }^{\text {h }}$	－ $3^{\text {d }} 13^{5}$ ，
	Dees． 904	Dec． $6{ }^{0.2}$	$1: 1$	11.
1）0． 19 －0	1ece 04	Dec． 19 U？	＋2 118	－0 1～
1－\％．．．J：an．： 1.0	Tan．－1＝	Jan．${ }^{\text {a }}$ 06	＋503	－0 191
J：11．11；11：3	Jam． 20 U；	Jan．16． 14	＋400	＋0 11
Tan，：0 \％1	Feb． 4 － 11	Jan．：3144	＋4	＋0 119
Forl 1：1：3	Feh．1－ 15	Fels， 1414	＋5 17	＋
Feh．it 01	－1．．．．．．	Feh，品 11		－0 11
Mar．${ }^{11}$ O1	Mar． 1416	Mar． 10 is	＋319	－11 11
入an，－8，ハ－	Mar． 3 ： 2 ？	Mar．	＋ 41.5	＋0 14
Apro i 113	Apro 90	Apr． $61: 3$	＋1 20	－10 17
Apr－ 15	Apro	Ar． 1910	＋0 30	－－118
May 414	May \therefore－$\because 1$	May $\because 10$	$+107$	－119
\aik 19 16：	May 06	May 17 （12）	$+10 \%$	－ 01
Nay ： 3120	June ？？	Mas 3n	$+\because 02$	－0 30
Mean inter			＋2	$-0 \quad 17$

The aremage retard or interral from $1 t$ semi－lnuations is 2.9 diys for the high－water inequality． The low－water ineduality presents the anomaly that the intervals are confined to about tro days before and two days after the epochs of the moon＂：zero declination．Thas for high water the min－ imum inequalits happens on the arerage $\because .9$ daysafter and for low water 17 hours before the epoch of minmum force．＊We are not aware of similar results for other places，but we believe that at Km－ rachee，India，from thee sears of observation the maximum of the diurnal tide has been fond to take place before the maximnon of the force．According to Sir J．Lubbock，the lonar component of the diurnal inequalits can be expressed b_{y} the formulat，$\dot{b}_{12}=\mathbf{C}$ sin $2 \delta_{\mathrm{m}}$ ，where δ_{m} denotes the declination of the moon and C a constant to be determined from observation．In onr case the small range and the complex form of the inequality curve make its mathematical representation from so short a series umreliable，and therefore of little value．The areage form of the diurnal inequality eurre，freed more or less from all incidental irregularities，is probably nearly enongh cepressed by the formula－

$$
\begin{aligned}
& \lambda_{\mathrm{h}}=14 . i \sin 2 \delta_{\mathrm{m}} \text { for high water, and } \\
& i_{\mathrm{u}}=13.05 \sin 2 \delta_{\mathrm{m}} \text { for low water. }
\end{aligned}
$$

Diurnal Inequality in Time．－The diurnal inequality in time has been made ont on Plates T aud TI in a manner similar to that for the height inequality．The lonitidal intervals were laid down

[^12]as ordinates, with the time of the eoresponding moons transits as absersad. The lumitidal intervals depending on mper tramsits are distinguished ber full lines, thone depembing on lower thansta hy broken omes.

The rertieal distanees betwern these two lines are photed on an axis like the height inergal itics and connected by eurves. Plate Vll remesents the time inernality for the high watersand Plate VIlf that for the low waters of the whole series. The time ine gatity as represented on the plates aplears to tohlow no well-dethed law. sudden chanses from high to bow rables and from
 inequality are very variable, and appear for high water to be contined to between 3.3 daps after and 1.1 days before the moons zero declination, repesenting in this respect the same amomaly as the height inequality of low water. The abrage anecheration of the epoch of disappearane amomes for the high-water inemahty to about 1.9 dass. The low-water inemality epoch varies fom 4.1 days after to 1.3 days betore the mons aero declination. The aremage retard is 2.1 ditus. which is nealdy the same as for the height inemality of high water. The aberge maximum ramess of this mequality are very nearly alike for hish water and low water, being about $1^{\text {b }} 13^{3 m}$ tor the former and $1^{\text {b }}$! ${ }^{\text {a }}$ for the latter.

The eomponnd tidal ware, as is well knomb, whist. of a combination of the semi-dimmatand dimmal wave. The former has. on an armes half a lunar day tor its period from low water to low water. while the hatter, which depends for its height ehiety on the declination of the mom. goes through its changes from low water to low nater in abont a solur day, and produces the dime nal inequality in the beights and times of the tides.

In order to stads these two wares. the rewhltant tidal wave, as observed. has to be separated into its two component wares. which may either be done analy tically or bey mean of the sumphe poocess tevised by L. F. lomraldes. As the former treatment involves too moh labor, we mate use of the latter.

The resmat derired in this maner is wiven on Plate 1 N . Where the sertes from damary 1 to

 tions or of readings taken at intervals of 10 minntes near the turn of the tide. The observed ar resultant ware is indicated by aroken and doted line, and the semidimonal amd dimmal waves by full lines, the latter being shown below the two tomer. It appears as a very low wave of incer ular shape, with a maxman rame of abont 13 inches, which is cousiderably lesis than the rame of the elimmal ware observed either at Port Fonlke or at Van hemsselate Harbor. The relation betmeed the declination of the moon and the dimmal ware is shown cleanly in the series from May
 larity of the dimmal ware and its small range render a detailed in restigation of itw anm revy difticult, aud, as the sorics of whemations is shmt the result wouk be perfectly umeliable. For this reason we limited ourselves merely to the investigation of the form of the resulant spring and neap tide wares.

MYESTIGATIOS OF THE: FORM OF THE TIDE WAIE
The tide wave being the result of the action of periodic forces, its form, aside trom non-periodical distmbances, onght to comespond rery chosely to the laws goveming the action of ach forces.

In the following we give the result of our investigation of the form of the two most prominent wares in each semi-lunation, namely, of the sprins and neap tide wares:

The spring and neap tides, that in, the hourly noserved heights of the tide occoring abont one day after new and finl moon, and the heights of those ocemring abont one day atter the first and last quarter of the moon, an also those of the tide preceding and following coll spme and neap tide, were extracted from the whole sulice. These tides were next chassed for spings and neals separatels into gromps comerpuding to tides of equal perion of time from low water to low water.
 its period would be classed as $\frac{1^{\text {la }}}{}$ and $11^{\text {ba }}$; a tide having its low water at m_{m} a. and and the next low water at $5^{4} 30^{m} \mathrm{p}$. m., its period wis set down as $11^{\text {la }}$ and $\underline{g}^{\text {h }}$; a tide having its low water
 de. The hombly heights of each group, as alsu thuse for the fractional hours at the beginning and end of calt period, were then added up and their mean values fond. The mean values of each gronp were then thrown into curves, the heights being laid down as ordinates and the corresponding times as abseissir. The period from low water to low water in each curve was then divided into 12 equal parts amd the height corresponding to each was carefully measured off with the scale nsed in the constrnction of the carves.* The 13 equidistant ordinates from each curve were then set down in 13 columns, amd each colnmo added ap and its mean valne taken. For the mean ordinates of the spring tide rave from t'2 observed tides we obtained the following values:

$$
1^{n} .93,2 \text { " } 31,3^{\prime \prime} .27,4^{\prime \prime} .59,5^{\prime \prime} .97,6^{n} .91,5^{\prime \prime} .32,6^{f} .95,5^{4} .97,4^{4 .} .5,3^{n} .27,22^{n} .32,2^{n} .02 ;
$$

and for the neap tide wave from 39 observed tides:

$$
3^{4} .23, a^{\prime} .40,3^{n} .81,4^{\pi} .36,4^{\prime \prime} .90,5^{r} .29,5^{n} .42,5^{\text {t }} .31,4^{\text {rt }} .89,4^{\text {ri }} .34,3^{n} .82,3^{\text {n }} .4!, 3^{\text {n }} .30 .
$$

Aphling to these values Bessel's well-known function of the action of periodic forces, the spring tidn wave will be fond closely represented by the expression-

$$
h=\left(2^{\prime \prime} .69+1^{\prime \prime} .93\right)+2^{\prime \prime} .664 \sin \left(\theta+2 \pi\left(y^{2}\right)+2^{\prime}\right) .035 \sin \left(2 \theta+85^{\circ} 16^{\prime}\right)
$$

and the neap time wave by-

$$
h=\left(1^{n} .13+3.23\right)+1^{\prime \prime} .0 .58 \sin \left(\theta+269.50^{\prime}\right)+0^{n} .015 \sin \left(2 \theta+144^{\circ} 47^{\prime} .\right)
$$

For these datious the period from low water to low water is conceived to correspond to 360° of phase; for 12 equidistant observations of heights between the two low waters the angle θ increases therefore successively from 0° to $30^{\circ}, 60^{\circ} \ldots 300^{\circ}, 330^{\circ}, 360^{\circ}$. As the difference of level butwern the two low waters is less than $1^{\text {mi }}$ in each of the two waves, the constants in the above equations were computed directly from the umbers representing the mean ordinates of the waves, after subtracting from each ordinate $1^{4} .93$ and $3: .33$, respectively. For the computation of the ordinates these values have again to be added, and appear, therefore, in the first term of each equatiou.

For Van Rensselear Harbor the corresponding expressious for the form of these two waves are, for the spring-tide wave-

$$
h=5^{\prime \prime} .83+5^{11} .58 \sin \left(\theta+278^{\circ}\right)+0^{1 t} .20 \sin \left(2 \theta+281^{\circ}\right)
$$

and for the neap-tide ware-

$$
h=\because^{\prime \prime} .4^{\circ}+\because \because .25 \sin \left(\theta+269^{\circ}\right)+0^{\prime \prime} .09 \sin \left(2 \theta+290^{\circ} .\right)
$$

For the form of the dimmal and semi-dimmal waves observed at Port Fonlke the following expressions were fomm:
for the dimenal wave-

$$
h=1^{n} .50+1^{n} .56 \sin \left(\theta+270^{\circ}\right)+0^{\pi} .08 \sin \left(2 \theta+135^{\circ}\right)
$$

and for the semi-dinrual wave-

$$
h=3^{\text {th }} .75+3^{\prime \prime} .79 \sin \left(\theta+275^{\circ}\right)+0^{\mathrm{ft}} .21 \sin \left(2 \theta+194^{\circ} .\right)
$$

The agreement between the observed values and those computed by means of our formula is shown in the table given hereafter and also in the annexed diagram.

Observed and romputed values for the form of the spring rend neap tide waves.

Pluase.	For the spring-tide wave.			For the neap-tide wave.		
	Observed.	Computed.	Difterence, O-C.	Obserred.	Computed.	Difference. $\mathrm{O}-\mathrm{C} .$
c	Firt.	Fret.	I'tet.	Feet	Fect	
0	1. $1: 3$	1. 34	-11. 16	:3, 93	3.31	-0.08
30	2. 31	!. ${ }^{\text {a, }}$	-0.02	3.40	3.43	-0.03
60	\because	\because	± 0.00	3.51	3.81	+0.00
90	4.59	4. 51.	± 0.00	4. 36	4.35	$\pm+0.01$
100	5.97	- ! ! :	+0.14	4.90	4. -4	+0.01 +0.01
150	6.91	6.154	-0.03	-1. 0_{1}	5.29	+0.00
180	7.72	7.32	± 0.00	5. 42	5.43	± 0.01
$\because 10$	6.95	6.95	$\pm \pm 0.00$	$\therefore .31$	5.95	+0.04
$\because 411$	5.17	5. 10:	+0.0.4	4. 89	4. 88	$+0.01$
370	4. 5	4. is	-0.03	4. 34	4.35	-0.01
300	\% ご	3	± 0.00	3.4	3. $\cdot 4$	-0.02
330 360	2.83	3. S\%	$+0.01$	3. 4 ! 1	$\therefore .46$	+0.03
360	2.02	1.45	$+0.03$	3.301	$\therefore .31$	-0.01

[^13]

It appears that the tro slopes is each wave are very nearly symmetrical, which is quite in accordance with the durations of the rise and fall of the tide, as these differ rery little, the rise oceupsing but 6 minates longer than the fall.

PROGRESS OF THE TIDAL WATE.
Haring discossed thus far the tides of Polaris Bay, it onls remains to incestigate from whieh direction the tidal wave is propagated to the locality in question ; whether it is the Atlantic wave entering Daris Strait or a wave traveling along the east and north coasts of Greenland; whether it originates in the Polar Sea, or whether it comes from the Pacific Ocean through Bering Strait.

Eridently, the wave reaching Polaris Bas eannot be propagated through Daris Strait, as an examination of the following table will readily show: the different localities given there being all situated on the west coast of Greenland, and arranged according to increasing latitude.

It will be seen that there exists a regular progress of the wave in a northerls direction between Julianshaab and Tan Rensselaer Harbor, the cotidal hour of the former station being ${ }^{-3} 51^{m}$, that of the latter $16^{\mathrm{b}} 04^{\mathrm{m}}$, and the difference of latitnde betmeen the tmo places about 18 degrees. As he cotidal hour of Polaris Bay, situated 180 nantical miles north of Tan Rensselaer Harbor, is 8 minutes earlier than that of the more southern station, it is easy to perceice that the tro localities must necessarily be moder the inflnence of different wares.

During our stay in Greenland we were led to the belief that the tidal wave reachiug Polaris Bay was coming from the Pacific Ocean through Bering Strait; but when, after our return, we could compare the literature on this subject we soon fonnd this to be an erroneous conclusion. In order to show that the wave in question cannot be a derirative of the Bering Strait tide, it will be sufticient to state that the latter is a simple lunar semi-diurnal tide.

As up to this time we do not know positively whether there is an extensive body of water aronnd the pole, where a tidal wave might originate, we may be allowed to conclute that the wave reaching Polaris Bay is an Atlantic wave, progressing along the eastern and northern coasts of Greenland. In support of this view we give the following table, containing the result of the tidal observations made in East Greenland during the seeond German expedition under Captain Koldewey.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Locality.} \& \multirow[b]{2}{*}{Latitude north.} \& \multirow[b]{2}{*}{$\underset{\text { west. }}{\text { Longitude }}$} \& \multirow[b]{2}{*}{Date.} \& \multicolumn{2}{|l|}{Mean establish-ment-} \& \multirow[b]{2}{*}{Rise and fall.} \& \multirow[b]{2}{*}{Cotidal hour.}

\hline \& \& \& \& Of high water. \& Of low water. \& \&

\hline \& \bigcirc \& - \& \& $h . \quad$ m. \& h. m. \& Fect. \& h. m.

\hline Nukarbik \& 6324 \& 4202 \& 1870.-Apr. 19 \& 400 \& \& ?. 00 \& (1)30

\hline Eleanor Bay \& 7327 \& 2503 \& Ang. 13 \& \& 6100 \& \& 1045

\hline Cape Broer Rnys \& 7328 \& 2004 \& Aug.
Aug.

4 \& 38 \& 21 24 \& 3.04 \& 1051

\hline Jackson Island. \& 7354 \& 2000 \& Aug. 1 \& 1331 \& \& \& 1103

\hline \& \& \& Aug. 2 \& 226 \& 1948 \& 3.22 \&

\hline Saline Islaud
Peudulum Island \& 7432
74 \& 1829 \& 1869.-Aug. ${ }^{8}$ \& 238 \& 846 \& 2.85 \& 1114
11

\hline \& \& \& 1800. Aug \& 1456 \& 2058 \& 2.49 \&

\hline \& \& \& Aug. 29 \& 305 \& \& \&

\hline Cape Philip Broke. \& 7456 \& 1739 \& 1870.-July 24 \& 2113 \& \& \& 1128

\hline \& \& \& July ${ }^{\text {Jus }}$ \& $\begin{array}{r}914 \\ 11 \\ \hline 16\end{array}$ \& 315 \& 2.66 \&

\hline Cape Burgen . \& \%) 26 \& 1750 \& July 27 \& 1116
23
26 \& 3030 \& 9. 06 \&

\hline \& \& \& July 28
July 29 \& 1230
100 \& 1800 \& 2.54 \& \{ 1207

\hline
\end{tabular}

The aecompanying map, based on the results given above and on others derived from various sources, shows the approximate cotidal lines of the North Atlantic and North Pacific Oceans and of the Arctic Seas. A comparison of this representation with others of earlier date, where no use had been made of the Greenland observations, will show that we bad to modify the course of our lines considerably in order to satisfy the different observations. The lines north of latitude 81° are purely bypothetical and were merely put in to show the probable eorrectness of our view that the Polaris Bay wave rounds Greenland before it reaches this place. The heavy line running across Smith Sound represents the approximate place of junction of the two Atlantie waves, and we suppose that the one entering throngh Davis Strait does not affeet that portion of the Sound which is shaded by vertical lines on our map.

RISE AND. FALL of TIDE.

DIURNAL INEQUALITY IN HEIGITT. H.W. LW.

LUNITIDAL INTERVALS. L.W.

DIURNAL INEQUALITY IN TIME. L.W.

WNWMNAN
WNNWNWW

TEMPERATURE 0F THE AIR.

RECORD AND DISCUSSION OF TEMPERATURES AT POLARIS BAY.

Although we entered our winter-quarters during the latter part of September, 1871, we were unable to begin the regular hourly meteorological observations before November 6th, because no hands conld be spared to finish the observatory, which had been set up on shore a few days after we had anchored at Polaris Bay.

DESORIPTION OF STATION AND OBSERYATORY.

The observatory was a small building, situated in latitude $81^{\circ} 36^{\prime} .4$ north, longiturle $62^{\circ} 15^{\prime}$ west of Grenwich, and adjnsted in the meridian as nearly as conld be done. It was placed : 4 feet above the mean sea-lerel on a nearly level platean, consisting of a grey, slaty, Silnrian limestone, entirely corered with drift of the same material and of primitive rock. This platean, deeply intersected by ravines, stretches from north to sonth. Its leugth is about 10 miles, its arerage breadth abont 4 , as a glance at the map will show. Toward the north it is bounded by monntains varying in altitude from 900 to 1,200 feet, which gradnally slope to the eastward into a chain of bills not over 400 feet high. The mountains bordering its sonthem limit rise to al altitude of a little over 2,000 fect.

The observatory, a plan of which is given on Plate I of this chapter, was made at the New York navy-yard a short time previons to the sailing of the expedition. It was boilt of half-inch pine plank, and could be takeu down and put together in a very short time. Its length was 10 feet, its width 8 feet, and its greatest height 8.5 teet. The rool had a slope of about 33 degrees, and was provided with four shutters, two ou each side. The door was about 4.8 feet high. Originally the little building had no window, as the latter was not leemed necessary on accomt of the absence of the sun during the winter. Early in spring a square hole of about 1 foot by $1 \frac{1}{2}$ was cut through the roof and corered with a pale of glass. As soon as there was sufticient snow the whole buidding was banked in with a wall about 3 feet in thickuess, as represented on the gronnd-plan (Plate II). For fimther protection against wind and low temperatures, a tunnel of snow-blocks was built leading to the door, and at the same time to the two magnetic buts collaining the declinometer and dip-circle (see Plate II).

In order to afford sufficient protection to the thermometers without depriving them of the free circulation of air, they were put up in a louver boarded box, 6 teet high, 3 feet wide, and 1.8 feet deep. This box was lastened to the eastern wall of the observatory by means of strong iron brackets, leaving a space of a little more than 2 feet between it and the wall (Plate II). In anticipation of heavy snow-drifts, usually interfering with accurate observations, the thermometers were sus-
pended on a catere revolving round a perpendienlar axis fastemed in the eenter of the box, as shown in the accompanging sketch. The bulbs of the instrmments, suspended 4.5 licet above the ground, were all on the same level.

INSTLGTMENTE.

The expedition was supplied with the following instruments, all gradnated according to Fahrenheit's seale, viz:

10 spirit-thermometers (standard), by L. Casella, London.
10 mercurial thermometems (standard), by L. Casella, London.
1 mercurial thermometer (standard), by dames (arean, New York.
1 metallic thermometer, by Casella.
3 mercurial psychrometers, 1 by Green, 2 by Casella.
1 spirit-psychrometer, by Casella.
1 maximum thermometer (spirit), by Green.
1 maximm thermometer (merenrial), by Casella.
3 minimum thermometers (spinit), 2 by Grean, 1 by (asella.
3 black-bnlb thermometers, in vacou, by 'asella.
1 black-bulb thermometer, fres, ly Casella.
1 black-bulb thermometer, Iree (spirit), by Green.

COMPARISONS OF THERMOMETERS AT TIIE TEMPELATURE OF MELTING ICE.

As the comparisons taken at Polanis bay were lont during the wrek, we give another set of readings taken at Polaris House, October $: 31$, 1872. The instruments were smemeded over a bucket filled with hmps of melting ice, in which the bulbs of the thermometers were immersed. The readings were taken at the iutervals specified in the lirst column, headed "Time".

Time，Oct．31，1872．	Desilinition of thermometers．										
		Dry．	Wet．	Dry．	Wet．	Dry．	Wet．		\＃	In vacun．	Free．
h．m ．	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	1	\bigcirc
$1.30 \mathrm{a} . \mathrm{m}$	32.0	32． 1	33	32.5	32.7	38.8	33.1	32.5	32.6	33.0	32.0
$36 \mathrm{a} . \mathrm{m}$	32． 0	3.1	22． 4	32．2	32.5	32.8	33.0	32.4	32.6	33.19	32.0
$42 \mathrm{a} . \mathrm{m}$	：2．0	32.1	32． 3	3： 1	32.3	32.8	33.0	32.0	32.5	32，	31.9
$42 \mathrm{a} . \mathrm{m}$	3.0	32． 0	32.1	： 2.1	32.2	32.7	33.0	31.5	32.4	32.7	31.
$52 \mathrm{a} . \mathrm{m}$	32.0	32.0	3×1	$3 \geq 0$	32.2	32.7	33.0	31.5	3×4	32.6	$31 . ⿱ 亠 凶 禸$
$2.00 \mathrm{a} . \mathrm{m}$	3.0	32.0	32.0	33.0	32.2	3 S .7	33.8	31.3	32.3	促 5	31．
$6 \mathrm{a} . \mathrm{m}$	32.0	32.0	32.0	32.0	32．3	33.7	\％．9	31.3	39．3	32.5	31.8
$12 \mathrm{a} . \mathrm{m}$. ．	32.0	32.0	32.0	830	32． 2	32.7	：3． 8	31.3	32.3	S 5	$31 . \mathrm{n}$
Mean．	39.0	33.0	33.1	32.1	32．3	32.7	33.9	31.7	$\therefore 2.4$	32.7	31.8
Correction．	干 0.0	干 0.0	－0．1	-0.1	－0．3	-0.7	-0.9	$+0.3$	－0．4	-0.7	＋0．2

In order to show that the index－correction of the instruments had undergone no material change daring seven months，we give another set of comparisons，also taken at Polaris House， May 1，1873，immediately after the regular meteorological observations had beeu discontinued．

Time，May 1， 1873.	Ifesitination of thermometers．										
		$\begin{aligned} & \text { Mercnrial psychro- } \\ & \text { meter A. } \end{aligned}$									
		Dry．	Wet．	Dry．	Wet．	Dry．	Wet．			In vacuo．	Free．
h．m．	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc
$6.00 \mathrm{a} . \mathrm{m}$	32.2	32.1	32.4	32.0	32.5	30.8	33.0	31.6	32.7	33.0	31.9
6． $5 \mathrm{a} . \mathrm{m}$	33.0	32.1	32.4	32.0	32.5	32.7	33.0	31.5	39.7	32.9	31.9
$10 \mathrm{a} . \mathrm{m}$	32.0	32.0	32.2	3．0	32.4	30． 7	32.9	31.5	32.6	32.9	31.8
$15 \mathrm{a} . \mathrm{m}$	$3 \div 0$	32.0	3：30	33.0	：3， 3	32.7	3.9	31.5	32.4	39.8	31.8
$20 \mathrm{a} . \mathrm{m}$	32.0	32.0	30.0	3．0	32.2	32.7	$3 \cdot 9$	31.5	383		31．${ }^{\text {a }}$
$25 \mathrm{a} . \mathrm{m}$	32． 0	32.0	29．0	2． 0	32．${ }^{2}$	32.7	3：9．9	31.5	32.3	32.7	31.5
Mean．．．．．．．．	32．0	39.0	32.1	32.0	33.3	32.7	32.9	31.5	38.5	39.6	31．
Correction．	∓ 0.0	干 0.0	-0.1	干 0.0	－0．3	-0.7	-0.9	＋ 0.5	-0.5	-0.6	＋ 0.2

By comparing the corrections derived from the two sets of observations it will be seen that the greatest difference does not exceed $0^{\circ} .2$ ，consequently the results can be relied upou．

OOMPARISONS AT OTHER TEMPERATURES．

Althongh the psychrometric：observations were takem hourly，we still considered it better not to make use of the readings of the dry bulb to obtain the temperature of the air，as the indica－ tions of this instroment are always more or lose inflnenced by the evaporation taking pare at the surtace of the wet－balb thermometer．Therefore a merearial standard，（by Green，）which had been carefully compared by Mr．Meyer with the maval standard at Washington，was read for this pur－ pose．Its correction was found by him to be－ 0 ． 4 ．This instrument was an exerllent ome，but unfortunately was broken duing the disaster in October，liss．All the observations of tempera－ ture at Polanis House were taken with one of Casella＇s stambards，the corrections of which had beeu determined at Polarin Bay，and were afterwards found in one of the meteorological mote－ books．The table of comparisons runs thas：

Trmperatureby （＇asella＇s mer－ curial stant－ arrl，No．1：ä́a．	Correction．	Number of olservations．
0	\bigcirc	
$+45$	－0．6	6
4.3	－0．7	8
40	－0．5	5
36	－0．${ }^{2}$	3
S2	± 0.0	6
95，	± 0.0	8
20	二0．1	12
15	－0． 2	13
10	-0.3	10
5	－0．3	7
± 0.0	-0.3	4
－ 5	-0.5	8
-10	－0．4	8
－15	-0.5	14
－28	－0．4	14
－95	-0.5	12
－38	－0．5	16
－30	-0.5	16
－32	-0.5	16
－34	-0.5	16
-36	－0．5	14
－38．	-0.5	16

The following table contains the results of various thermometer－comparisons mate during the winter of 1872 to 1873 ．In order to eliminate the inflnence of the wind on the bulbs of the instra－ ments，the thermometers were immersed in glass jars filled with absolute alcohol，or in some in－ stances with pure chloroform：

Desiguation of thermometer．	$\begin{gathered} \text { Scal } \\ +450+350 \end{gathered}$		$\begin{gathered} \text { Nrale, } \\ +35-10+30^{\circ} . \end{gathered}$		$+30^{\circ}+0+25^{\circ} .$		$\begin{gathered} \text { S:alt }, \\ +250^{\prime} 10+20^{\circ} . \end{gathered}$	
	Corr	$\left\|\begin{array}{c} \text { No. of } \\ \text { wh. } \end{array}\right\|$	Corr．	No．of ofos．	Corr．	No．of obs．	Cors．	No，of olss．
	\bigcirc		－		－		\bigcirc	
Mercurial psychrometer A，dry bmbl	± 0.0	6	± 0.10	5	± 0.0	7	-0.1	9
wet bolb	二0．\because	6	二0．1	7	二0．2	5	－0．2	6
Mercurial perehrometer B，dry hall	－ 11.	¢	－0．1	9	－0．	y	－0．1	5
Spirit wet bollb	－－1． 3	＊	-0.3	6	－0．3	7	－0．3	6
Spirit－puchrometer，dry bull	－0．7	¢	- －0．7	K	-0.7	－	-11.7	8
wet bulb	－0．9	κ	-0.9	Y	－0．9	$\stackrel{N}{*}$	-1.9	8
Mercurial maximum		6	＋11．3	$1 ;$	＋0．2	5	＋0．3	7
Spirit minimmor．．．．	-0.3	6	-0.4	6	－0．5	is	－0．5	\checkmark

Comparisons-Continued.

Designation of thermoweter.	$\begin{aligned} & \text { Scale, } \\ & +20^{\circ} \text { to }+15^{\circ} . \end{aligned}$		$\begin{aligned} & \text { Scale, } \\ & +15^{\circ} \text { to }+10^{\circ} . \end{aligned}$		$\begin{aligned} & \text { Scale, } \\ & +10^{\circ} \mathbf{t o}+5^{\circ} . \end{aligned}$		$\begin{gathered} \text { scale, } \\ +5^{\circ} \text { to } \pm 0^{\circ} . \end{gathered}$	
	Corr.	$\begin{gathered} \text { No. of } \\ \text { obs. } \end{gathered}$	Corr.	No. of obs	Corr.	No. of ubs.	Corr.	No. of ols.
	-		-		\checkmark		\bigcirc	
Mercurial psychrometer A, dry bulb	-0.1	8	-0.2	8	-0.3	8	-0.3	
Mereurial peselo wet bulb	-0.2	8	-0.2		-0.2	,	-0.2	8
Mereurial psychrometer B, dre bulb	-0.1	9	-0.2	10	-0.2	19	-0.2	11
Spirit psychrometer, dry buib wet bulb	-0.3	9 14	-0.5 -0.8	10	-0.4 -0.8	12 13	-0.6 -0.8	116
wet bulb	-0.9	14	-0.9	15	-1.9	13	-0.8	16
Mercurial maximum ...	+0.3	10	$+0.5$	10	$+0.5$	7	$+0.5$	9
Spirit miuimum .	-0.5	10	-0.4	10	-0.4	7	-0.4	9
Designation of thermometer.	$\begin{gathered} \text { Scale, } \\ \pm 0^{\circ} \text { to }-5^{\circ} . \end{gathered}$		$\begin{gathered} \text { Scale, } \\ -5^{\circ} \text { to }-10^{\circ} . \end{gathered}$		$\begin{aligned} & \text { Scale, } \\ & -10^{\circ} \text { to } 15^{\circ} . \end{aligned}$		$\stackrel{\text { Scale, }}{-15^{\circ} \text { to }-20^{\circ} .}$	
	Corr.	$\begin{aligned} & \text { No. of } \\ & \text { obs. } \end{aligned}$	Corr.	No. of obs.	Corr.	No. of obs.	Corr.	No. of obs.
Mercurial psychrometer A, dry bulb	-			10		11	-0.6	10
	-0.5	14	\circ -0.5		-0.6			
Mercurial psychrometer B, wet bulb bulb	$\pm{ }^{ \pm 0.0}$	14 14	-0.3	11	-0.3 -0.6	11 9	-0.3 -0.5	7 9
		$\begin{aligned} & 14 \\ & 14 \end{aligned}$	-0.4	10 9	-0.3	$\begin{array}{r} 9 \\ 9 \end{array}$	-0.3	9 9
Spirit psychrometer, dry bulb $\begin{gathered}\text { wet bulb }\end{gathered}$	-0.6-0.8	1414	-0.6-0.8	1113	-0.6	1717	-0.6	11
							-0.8	
	$\begin{aligned} & +0.9 \\ & \mathbf{O}_{0.8} \end{aligned}$	69	$\begin{aligned} & +0.9 \\ & { }_{-0.8} \end{aligned}$	$\stackrel{16}{8}$	+0.9+0.7	1013	+0.7+0.9	8 4
Designation of thermoneter.	$\begin{aligned} & \text { Scale, } \\ & -20^{\circ} \text { to }-25^{\circ} . \end{aligned}$		Scale,		$\begin{gathered} \text { Scale, } \\ -30^{\circ} \text { to }-35^{\circ} . \end{gathered}$		$\begin{aligned} & \text { Scale, } \\ & -35^{\circ} \text { to }-40^{\circ} . \end{aligned}$	
	Corr.	No. of obs.	Corr.	No. of obs.	Corr.	No. of obs.	Corr.	No. of obs.
	\bigcirc		-		-0.8	13	-0.8	9
Mercurial psychrometer A, dry bulb	$\begin{aligned} & -0.3 \\ & -0.5 \end{aligned}$	11	-0.6-0.6	99				
wet bulb					-0.6		-1.2	8
Merearial psychrometer B, dry bulb	$\begin{aligned} & -0.8 \\ & -1.2 \end{aligned}$	14	-1.0	9	-0.9	12	-1.5 -2.2	
Spirit psychrometer, dry bulb we...	-0.8-0.9	19	- $\square_{0.7}$	17	$\begin{aligned} & -1.8 \\ & -0.8 \end{aligned}$	18	-0.2	1414
, wet bulb		191016	$\begin{array}{r} -0.9 \\ +0.9 \\ -1.0 \end{array}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	-0.9+1.5	18	-0.8+2.7	
Mercurial maximum Spirit minimum ...	$\pm \pm 0.0$							199
Spirit minimum ...		16			-1.8	14	-2.3	

The following pages coutain the corrected temperatures. In order to get a complete jear, we made use of some hourly observations, comprising the period from August 12 to August 31, 1872, which, however, were not taken at Polaris Baf, but while the vessel was beset in Smith's Sound. From September 1 to November 6, 1871, we have ouly three observations a day, extracted partly from the log-book, partly from some blanks (Form 4), as issued by the United States Army SignalService (division of telegrams and reports for the benetit of commerce). These blanks, which had been filled by Mr. Meyer, were found on board the ship after the separation from the ice-party had taken place. The observations were taken 30 minutes later than their recorded time. The minutes have beeu omitted in the record given hereafter, in order to avoid unnecessary figures.

Up to November 6, 1871, all the observations were taken by Mr. Meyer and the writer, relieving each other iu eight-hour watches. From this date to January 18, 1872, Mr. Meyer observed sixteen hours and the writer but eight. After the 18th of January, Joseph Manch, an intelligent seaman, who had been well trained iu taking observations, began to stand an eight-hour watch, so that the twenty-four hours were equally divided between Messrs. Meyer, Mauch, and the writer,

During the time of the boat-journey north, when Mr. Meyer and the writer were absent from the ship, the observations were taken hy Messrs. Bryan aud Manch.

During the seven months spent at Polaris Honse, Mr. Bryan observed eight hours a day and the writer sixteen. From November 1st to November 16th Mr. Bryan's place was supplied by Mr. Mauch, and during the spring, when the writer was absent on several occasions, Noah Hayes assisted most materially in taking the observations. All the general remarks made in reference to the record of temperature apply edually well to the rest of the meteorological observations. unless stated otherwise.

The sun disappeared October 17, 1871, and re-appeared February 28, 1872, although the faint twilight-arch, the altitude of which was $3^{\circ} 16^{\prime}$ on December 6th at noon, was visible during the whole period of darkness.

NOVEMBER， 1871.

Time．	17	18	19	20	21	22	23	2.1	0.5	26	27	28	29	30	Mermas．
	\bigcirc		\because	\checkmark						3	\bigcirc	0	－	\bigcirc	j
$0^{\text {b }}$	－－－	＋11．$=$	－3．$=$	－ 4.4					－3．14	－1－． 6	－1 -.9	-19.6		－1． 3	－6．13
1	3.1	0.6	3.4	！ 1					299 9	19.4	1－4	19.4		1.4	$\therefore .63$
\because	3.4	0.6	4.1	11.4					？	14．－	18.5	31，${ }^{\text {a }}$		\％	\therefore－ 63
3	1．：	0．－	4.15	111.1					23．－	－11． 6	15.5	311， 3		5.4	\therefore ¢
4	2.1	1.5	B． 4	11.7					2： 4	21.9	11.4	211.9		4.4	\therefore 成
\therefore	ti． T	0.5	6.4	13：2	－15．	－17．1i	-14.5	-21.4	？：1；	$\because: 4$	111.9	16.6	－11．2	5.3	9． 24
1	\％．	0.5	4． 1	15.5					2.9	$\underline{21.9}$	2． 3	1．5． 4		5． 3	\therefore－tia
7	5.7	＋1．6	6.1	12， 1					2： 9	－ 20.2	\because	11.9		4.8	\therefore－ 13
－	$\because \because$	－0．4	10.3	17． 7					24．1	19.4	$\because 4.1$	9.5		4.6	$\therefore .13$
9	6． 0	0.1	10.4	$-1-:$					$\because 4.4$	19.4	$\because 4.7$	6.4		6.0	$\therefore 6.9$
10	5.	－0．4	－10．4						$\cdots 4.5$	20.0	只 9	5． 6		6.15	$\therefore 13$
11	6.9	＋1．4							2－4	17.6	3－4 4	5.4		5.4	－．63
Stum．	6.4	0.4							？ 13	17．4	2． 4	4.4		7.11	$\therefore 103$
$1{ }^{\text {b }}$	4.4	0.9							Si． 4	17．0	$\because 4.4$	3.4		4.4	\therefore－ 0
\because	3.4	＋0．6	-11.4	－ 20	$\because 1.0$	－$\because 0$	$\because: 0$	-24.0	2－． 4	11.7	2． 4	1.6	$+4.6$	8.2	$\therefore 3$
3	3.4	－1．4							30， 3	15．4	23.4	S． 4		$\therefore-$	5.10
4	0.9	3.4							\because	15．1i	\cdots	4.4		9.4	$\therefore 1$
5	－11． 4	1．3						\cdots	$\because 4.1$	16．－	21.4	－1．4		10．－	－ 0.10
6	＋1．1	－6． 2						$\because 1.4$	23	16．4	21.4			11．\because	$\therefore 163$
\％	1.1	＋10． 6						？ 4.4	$\because 4.4$	13.4	21.4			11.4	\cdots
5	1.5	－$\because=$						－2．9	1－． 4	17.4	－8．8			10.1	-6.3
9	1.1	3.4						$\because 4$	$\because 11.3$	$1-4$	？ 31		＋0．6	7． 9	－ 6 ii：
10	1.6	3.4	－10．9					2． 4	14.5	19.4	12.6			$\bigcirc 4$	$\therefore 13: 1$
11	＋1．4	－ 2 ．	－11．1	－13．4	-150	－18．11	－19．0	$-\geqslant 1 . \therefore$	$-1-4$	$-1-4$	－19．4	－ 7.4	－ 1.3	－ 8.8	－－．小
Mealis．	$\cdots 9$	－0．45	－！\％	-1.900	-16.71	－1－．44	－10．1：	－	－	$-1-69$	－21．※i	－ロッ－	－$\because 2$	－15．${ }^{2}$	－ 8.6

JANUARY， 1872.																
Time．	I	2	3	4	5	6	\％	8	9	10	II	12	13	141	15	16
	\bigcirc	\cup	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	0	1.	0	\bigcirc	\bigcirc	0	\bigcirc	0	0
$0^{\text {h }}$	－3i． 4	－35． 4	-20.4	-16.3	-33.4	－ 07.4	$-31 . \because$	-30.2	－in 4	-23.7	－65． 4	－28．9	-29.6	1－24．2	-22.7	-12.9
1	2ti． 4	25.7	21.4	15． 4	33， 1	＇3：1． 3	：3． 1	31.9	36.4	23， 4	26．6	30.3	30.4	$\because 4.6$	29.2	14．9
2		24.7	16．\because	14.8	碞，	30.4	96.4	$\therefore 1.4$	\＃－	3：	26， 4	32.1	30.2	24.1	$\because 9$	16.7
3	\％ 0	？5，5	17.0	15．11	27.3	：30． 4	25.7	20.3	42.4	ザ 4	26， 2	2！． 4	30.16	$\because 7.3$	23． 0	17.8
4	$\because 4.7$	$\because 4.1$	17． 6	$1: 3,3$	$\because 4.5$	26.7	29.4	29.5	4．3． 4	23．${ }^{3}$		$\because \cdots$	ッ8心	第， 4	\cdots	16.8
5	36	$\because 4.9$	19.0	1：．${ }^{12}$	23，	3－3 4	313.5	$\because 27$	44.6	$\because 4.4$	$\because 7$	28．4	2\％．7	25． 1	26.3	17.9
6	24.7	$\because 4.9$	17．	17.7	25.2	$\because 7.8$	30.81	31.6	43． 4	\cdots	\because	$3{ }^{28} .2$	131.6	\％ 4.9	26， 6	16．3
7	30.3	$\because 4.1$	16．	1心吅	\cdots	$\because 6.7$	29.4	ごっ1	42，3	33．2	37	訪！	． 26.6	25.7	26． 3	17.1
8	988	－3： 3	17.8	15．：	19.3	27.1	2． 7	27.9	41.7	？ 3.4	30.2	29.4	27.4	26.4	¢8， 7	17.7
9	9\％． 4	43.4	17.9	21.7	17.7	？$\because 8$	94．7	9！1．6	44.4	23．3． 4	29.7	30.1	26.7	26.1	20．0	16.1
10	45.9	63． 7	17．7	25． 4	21.4	25.9	37.9	\cdots	45.4	$\because 3.7$	30.8	29.9	924	20.0		18.4
11	26.9	44.4	16．2	$\because 6$,	23.4	32． 6	？ 9	$\because-4$	45.5	26.1	：31．3	30.4	29.6	26． 2	28.2	18.2
Noon．	$\cdots 7.8$	？5， 4	17.2	$\because 7.6$	$\because 1.1$	$\therefore 3$	$\because 6$	\because ソ，K	44． 7	$\because 6.2$	－1！ 2	30.7	236．9	26.2	26.2	18．9
$1^{\text {b }}$	26． 4	\because	1\％．4	27.5	曻．	30.4	？7．0	2－2	39.4	26.8	28． 0	30.9	－27． 4	3） 4	＂0．＂	23． 4
2	26.7	17.7	17．	冬 4	25.4	A2． 8	勺7． 4	标禹 6	4？， 4	21.2	$\because \sim$.	－31． 8	30.4	？！． 7	23．4	24．5
\because		1.4	16.1	$\because 2.9$	$\because 6.4$	37.4	\％\％．6	30.11	39.7	26.4	；31． 4	：i1） 4	$\because 3.4$	：4， 3	21.2	25.4
4		15.4	17.1	30.0	\％ 7.7	：it）． 4	6－． 9	3心7	40．	26.6	：3， 7	30.2	－5． 7	26，${ }^{2}$	1！． 4	27.4
5	25， 0	$1 \sim .4$	16．	30.6	$\because 7.6$	89.5	國，	94．7	37.4	27.4	$\therefore 0$	311． 4	（1） 4	64．4	1×4	87.2
6	24.4	15.4	15.4	$\because 0.2$	－94．3	W． 4	98． 5	$\cdots 3.4$	：3i．3	26.6	30.4	：30． 0		$\because 4.3$	13． 4	－99，4
7	24.6	17． 4	1－2	踇 4	$\cdots 3$	\％． 2	2	：33． 1	34.8	26，2	29.7	23.7	？5．9	24.9	12.9	30.8
8	24.4	1．4． 4	12． 4	I？： 1	29.1	30． 2	？4．0	：3， 2	$\because 2.8$	29.7	＊2， 1	：3． 4	$\because 4.4$	5！\％	1\％．4	28.7
9	25.4	12.4	13． 4	irs． 4	36.5	3－2	34.3	\％ 5.4	31.7	29.4	26． 4	29．8	43.9	$\because 1.4$	$1 \because .7$	28.4
10	$\because 6.4$	19．2	17．：	33.9	26.1	30.5	叫6	36.9	23， 4	91． 11	26.0	：20． 7	$\because 4.3$	26.11	12.6	99．3
11	－3．4 4	－19．	-19.1	-35.2	-36.1	－30． 3	－3\％	－3， 4.9	-34.0	-2% \％	-3.6	-311.6	－－4．11	－-2.4	－1in． 4	-25.4
Means．	－26． 44	-3.02	-17.199	-24.38	-26.15	-99.05	－0．0．E4	－314．60	$-39.11: 3$	－05． 3.	－2s． 6 （0）	－${ }^{2} 0.84$	－77， 3	－＂－，30	$\because 1.47$	-21.62

JANUARY， 1872.

Time．	1	18	19	20	21	22	23	21	25	26	97	28	29	30	31	Means．
	\bigcirc	G	\bigcirc	\square	\bigcirc	1	－	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
$0^{\text {b }}$	-23.9	－0． 2	－27．3	－26． 4	-5.9	-7.3	－ 3.4	－21．8	-12.1	－23．4	－23．3	－28．4	－31．4	－ 2.6	4.4	－23． 65
1	？ 7	：30． 3	29	．25． 5	5． 4	7.5	5.2	29.0	15.3	25．8	？3．2	3.6	35.4	8.2	4.3	22．78
2	4．9 9	30.6	29.5	20.5	4.7	7.3	15，6	$\because 3.3$	12．9	30，4	96	26.3	\％5． 2	8.1	4.5	22.77
3	18.7	29． 1	$\because 6$	2．8．2	5.4	－1．4	8.3	$\cdots 2$	19.1	家． 9	$\because 4.4$	是． 7	26.4	9.2	6.9	29．26
4	$1+3$	33.0	26.8	15.4	5.7	＋0．4	9． 3	2：34	$\because 0.4$	－ 5.4	然． 1	$\therefore 4.1$	24.1	10.2	7.1	용．00
5	23.4	30.3	27.9	13.1	6． 1	1.4	10.7	？4，	29．15	20.7	25.0	2－2． 4	2.3	10.7	7.4	21.99
6	23.2	30.3	－2．5 5	13． 2	6.1	1.4	12.4	$\because 4.7$	25． 4	20.2	－5．6	$\because 1.7$	20.9	9.7	7.2	22． 29
7	$\because 4.1$	30.7	26.4	13.4	5． 7	1.5	13． 1	$\because 4.2$	20．9	18．9	27.7	27.5	1\％2	8.6	8.4	2\％． 31
8	27.2	30.5	25.9	13.0	5． 2	3.0	124	21． 2	28.7	17．2	$\%$ \％． 0	23．4	15.5	7.7	9.8	22.11
9	29.0	30.9	吅：	13.9	4.4	2.7	1：3， 1	20． 8	23.6	19．2	27.1	29．7	16.4	1.1	9.9	\％1．96
10	29.4	31.8	25.6	13.4	4.6	$\because 4$	14.7	24.6	24．${ }^{2}$	14.4	26． 5	80， 4	14.6	6.7	10.0	22． 24
11	29.4	30.1	23．3． 7	13.4	3.6	2.3	14．0	17.7	？ 2.4	14.2	34.9	24．4	13.6	8.8	11.9	吹 46
Noon．	31.1	－2	2－8	13．：	3.15	\because	12．4	1．2．4	3．2． 5	14．4	27.9	27.8	14.9	8.8	10.4	22． 29
$1^{\text {b }}$	29.6	27.4	24.5	$1 \because .1$	2.0	2.3	12.	17.9	29.4	14.6	\％1．0	2\％． 5	11．6	6． 6	11.2	21． 71
2	29.4	27．3	26.	11.7	2.6	$\because .7$	12.5	17.9	20.1	15.0	23.1	9\％． 4	14.0	7． 1	11.9	21.64
3	2． 1	29．8	24.8	11.4	2.1	3.0	16.3	14．$\%$	16.0	17． 4	25.2	38.3	13.4	7.2	11.6	21.77
4	29.4	30.9	26.6	10.8	1.6	3.3	$1 \mathrm{H}_{2}=$	15.4	15.4	\％1．0	\％ 4.9	31.6	12．83	9.2	14.1	21．36
5	29.1	24.7	546	9.9	1.3	3.0	19.8	15.8	16.4	（2）． 4	$\therefore 7.4$	30.5	12.5	8.8	15.	21.97
6	2． 2	29.9	26.1	9.0	1.5	3.3	20.8	14.4	20.9	$\because 3.4$	25.4		13． 4	8.4	12.8	枵． 17
7	27.2	24.9	84.0	8.3	1.6	4.4	20.4	13.7	23.9	23．3	29.4	32． 1	13.4	11.3	14.0	政 30
8	27.2	21.9	22． 6	9.	1.3	4.3	21.9	13.4	$\because 1.1$	23.4	28.4	31.3	10.5	6.2	$1 \therefore 5$	哭 46
9	27．4	29.4	24．5	7.6	1.9	3.6	20.3	14.4	－7．3	18.7	26.8	32.0	10.6	3.6	12.3	21． 82
10	级 8	足 4	25．8	\％． 1	$\because 4$	$\because 4$	18.1	11．α	25.5	18.7	96．6	30．：	10．3	3.4 -5.9	13.8	21．70
11	-29.6	-27.5	-26.7	－6． 2	－4．7	＋1．4	-18.6	-11.4	－36．2		－26i． 3	－37． 4	－8．8	－5．9－1	－16．9	－ 01
Means．	－20．59	－39． 44	－26．09－	－13．30	－3．76	＋1．14	－14．0）	-18.76	-21.72	-20.51	－25， 30	－28．00	-17.18	－7．88－10	－10．38	－22． 23

FEBRUARY， 1872.

Time．	17	18	19	20	21	22	23	21	25	26	27	28	29	Means．
	\cup	－	－	\bigcirc	\bigcirc	\bigcirc	\checkmark	，	\cup	－	\checkmark	\bigcirc	\bigcirc	\bigcirc
$0^{\text {b }}$	-26.3	－7．1	-5.8	－20．	-26.7	－：4．6	－ 37.4	－：！1． 4	－24．7	－6．6	－19．${ }^{\text {a }}$	－23．0	－13．7	－22． 23
1	24.4	＋0．6	5.5	20．5	27.0	： 3.9	：30	湿	？ 3.5	（i．） 4	20．${ }^{1}$	29．9	14.7	22．23
2	$\because 4.3$	6.8	5.7	20.9	？2． 6	33．－	3 7	2： 2.6	－1．9	6.7	19．3	¢3．2	15.2	22.34
3	27.1	6.1	6． 6	23． 1	26.9	35． 9	39， 4	\％ 1	$\cdots 1.1$	\％． 4	20， 3	－2．9	15.4	22.34
4	27.4	5． 6	6.9	23.7	20．	：31．4	41.4	34.4	19.4	4.6	25.7	21.9	15.9	23． 04
5	$\because 7.9$	5.0	7.4	24.4	27.4	3560	1．2． 4	3i3． 4	1－． 6	3.9	30.4	20.4	16． 4	23． 27
6	$\because 2$	＋0．6	R． 6	95． 4	30.2	37.2	3×4	36.4	17.7 ｜	11． 1	32.4	19.4	16.6	23． 38
7	2．${ }^{2} 1$	－1．1	9.2	2．5．8	S 3.4	3i．${ }^{\text {a }}$	41.0	24． 4	16.15	12.7	30.4	$1 \times .4$	16． 8	23．37
8	20． 4	1.9	10.4	$\because 6.4$	3：2	2\％．4	（19．0	－： $3 .: 3$	15：${ }^{\text {a }}$	14.4	29．${ }^{2}$	17.9	17.2	23． 37
9	30． 2	2.4	11.1	21.9	34.7	［3\％． 1	3.36	－3．3	14.3	14.4	30.4	19.1	18.4	23． 59
10	：30． 4	1.4	11.5	26.9	35.9	3174		：3．9	14.2	14.9	20． 7	19.4	19.2	23． 26
11	313， 4	1.6	13.1	26.8	346	：17．0	澋9	31.4	13.2	17.1	21.5	18.9	19.4	23． 38
Noon．	294	2.0	15．0	26.6	36.4	：15．0	；$\because 1$	ini． 1	16． 4	1－：$:$	21．2	17.4	21.9	24．03
$1{ }^{\text {n }}$	27．9	1.7	16.3	26.4	33.7	211． 61	：	： $3:$	15.5	17.4	17.9	16.9	23.4	23． 71
？	紫． 6	1.6	18.1	26.3	32.2	36 F	34.4	3． 4	14.5	$1 \cdots \%$	$1 \times .8$	16.6	25． 2	23． 47
3	$\cdots 3.6$	2． 4	17.4	2li， 8	31.3	：3， 6	310.11	：\％．6	1：3．6	20．0	17.8	16.6	26.4	23． 41
4	21．4	2.4	19.4	27.5	32．9	37.7	碞． 10		12． 1	？ 0.8	19.31	17.6	27.9	23． 62
5	21.8	3.11	20．7	27.8	31.4	：-2	\％ 4	\％3．0	11．\because	$\because 1.8$	22.4	17.4	29．9	23.91
1	19． K	3.6	19.9	$\xrightarrow{2} \times 0$	31．2	： 2.4	㤩号	：31．4	11.9	\％er	－	15．	30.4	24.08
7	12.7	3.8	20.7	$2 \sim 4$	31.9	：17．3	31.4	－	11．3	$\cdots 2$	24.2		31.2	24． 12
8	12.4	4． 1	19.9	20．4	31.5	$\therefore \times$	31.3	314	10.9	21．	2：3． 4	14.8	$32 \% .1$	23． 83
9	15.6	4． 4	20.7	27.9	31.4	：－4．4	30． 7	－ 0.0	10.5	－2．9	22.7	14.7	32.9	23． 28
10	15.4	4.5	23.1	27.6	3：2	：3\％	29.5	－	$\therefore 8$	21.5	2． 6	14.3	34.4	24）．83
11.	－14．0	－5．4	-22.3	-28.4	－31．0	$-3-5$	－29．1	－ 41.2	－ 8.6	-1.0	－20．3	－12． 4	－35．6	－22． 60
Means．	－24，33	－1．24	－13， 97	-5.95	－31．24	-36.81	－3i） 1	－30：	$-1.5,4$	－15．81	-3.20	－18．22	－22．89	-23.28

APRIL， 1872.

Time．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1.5	16
	，	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {h }}$	＋0．4	－ 4.9	－2es． 4	-17.9	－19．，	－10．0	$-10 . \%$	－1．9	－6i． 7	－10．6	－17．7	－9．8．	－31．3	-27.6	－2゙9 9	－36，9
1	-11.1	4．3	24.7	15.3	$\because 1.1$	1：3， 6	12.4	4.6	1.9	10.5	12.1	20.3	2－4	：31． 1	$\because 6.0$	景吕
2	＋1）：	3.1	吅：	1：3．4	298	1 c .4	16.9	4．${ }^{\text {H }}$	7.4	11.6	$\because 1.7$	311． 1	？ 3.9	31.7	2－2	呺 4
3	11.6	1.	\because	17．1	$1 \times .9$	1＊．0	13．6	$\therefore 11$	7.9	$1 \because 1$	$\because 1.3$	33． 7	17.4	：3：3	34.4	\because
4	（1） 6	1.1	$\because 0$	21． 2	15．	14.9	13．9	4.7	7.4	11.9	$\because 1.7$	$\because 2$	127	：30：	21.0	－2，
5	11.1	1.7	$\cdots 4$	11.1	12 i	$1 \because 4$	7.9	4． 4	（1． 7	14.9	30．	－3． 4	12.6	？${ }^{6}$	19.1	23.4
6	1． 11	2.4	$\because 4.1$	11.9	11.7	12．3	（1．） 0	4.3	（i． 1	14.7	19.1	2．2	19.9	211．8	111.7	$\because 1.9$
7	1.7	7.1	21．4 4	7.4	9.1	7． 1	6.1	3.4	$\therefore .4$	14.1	15：	\％1．	19.4	311． 4	21． 2	\because
8	2.1	$1 \because 1 ;$	19：	7． 1	18．$\%$	7．0	0.7	$\because 4$	4.9	14.1	14． 6	20.2	18.4	14.4	$1 \therefore .4$	1×4
9	3.4	10.4	16．）．	9.19	13．6	5.4	3.7	$\because 1$	4.4	14.1	15.11	20． 4	17.9	14． 1	14.5	11.1
10	1．5	10.6	184	11． 4	5.4	4.4	7.4	－3． 4	3.4	1：3．1	12.7	23.4	1．4． 4	61） 4	11.7	15.1
11	$\because 1$	10.4	12：	110，－	5.4	5． 8	13． 4	＋11． 4	$\therefore 1$	12.9	14.1	21.4	17.4	19.1	11.4	13．4
Nom．	＋11． 6	10． 4	10.4	10． 4	4.4	7.4	7.4	＋（1． 9	$\therefore 1$.	10.4	11．9	$\because 11.4$	16.4	19.1	13.4	14.7
1^{11}	± 10.0	12．0	12． 3	7.4	4.4	＋ 3	1i．－	-2.4	Br	9.6	1：3．	19.9	14.9	17，：1	14．11	14．${ }^{\text {j }}$
2	＋11． 4	11.7	13．3	111.7	4.4	－． 0	1i． i $^{\text {a }}$	（i． 3	：1． 7	9.0	12． x	19.4	15．9	$1-.7$	13.19	14.3
3	＋0．4	$1 \because 1$	10.7	1！2	3． 3	7.7	5． 4	6．6 6	4.0	－． 9	12.4	$\because 1.6$	15．${ }^{2}$	19.4	14．：	15． 4
4	-1.6	11.8	14．11	15．0	4.11	7．： 3	3.9	3.9	4． 4	11.9	14.0	$\because 1.0$	15.5	21.0	14.4	15.6
5	\cdots	16.5	13． 1	11.5	$4 . \because$	7.3	7.9	4.9	（i．） 4	11．\because	1．）． 4	21． 2	14.9	20.0	12.9	15.4
6	$\because 1$	17.9	90．5	19.4	$4 .: 1$	$7 . \because$	5.11	4.5	（i． 6	11.4	16.4	$\because 4.4$	$1 \therefore 6$	12：	12.9	$16 . \%$
7	2.4	21.3	19.5	$\because 1.11$	4.3	\％．9	5， 3	4． 4	7.4	12． 2	$1-11$	23）！	15．9	19.4	14． 3	18.6
V	2.4	21.5	19.6	19.1	4.5	7.9	3.8	4.0	7.4	14.1	19.4	28.6	1s：	19.9	16.9	19.1
9	： 1	814．4	16．1	13． 1	4.4	8.3	3.4	4． 4	7． 4	15.9	1×2	$\because 2$	30.4	19.1	17.4	19.4
10	4.7	25：－	17.4	12 is	7.7	\cdots	4.11	$\therefore .4$	$\therefore 1$	16． 4	19.1	\％－9	21.7	$\because 4.4$	12.4	$\because 1$
11	－1． 1	－2． 0	-19.6	－1＊． 2	－ 4	－ 8.8	4.7	-6.4	－2．3	$-1 \% .0$	－ 21.5	－30． 1	－84．9	-26.7	－23．6	－－24．3
Means．	－0．34	-11.49	-1×8	-13.59	－8．94	－9．3．4－	－ 7.89	－ 3	． 911	-10.95	-16.73	－24．：i7	12.	22.10	－21）． 42	－19．76

APRIL， 1872.

Time，	17	18	19	98	21	22	23	24	25	26	27	98	29	30	Means．
	0	0		U	U	\bigcirc	\bigcirc	0	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1
$0^{\text {b }}$	－28．：	－ 0.4	－21． 4	-80.4	－6． 6	＋18．1	＋12． 1	＋12．6	＋2． 1	－4． 7	－9．1	－6．5	－ 2.0	＋2． 2	－11．24
1	33， 1	必枵	1－．	？ 1	i． 5	17.1	12.9	$1 \because .5$	0.6	3.4	E．-	6． 17	－ 0.3	9.9	11．92
2	：37， 3	－9．4	17.9		4.7	16．${ }^{\text {\％}}$	14．1；	1：3	＋0． 1	4.0	$\therefore 7$	6.7	＋ 1.1	1.6	12.21
3	31.4	2－5	17． 1	19．2	3.7	16.9	14． 3	13.0	－19．8	9.8	7． 4	$4 .!$	1． 1	0.9	11．89
4	31．！	36.4	17． 1	18． 5	$\because .7$	16．1i	13．3	11.9	＋ 0.2	9． 2	6.2	8.5	4． 13	0.9	10． 144
5	23.1	21.9	15．4	17.9	1.8	15.7	13． 1	11.7	－1． 1	0． 2	4.4	－1．${ }^{\text {\％}}$	$\therefore 5$	1.1	3， 310
6	－	3－19	11.4	17.5	－1．${ }^{\text {a }}$	15.1	$1 \because 6$	11.4	11.1	－0． 1	－1． 3	＋0．9	$\therefore 7$	1.9	\cdots
7	20．4	$\because 1.0$	10.7	1：311	＋ 11.	115.3	1：3． 13	$1 \because 6$	0.7	＋0． 4	＋（1．6 6	4.1		$\because 6$	\％． 71
\checkmark	19.1	17.2	111． 4	12.4	＋ 1.6	16．6	13.6	11.9	$0 .=$	4.6	3.5	5． 1	$\therefore 10$	4.8	13.93
9	19.0	15． 1	2． 5	$11 . \%$	－11．1	13.6	1：3． 15	13，5	0.9	3.11	3 B	7.15	11.6	5.6	5． 37
10	15.4	14．4	7.4	15． 4	$+26$	16.3	1．1．6	13.3	0.9	B． 5	3.6	7.6	9.	4.8	4.93
11	14.9	12.	3.4	9.4	1． 3	16．：	14．6	13.1	1．${ }^{2}$	5． 0	$\because 6$	6.1	10．－	4． 6	4． 11
Nom，	14.4	13．4	（i．$\overline{7}$	0.4	1.9	1N． 8	14．1i	14.6	1.4	4.4	$\because \mathrm{E}$	7.5	9.4	3.6	4.23
$1{ }^{\text {b }}$	14.4	1：3．	（i．） 9	0.9	1.15	13．8	14．：	15.5	$\because 4$	3.4	2.	4.1	1.4	$\therefore 1$	4． 66
2	16．0	1～＂	7．3	9.15	1.4	14．9	1．8．3	14.6	3．	2.9	2.4	2.6	10.2	1.8	5． 11
3	19.0	14.8	9.0	7.9	$\because .4$	1－8． 9	15， 1	13.4	3.6	9.2	2.4	3.7	9.6	3.1	\therefore－
4	$1-.4$	1：89	11）． 1	6.4	5． 1	15． 6	14.6	$1 \because .5$	S． 4	1.3	0．${ }^{\text {a }}$	$2 .-$	10.1	1.8	5． 59
5	？ 6	16． 7	9.7	6． 4	（1．）－	17.7	14.1	13．9	4.1	$0 . \stackrel{2}{\sim}$	$+0.5$	2.1	9．－	1.6	ti． 14
6	－ 4	21． 4	19.7	51， 6	111.4	$1 \because 6$	14.4	13． 0	4.6	＋0．4	－1．1	2.4	8.1	＋0． 4	6．－－ 3
7	23． 4	$\cdots 19.4$	$\therefore \because$	S．i	11.1	11.5	13．${ }^{\text {i }}$	11.1	3.7	－1． 7	2.2	1．： 3	7.0	-1.7	7．13
8	25.0	19.	9.	7.9	14．1：	$1 \% 8$	13．0	－	4.1	$\because .3$	3.6	＋0．3	5.6	－ 4	$\therefore 19$
9	24.4	924 4	11.4	5.4	15，if	11.5	13．	6.6	4.4	4.7	5.7	－0． 3	4.4	2.4	－． 30
10	$\because 5$	12． 3	16.7	－ 6	13.1	1． 9	1\％．9	5．19	$4 . \because$	\％，	5.8	1.9	4.1		
11	－2\％．6	-17.7	－ 4.7	－ F ，	＋120	＋11．19	＋13．11	$+3.6$	－4．3	－ 96	－1i． 6	－1．${ }^{\text {r }}$	$+2.5$	－4． 4	－10．-2
Means．	－23． 18	－19．55	$1 \because 17$	12.11	＋4． 3 \％	$+15.06$	＋1\％	＋11．	－1．9\％	－0． 43	－1．90	＋1．11：	$+6.41$	＋1．3	－ 7.75

JULY, 1872.

Time.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
$0^{\text {h }}$	+47.6	+37.9	+51.1	+47.8	+48.9	+42.2	+39.3	+37.8	+37.9	+39.4	+40.7	+36.3	+38.9	+34. 6	+36.6	+37. 7
1	48.9	35.5	50.2	48.0	48.7	42.0	40.0	37.0	38.3	39.7	40.3	3\%. 1	38.5	34.6	36.4	37.1
2	46.8	34.8	49.9	47.3	48.4	41.8	42.2	36.9	38.9	39.5	39.9	40.6	38.6	34.5	36.7	38.0
3	49.0	35.0	46.8	47.5	48.2	41.5	43.6	36.2	39.7	40.0	40.2	39.6	38.6	34.0	36.3	38. 5
4	$46 . \underline{y}$	35.0	43.6	47.5	47.0	41.3	44.0	35.1	40.5	39.6	40.6	40.6	$3>1$	33.8	36.3	38. 5
5	47.8	36.8	44.6	47.7	47.6	40.9	43.7	36.0	39.9	39.8	40.2	39.1	37.6	34. ${ }^{2}$	37.0	39.7
6	46.2	37.8	42.8	47.0	48.0	40.5	42.9	35.9	40.2	33.9	39.9	44.6	37.6	34.5	37.1	40.4
7	45.8	37.4	44.6	46.8	48.2	40.3	42.5	37.0	40.5	39.0	38.8	45.1	37.9	35.1	37.1	40.6
8	48.5	37.0	53.0	46.3	48.5	39.7	42.2	36.8	40.7	$3 \times .7$	39.2	47.4	36.6	35.6	37.4	40.0
9	49.1	37.3	53.0	46.0	49.0	39.5	41.7	36.5	39.8	39.2	39.7	45.9	37.6	36.1	3®. 1	39.6
10	47.3	39.5	44.8	45.9	49.6	39.0	41.5	36.9	39.7	39.6	38.9	46.5	38.1	35.9	36.7	38.0
11	50.1	50.1	44.8	45.7	49.9	38.6	41.0	37.0	40.2	41.0	38.9	39.9	38.5	37.2	36.3	39.6
Noon.	48.1	49.6	43.7	45.4	50.2	38.2	40.8	36.7	40.5	39.9	39.5	41.6	38.8	37.5	36.4	41.4
$1^{\text {L }}$	51.1	49.3	44.1	45.5	50.8	37.9	39.7	36.0	40.8	39.8	39.3	39.4	37. 2	39.0	36.6	39.6
2	51.8	51.9	41.9	44.5	51.5	37.7	39.0	35.6	40.8	39.2	39.3	39.6	39.1	39.2	37.4	3*. 6
3	51.8	51.4	42.9	44.8	51.0	38.2	39.2	35.8	40.2	40.0	38.9	39.4	37.4	37.9	37.0	39.0
4	51.8	51.4	41.3	45.3	49.9	38.4	38.9	36.0	39.9	40.3	39.0	38.5	37.3	37.2	37.0	39.0
5	52.1	51.0	42.8	46.1	48.6	37.6	39.5	36.4	39.7	40.7	39.1	3 3 .0	36.4	36.6	36.5	:-2. 4
6	52.3	51.0	41.8	47.4	45.4	37.4	39.5	36.7	:90. 8	41.0	38.7	37.9	35.6	36.5	37.5	:3. ${ }^{2}$
7	46.1	50.8	48.2	46.9	44.2	38.0	38.9	:11. 5	40.0	41.3	38.4	37.9	35.6	36.8	36.5	37.0
8	44.2	50.9	48.3	49.4	43.4	37.2	39.3	314.8	39.6	41.7	38.3	37.7	35.6	36.1	36.5	37.1
9	41.6	$49 . \%$	17.8	50.3	4.8	37.0	39.0	36.9	39.0	41.9	38.1	$3 \times .5$	35.9	35.5	36.6	37.3
10	41.9	50.5	49.1	49.8	42. 6	38.1	38.6	37.2	38.9	41.5	37.5	$3 \times .0$	34.6	35.9	36.6	37.6
11	+43.4	+50.9	+47.9	+49.7	+42.0	+38.6	+38.2	+37. 5	+39.2	+40.9	+36.8	+38.4	+34.6	+36.1	+36.9	$+36.3$
Means.	+47.92	+44. 2 S	+46. 21	+47.05	+47.68	+39.23	+40.63	+36.55	+39.78	+39.36	+39.19	+40. 29	+37. 2.2	+36. 35	$+36.81$	+3\%.63

JULY, 1872.

Time.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Means.
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
$0^{\text {b }}$	+35.9	+36. 6	+37.9	+35.5	$+43.5$	+41.6	+39.7	+41.6	+35.9	+39.6	++39.6	+41.6	+38.6	+39.6	+38.9	+39.04
1.	35.4	36.8	37.5	35.6	41.6	42.1	39.2	39.0	35.8	37.3	39.1	41.6	38.9	39.6	39.6	38.75
2	34.7	37.1	37.2	39.8	42.0	42.4	37.6	38.8	35.6	37.3	39.6	42.1	38.3	39.9	39.8	38.93
3	34.7	36.3	37.4	40.5	45.3	42.1	38.1	39.9	35.9	38.6	39.8	42.0	39.6	39.6	39.4	39. 16
4	33.8	35.9	37.7	41.3	+1.7	42.1	38.8	39.5	35.6	39.2	40.0	44.4	39.7	39.1	38.4	38.93
5	33.7	36.4	37.4	37.1	42.6	12. 6	39.6	39.7	37.0	38.8	39.4	47.4	40.3	39.4	38.8	39.12
6	33.8	36.4	37.6	36.3	44.9	43.2	39.8	39.4	39.6	41.6	39.6	44.4	44.1	38.8	39.1	39.45
7	33.6	36.4	37.7	40.5	47.2	54.3	39.2	39.2	42.3	38.6	39.4	46.4	45.0	37.6	37.1	40.02
8	34.6	35.9	3.1	44.6	46.7	45.3	40.1	39.3	40.8	42.7	39.6	41.9	47.1	37.6	37.1	40.29
9	34.6	35.9	37.6	37.6	45.9	45.2	38.3	39.2	39.6	42.1	41.2	43.2	47.6	37.5	37.9	40.03
10	36.1	35.9	3ヶ. 3	38.1	46.4	44.8	37.6	38.8	41.0	41.2	44.1	45. 1	49.3	38.7	37.9	40.04
11	37.6	35.8	37.6	39.7	45.7	46.2	38.3	38.6	41.7	42.6	44.6	43.2	47.4	39.1	37.9	40.48
Noon.	37.3	35.4	37.4	38.6	45. ${ }^{\text {® }}$	41.8	38.3	37.6	42.4	45.5	44.8	44.5	47.0	39.6	37.8	40.33
$1^{\text {h }}$	38.0	36.1	37.6	38.1	43.6	42.2	37.6	37.2	43.2	$4 \cdot 3.6$	47.6	44.3	45.8	39.4	37.8	40.23
2	34.3	36.0	37.6	39.4	43.0	41.6	37.4	37.2	44.0	45.6	44.6	45.4	44.8	37.9	38.1	40.26
3	34.1	36.6	39.4	38.7	45.1	40.6	37.1	37.4	44.2	41.9	43.4	44.7	42.4	37.6	3-6 6	40.02
4	38.4	$3 \therefore 0$	41.4	40.0	42.8	42.0	36.6	37.3	38.5	4.2	15.2	4:. 1	44.4	36.6	:38. 9	39.85
5	39.4	38.8	39.6	40.6	42. 6	40.6	35.8	37.6	38.8	40.1	45. 8	41.5	44.0	37.5	37.8	39.68
6	38.4	37.6	40.4	41.6	43.8	40.6	37.1	$3 \times .8$	37.7	40.6	44.4	42.3	44.5	37.6	38.7	39.68
7	37.9	37.9	40.8	39.8	43.6	39.6	37.1	37.9	33.0	39.4	44.6	41.6	43.6	37.1	37.7	39. 15
8	37.7	38.4	41.3	41.0	44.6	40.6	37.8	37. 6	32.4	39.6	43.6	40.7	42.9	37.6	37.6	39. 21
9	38. 2	38.0	40.6	39.6	43.6	39.6	36.4	32. 6	37.5	40.1	43.2	$33^{2} .1$	40.1	38.4	37.3	: 3.95
10	37.8	37.6	41.9	42.1	43.9	40.0	37.6	23. 6	38.8	3). 4	43.0	38.3	39.9	38. 2	36.4	39.06
11	+37.1	+37.9	+39.6	+ +1.9	+43.9	+39.3	+37.6	+36.6	+49.6	+38. 6	+42.2	+39.1	+39.7	+38.1	+35.8	+39.20
Meaus.	+36.46	+36.82	+38.73	+39.50	+44.28	+42.52	+38.03	+3\%.54	+38.74	$+10.63$	+42.43	+42. 74	+43.10	+38.42	+38.10	+39.58

3 TA

AUGUST， 1872.																
Time．	1	2	3	4	5	6	翗	8	9	10	11	12	13	14	15	16
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc
$0^{\text {b }}$	＋35．2	＋38．0	＋37．6	$+34.8$	＋10．6	＋36．6	＋35．9	$+36.8$	＋38．2	＋39．6	＋35． 4	＋33．1	＋30．8	＋30．6	＋33．4	＋32．3
1	36.4	38.6	37.8	34．3	40.8	36.6	36.9	36.9	38.6	37.1	33.1	32.9	30.6	30.8	30.9	33.7
2	36.0	$3 \times .9$	$3 \times .3$	34.6	41.0	37．8	36.9	36.9	38.3	37.0	32.5	31.9	30.6	33.6	29.6	32． 1
3	38.6	39.6	37.8	36.9	40.6	38.6	36.3	36.4	39.8	38.6	36.5	37.4	31． ¢	31.8	29.9	32.7
4	36.3	38.8	37.9	39.1	41.6	40.9	35． 6	35.3	40.1	42.0	39.6	38.6	36． 1	31.5	30.2	33.4
5	34.6	40.1	32． 4	35.8	44.8	40.8	35.4	35.4	41.3	43.6	46.3	42.4	36.5	32.6	30.4	34． 1
6	35.3	41．	39.4	36．${ }^{\text {a }}$	$4 \because .5$	39.4	35.8	35.3	41.1	42.2	41.9	40.2	34.1	34.4	31.4	－34．8
7	36．\downarrow	42.4	40.0	36.8	40.0	37.6	36.6	36.1	42.6	42.4	38.6	45.6	37.2	37.0	32.2	36.0
8	35.2	43.2	41.0	43.1	45．2	38.9	36.6	37.2	44.4	42.2	44.2	43.3	40.6	34.8	33.6	－ 39.6
9	37.7	41.7	39.1	44.6	45.7	43.2	36.1	40.9	43.6	42.2	46.1	43.6	39.4	36.4	34.0	35.0
10	39.6	40.9	39.3	48.5	44.2	45.4	38.3	45.0	43． 2	42.8	47.6	46.1	38.8	36.7	34.4	37.6
11	37.9	40.6	39.1	49.4	45.1	38.9	37.6	39．2	43.8	42.6	46.5	45.9	36.6	36.6	39.8	36.1
Noon．	39.5	41.6	38.9	49.0	43.6	39.9	37.9	40.3	49.6	41.2	47.0	44.6	37.9	37.4	36.6	35.9
$1^{\text {h }}$	38.6	43.4	39.6	49.6	43.6	40．6	38.6	39.4	45.6	41.6	45.4	41.9	42.9	35.8	36.3	35.1
2	40.3	41.9	39.0	52.4	42.3	36.9	38.0	39.9	44.4	40.6	－ 38.3	41.9	44.6	34.8	35.8	34.8
3	38.6	41.9	40.0	48.3	43.1	39.6	37.9	39.9	42.0	37.7	37.1	38.6	43， 1	35.6	35.4	34.3
4	40.3	40.6	38.6	40.6	41.8	36.8	39.4	39.1	42.5	45.6	37.4	35.8	39.3	35.2	35.2	32.8
5	40.2	40.7	37.8	41.1	41.6	37.1	39.1	39.8	42.3	37.5	36.1	40.0	33.2	34.4	34.9	32.4
6	38.8	41.2	37.6	43.8	40.4	38.4	39.5	39.8	43.8	37.2	33.6	33.4	33.5	35.3	37.1	32.1
7	41.0	39.3	36.4	41.5	38.9	38.1	39.0	40.4	43.1	35.0	32.8	30.6	33.8	35.1	36.6	32.0
8	39.1	$3 \Varangle .5$	36.0	40.6	40.4	37.2	37.1	40.9	42.6	34.9	35.2	32.7	32.6	35.9	36.1	32.4
9	39.7	38.6	35.2	40.2	39.3	37.6	37.6	40.6	43.1	36.3	34.6	31.5	32.7	35.9	34.6	32.4
10	39.2	37.6	34.5	40.1	37.6	36.8	37.0	38.0	44.1	35.9	33.8	31.6	31.2	35.2	33.6	31.7
11	＋38．1	＋37．2	$+34.5$	＋40．0	＋36．6	＋35．6	＋37．4	＋39．1	＋40．8	＋34．9	＋33．9	＋30．7	＋31．6	＋34． 4	＋33．0	＋30．7
Means．	＋38．04	$4+40.29$	＋38．08	＋ 41.86	$+41.97$	＋32． 73	＋37．35	$+38.69$	＋42．16	＋39，61	＋38．89	＋38．09	＋34．15	＋34．66	＋33．96	6＋33．92
AUGUST， 1872.																
Time．	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Means．
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	c	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {b }}$	＋31．9	＋31．1	＋29．6	＋33．9	＋33．7	＋31．4	＋34， 3	$+29.1$	＋26．9	＋25．6	＋31．6	＋27．6	＋28．9	＋26．9	＋31．3	＋32．99
1	31.6	30.6	29.1	34．：3	33． 6	30.6	33.9	以上， 1	26.6	25.6	30.0	27.6	28.3	25． 8	32.1	32．70
2	31.0	30.9	29.3	34.4	34.1	31.3	33.9	2－6． 6	27.0	26.6	29.6	27.6	28.3	27.4	32.3	33． 17
3	31.3	30.9	29.4	34.1	32.6	3.3	33.6	99.4	27.4	27.8	29.4	22． 6	28.3	27.8	32.3	
4	32.2	30.7	29.4	33.3	32.6	32.1	33.4	29.4	26.	25.8	28.8	27.5		25.6	32.3	33.83
5	33.0	31.2	30.4	33.3	33.8	32.8	33.3	30.5	47.8	26.5	30．6	27.8	28.6	26．${ }^{\sim}$	32．2	33.72
6	33.2	31.6	31.1	34.3	34.4	33.1	33.8	32.4	31.8	27.6	32.0	29.7	29．8	27.6	32.6	33．62
7	33.6	32.1	32．2।	｜ 36.2	36.1	33.4	33.6	35.0	32.6	29.1	33.4	29.8	32.1	28.8	33.6	33． 91
	34.8	32.9	34.2	35.7	3.3	33．9	35.9	36.7	36.4	30.8	35.6	32.6	30.3	29.8	33.7	35． 05
9	34.9	31.1	34.1	31.2	42.9	35.5	34.1	38.0	37.6	31.2	35.4	33.6	31.7	30.6	33.6	36． 29
10	34.4	39.8	35.2	35.5	46.9	35.8	35.9	39.9	41.8	32.5	36.6	35.4	33.0	31.0	33.8	36.77
11	34.6	43.1	39.3	35.4	42.7	34.9	36.7	38.5	43.4	33.1	37.7	34.9	33.1	33.8	35.9	39． 23.3
${ }_{\substack{\text { Noon．} \\ \text { 14 }}}$	36.6	45.3	40.6	36． 1	42.3	34.6	37.9	3.1	3×4	32.6	39.6	38.9	35.8	37.6	35.9	39． 09
1_{2}^{4}	36.6	44．9	41.6	\cdots	$4: 1.9$	34.1	37.9	38.4	41.3	33.3	38.4	40.3	37.3	35.8	35.9	39． 46
2 3	36.9	43.9	39.3	31． 6	40.8	34.3	3s．0	39.4	36.6	34.6	40.0	40.3	39.9	40.9	35.9	39.78
3	36.1	43.6	35.6	31．8	37.4	34.3	36.4	39.6	35.8	34.9	39.3	42.3	38.0	39.8	36.9	3943
4	35.3 35	49.4	$4: 3.1$	36.3	35.0	34.4	35.9	36.3	32.1	35.0	39.0	39.5	36.3	33.0	36.6	38.71
5	35.9	44.1	43.7	41.6	33.1	34.4	36.0	36.0	31.6	35.4	39.6	40.0	38.3	32.1	36.6	37.72
6	35.0	41.9	41.1	37.9	35.6	34． 2	35.3	34.1	31.4	35.6	40.0	35.6	38.8	35.1	35.3	37． 63
7	34.5	39.8	34.4	35.5	332.8	33.9	33.8	32.0	30.0	33.9	35.4	33.5	31.6	34.8	34.3	37.17
8	33.0	35.8	36.4	34.8	31.9	33.7	32.6	31.0	28.7	34.6	30.5	32.1	31.3	31.6	33.6	35.61
9 10	33.2 39.3	33.0	34.4	33． 2	31.2	33.7	31.6	29.7	38.5	31.6	29.6	31.4	30.4	30.6	32.1	34． 94
10	$\begin{array}{r}32.3 \\ +31.6 \\ \hline\end{array}$	32．1	33．0	3：27	31.0	33.6	30.4	28.6	27．6	31.5	28.7	29.8	30.4	30.2	32.4	34． 33
11	＋31．6	＋29． $\mathrm{i}+$	＋34．6＋	＋31．9	31． 2	＋33．5	$+29.4$	＋27．6	＋26．1	＋31．9	＋27．9	＋29．8	＋28．9	＋30．5	＋32．6	33． 62
Means．${ }^{\text {d }}$	＋33．89＋	$+36.73+$	＋35． $05+$	＋34．82＋	＋33i． 14	＋33．58	＋34．48	＋33．56	＋32．25	＋31．10	＋34．11	＋33．18	＋32．41	＋31．41	＋33．91	+33.06 +35.91

From the preceding record of temperatures it will be seen that March was the coldest and July the warmest month of the year．The absolute minimom of－ $45^{\circ} .5$ occurred in Jannary and the absolute maximum of $+53^{\circ} .0$ in July．

The following table contains the absolute maxima and minima as observed in each month，giv＊ ing also the day and hour of occurrence：

Montbs．	Maximum．	Minimum．	Day of maximum．	Hour of maximum．		Day of minimum．	Honr of minimum．	
	\bigcirc	－						
January	$+4.4$	－45．5	23		$7 \mathrm{p} . \mathrm{m}$.	9	$11 \mathrm{a} . \mathrm{m}$ ．	
February	$+6.8$	－42． 4	18	$2 \mathrm{a} . \mathrm{m}$ ．		18	5 a．m．	．．．．．．．
March．－－	＋ 4.6	－45．2	28 and 30		1 and 4 p．m．	3	$10 \mathrm{a} . \mathrm{m}$.	
April	＋19．6	－33．2	21		$10 \mathrm{p} . \mathrm{m}$.	14	$3 \mathrm{a} . \mathrm{m}$ ．	
May．．．	+32.6 +48.6	-9.7 +25.6	21 30	$7 \mathrm{a} . \mathrm{m}$ ．	$2 \mathrm{p} . \mathrm{m}$.	4	$1 \mathrm{a} . \mathrm{m}$ ．	$11 \mathrm{p} . \mathrm{m}$.
July	+48.6 +53.0	+25.6 +32.4	31 3	8 and $9 \mathrm{a} . \mathrm{m}$ ．		25	1 a． m ．	$8 \mathrm{p} . \mathrm{m}$.
August．．．	＋52． 4	＋25．6	4		$2 \mathrm{p} . \mathrm{m}$ ．	26	0 and $1 \mathrm{a} . \mathrm{m}$ ．	
September．	$+31.0$	＋14．1	4	7 a． m ．		30	－．．．．．．．．．．	$11 \mathrm{p} . \mathrm{m}$.
October	＋16．0	－19．0	7	$5 \mathrm{a} . \mathrm{m}$.		27		$2 \mathrm{p} . \mathrm{m}$.
November	＋15．1	－25．9	6		8 p．m．	27	$10 \mathrm{a} . \mathrm{m}$.	
December	＋15．6	－30．3	5	$5 \mathrm{a} . \mathrm{m}$.		24	$3 \mathrm{a} . \mathrm{m}$.	

The two following tables give the daily means of temperature for each month，and also the montbly means，as derived from the hourly（or as it happens in September and October，eight－ hourly，otherwise interpolated）observations：

TABLE I．
Daily means of temperature observed at Polaris Bay．

Date．		$\begin{aligned} & \dot{N} \\ & \text { I } \\ & \text { İ } \\ & \text { In } \\ & 0.0 \\ & 0 \end{aligned}$							$\begin{aligned} & \text { 要 } \\ & = \\ & B \end{aligned}$			
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	？
1	＋26．11	$+12.52$	-17.06	-15.14	－26． 44	－ 21.03	-36.92	－0．34	－0．80	＋ッ2．${ }^{\text {a }}$	＋47．92	＋3－．04
2	28.90	11．95	21．1．7	9.99	22.02	25． 40	37.69	11．49	$+4.83$	33.92	44．28	40.29
3	2\％ 213	$1 \because .35$	21．95	10．35	17.63	29， 58	：3， 07	18， 8	＋$\because 3 ;$	37.34	46.31	$3 \times .03$
4	27.12	11． 25	19．12	－6．50	24．32	26.73	29.96	13.59	－ 1.2	39.15	47.05	41.86
5	24．08	10.77	－8．14	＋6．09	20.05	25． 24	16.99	8.94	－ 1.22	$3 \times .73$	47．198	41.97
6	24．63	12.56	＋10． 23	－8． 6.95	29.05	2．） 30	21．53	9.34	＋ 4.92	40．63	39.23	38.73
7	23.81	12． 70	10.42	20.96	29.89	24.63	36．－ 3	7.79	7．33	40． 2－2	411．6：3	：37．35
¢	2． 0.0	7.48	6.59	23．00	30.60	20.95	41． 25	3.5	－ 47	38.27	34.55	38． 69
9	27.08	8.42	11.01	-13.73	39.03	19.94	42．32	5.91	11．33	35.60	39.75	42.16
10	20.73	11.57	9.90	＋2．98	2．）． 35	15．5 5	32．73	12.57	11.01	37． 31	39.36	39.61
11	14．＊\％	＋ 7.50	3．23	－ 7.95	24． 69	13． 40	35． 35	16.73	9.10	31.23	33.19	：3．89
12	20.37	－1．25	＋ 4.23	15.27	29．89	18.03	30.23	24.37	10.43	32.20	40.29	38． 09
13	17.36	3.15	-5.88	14.52	27.23	13．99	96.95	1×88	14． 64	34.19	37．${ }^{\text {d }}$	：34．15
14	19.61	1．7．）	9． 94	10.60	25.39	23． 71	90． 65	23．6．${ }^{2}$	18.56	30.89	36.35	31.66
15	24.51	3.68	14.87	15． 21	21.47	36.19	29.02	20.4	20.40	35.97	36.21	33． 96
16	21.95	6.93	9.55	16.89	21． 62	曻5	23.67	19.76	20.96	33． 4.3	34．63	33． 3.92
17	16.82	12.15	2．9．5	20.06	26.59	24．33	20.20	23.17	19.76	31． 31.9	36.46	33.89
18	24.27	13.38	0.45	21.87	29.41	1.84	22． 69	19.25	20．73	3 3	36.8	36.73
19	19.77	13．12	9．75	5． 62	26.09	13.97	19． 00	12.17	23.53	33.47	38.73	35.05
20	29.72	8.10	15． 00	11．05	13.30	25.95	15． 30	-12.03	25.59	33． 37	39．50	34.82 36.14
21	31.92	4.52	16.70	20.69	-3.76	31.24	18．26	＋ 4.27	30.59 .29 .93	33． 50	44.23 42.52	36.14 336 3
22	29.31	6.28	16.40	24．5\％	＋ 1.14	36．80	25． 90	15.06	－29．93	34.67	4.25 $3 \times .03$	3,188 34.48 38.58
23	23.84	4.71	20.12	25.66	-14.00	35.18	22.81	13.88	27.51	36.54	$3 \times .03$	34.46
24	22.43	2.80	20.12	25.70	18.76	32.37	19．38	＋11．77	28． 14	39.84 39.54	38.52 $3-74$	33.56 3.25 31.25
25	20.14	2.13	23.50	24.92	21.7	15． 29	20．32	－ 1.92	9×16 26.93	39.51	$3-74$ 40.63	32.25 31.10
26	15.42	9． 10	18．69	22.57	20.51	15.81	a -835 $+\quad 1.04$	$\begin{array}{r}1.43 \\ -1.90 \\ \hline\end{array}$	26.93 93.35	39.15 34.36	40.63 42.43 4.2 .3	31.10 34.11
27	23.88	16． 23	21.86	20．85	25.53	23．25	＋1．04	$\begin{array}{r}1.93 \\ +1.90 \\ \hline 1.01\end{array}$	23.35 8.4 .30	34.36 36.93	42.4 .3 42.74	34.11 33.18
28	27.37	17.85	8.25	23.35	2x． 00	18．929	＋1．64	1.03 +1.41	2． 30 9．3． 64	36.93 37.05	42.74 43.10	33.18 32.41 31
29	17.85	17.27	2.25	20.15	17．18	－22．89	-19.56	$\begin{array}{r}6.41 \\ +1.33 \\ \hline\end{array}$	？ 2.64	$\begin{array}{r}37.05 \\ +45.97 \\ \hline\end{array}$	43.10 $3-4.4$	32.41 31.41
30	＋13．96	8.08	－6．92	14． 10	7． 86		0.67 4.02	＋1．33	24.59 +24.76	＋40．97	3 $+\cdots 10$	31.41 +33.91

TABLE II.
Hourly means of temperature observed at Polaris Bay.

Hour.		October, 1×71.	$\begin{aligned} & \dot{B} \\ & \underset{0}{0} \\ & \text { E } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & z \end{aligned}$						空		88 08 08 08 0 70	$\begin{aligned} & \stackrel{0}{8} \\ & \stackrel{0}{2} \\ & \stackrel{y}{3} \\ & \frac{0}{3} \\ & \frac{60}{3} \end{aligned}$
	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {h }}$	+ 23.23	-1.39	-8.63	-14.86	-[23.65]	-22. 23	-24. 49	-11.24	$+[13.55]$	+35.42	+39.04	+32.99
1	123.23	1.39	8. 63	15. 26	22.78	22. 23 *	24.08	11.92	13.78	[35. 17]	[38.77]	[3\%.70]
2	23.23	1.39	8.63	15.12	22.77	22.34	23.87	[12.21]	14.16	35.31	38.93	33, 17
3	23, 23	1.39	8.63	15. 71	22.26	22. 34	94.32	11.59	14. 68	35.83	39.16	33.83
4	23. 25	1.38	8.62	15.54	22.00	23. 04	24.38	10.64	15.26	36.19	38.98	33.72
5	23. 5	1.29	[9.56]	14.77^{*}	21.99	23.27	24.59	9.30	15.97	36. 25	39.12	33.68
6	23.85	1.38	8.63	15.69	22.29	23.38	[24.87]	8.33	16. 55	36. 36	39.45	33.91
7	23.71*	1.38	8.63	15. 51	22.31	23.37	24.02	7.70	17.19	36.51	40.02	35.05
8	23.24	1.38	8. 63	15.69	29. 11	23.37	23.59	6.93	17.93	36.89	40.29	36.29
9	23.24	1.38	8.63	15. 47	21.96	23.59	23.21	5.37	18. 43	37.18	40.03	36.77
10	23.24	1. 3 3	¢. 63	15.69	22.24	23.26	22.88	4.93	18. 69	37.41	40.04	39.23
11	23. 94	1.38	と. 63	[16.44]	22.46	23.38	22.33	4.51	18. 62	37. 48*	$40.4{ }^{*}{ }^{*}$	39.09
Noon.	23. 4	1.38	8. 63	16. 26	22.29	24. 03	22. $23{ }^{*}$	4. 27 *	18.54	37.42	40.33	39.46
$1^{\text {h }}$	23. 3	1.38	8.62	16. 25	21.71	23. 71	22.30	4. 66	18.80*	37.39	40.23	$39.78 *$
2	23. 24	1. 15^{*}	8.73	16.14	$21.64 *$	23. 47	22. 42	5. 11	18. 69	37.10	40.20	39.43
3	23.24	1. 36	8.62	15.97	21.75	23. 41	22.45	5.29	18.44	36.75	40.02	38.71
4	23.51	1.38	8.63	16. 03	22.36	23.62	22.65	5.59	18.42	36.66	39.85	37.72
5	93. 24	1.38	8.63	16. 22	21.97	23.91	22. 65	6.04	17.92	36.49	39.68	37.63
6	23.23	1.38	$\bigcirc .63$	16. 26	22. 17	[24.08]	23.24	6.83	17.35	36.28	39.68	37.17
7	23.23	1.38	8.63	16. 05	22.30	24.02	23.48	7.63	17.03	35.88	39.15	35.61
8	23.23	1.39	8.63	15.96	22.46	23.83	23.89	8.19	16. 66	35.82	39.21	34.94
9	23. 23	1. 39	8.63	15.87	21.82	23.98	23.44	8.30	15.98	36.28	38.95	34.33
10	23.23	1.39	8.63	16.08	21.70	92. 83	23.88	$\bigcirc .67$	15.75	36.27	39.06	33.62
11	+[22.79]	-1.38	-8.08*	-15.66	-	-22.60	-23.61	-10. ${ }^{\text {d }}$?	+ 15.67	+36.50	39.20	$+33.06$
Means.	+ 23.25	-1.37	-8. 65	-15.79	-22.23	-23.28	-23.47	-7.77	+ 16.81	+36. 44	+39.58	--35. 91

Note.-The maximum temperatures of each month are indicated by asterisks and the minima are in brackets.
ANNUAL FLUCTUATION OF TEMPERATURE AT POLARIS BAY.
In order to discuss the preceding observations analytically, both the daily and monthly means are required. As bas been mentioned before, there are only eight-hourly observations on record for the months of September and October; but three daily observations, if separated by proper intervals of time, will give the mean temperature of the day, provided the respective weights of the observations under consideration can be estimated. The latter can be done, as we know the law of the daily fluctuation of temperature at quite a number of stations situated in the arctic regions.

Denoting the three observations under consileration in their successiou by t_{1}, t_{2}, and t_{3}; denoting further three other observations, taken during the same month, das, and hours, but at another station, by τ_{1}, τ_{2}, and τ_{3}, and the mean temperature of the day at the second station by μ; if w_{1}, w_{2}, w_{3} are the weights of the observations at the first station, we may say with some reliability that-

$$
w_{1}: u_{2}: w_{3}=\frac{1}{\left(\mu-\tau_{1}\right)}: \frac{1}{\left(\mu-\tau_{2}\right)}: \frac{1}{\left(\mu-\tau_{3}\right)}
$$

Having thus obtained the weights of three observations at the first station, the mean can be calculated according to the well-known formula-

$$
m=\frac{w_{1} t_{1}+w_{2} t_{2}+w_{3} t_{3}}{w_{1}+w_{2}+w_{3}}
$$

By this somewhat laborions, but otherwise simple method, the daily means have been computed, from which subsequently the monthly and annual means have been derived.

The period under consideration comprises one vear of 366 days, which was divided into twelve equal parts of 30.5 days each, and the means of these equi-intervals were formed in order to use them as monthly means in Bessel's circular functions. The following table will show how little they vary from the means of the actual months:

Comparison of the means of the actual months and the equi-intercals.

Months.	Mean temperature of actual months.	Mean temperature of equiintervals.	Months.	Mean tempera tare of actual months.	Meau tempera ture of equiintervals.
	\bigcirc	-		\bigcirc	-
January	-22. 23	-29.42	July	+39.58	+39.28
February	-23.28	-23.52	August	+35.91	+35.88
March....	- 33.47	-29.65	September	+23.95	+23.07
April	-7.31	-7.66	October -.	-1.37	-1.59
May.	$+16.81$	+17.59 +36.94		-8.65	-8.76
June	+36.44	+36.94	Decembe	-15.79	-15.79
Mean temperature of the year $=+4^{\circ} .196 \mathrm{~F}$.					

In Bessel's circular fuuctions-

$$
\mathrm{T}=\mathrm{A}+\mathrm{B}_{1} \sin \left(x+\mathrm{C}_{1}\right)+\mathrm{B}_{2} \sin \left(2 x+\mathrm{C}_{2}\right)+\mathrm{B}_{3} \sin \left(3 x+\mathrm{C}_{3}\right)+\ldots \ldots
$$

the co-efficient B_{1}, B_{2}, \&c., and the angles $C_{1}, C_{2}, \& c$., being obtained from-

$$
\mathrm{B}_{\mathrm{n}}=\sqrt{a_{\mathrm{n}}^{2}+b_{\mathrm{n}}^{2}} \text { and } \tan \mathrm{C}_{\mathrm{n}}=\frac{a_{\mathrm{n}}}{b_{\mathrm{n}}}
$$

where a and b are functions of the observed means of the phases constituting the period. In the present case the following values were obtained:

n	a_{11}	$b_{\text {n }}$	B_{n}	C_{n}
				- 11
1	-25.940	-20.016	+32.765	$\because 222040$
\because	$+5.336$	+ 4.282	+ 12, -17	511510
3	$+0.100$	+ 1.723	+ 1.730	300440
4	+1.0196	-1.9586		1523000

By inserting the ralnes given in the above table in Bessel's formula, we obtain the amblical expression for the anmal fluctuation of temperature at Polaris Bay as follows:

$$
\begin{aligned}
\mathrm{T}= & +4.190+32.765 \sin \left(x+230^{2} 20^{\prime} 40^{\prime \prime}\right)+\left(6.542 \sin \left(2 x+51^{\circ} 15^{\prime} 10^{\prime \prime}\right)\right. \\
& +1.730 \sin \left(3 x+30^{\circ} 4^{\prime} 40^{\prime \prime}\right)+2.205 \sin \left(4 x+15030^{\prime} 00^{\prime \prime}\right)
\end{aligned}
$$

The angle x increases at the rate of 30° per month (ergininterral), starting from the midhle of December, to which the period is referred. Taking, therefore, successively $x=300, r=600$, \&e., we obtain the mean temperature of Janary, Febrary, \&e, respectively. In this ammer the following results have been obtained :

Montbs, (erqui-intervals).	Temperature olserved.	Temperatima computed.	Difference, O. - C.
	\bigcirc	\checkmark	\bigcirc
Jamuary	-0.4.3	- $\because 2.61$	+0.19
February	-83. 52	- 2.75	+1. $2 \cdot 3$
March.	- 65	- 31.68	-1.193
April.	- 7.66	-7.8is	+0.
May.	$+17.69$	+18.9!	-0.70
June	+ 313.94	+35.633	+1.31
July	+39.63	+39.34	-0.116i
August	+35.88	+37.60	-1.72
September	+23.07	+21.39	+1.68
October .	- 1.59	-0.88	-0.71
November	-8.76	-9.61	+0.85
December	-15.79	-14.52	-1.27
Spring	-4.24	-3.74	-0.50
Summer	+37.37	+37.52	-0. 15
Autumn	+4.24	+3.64	+0.60
Winter	-20.58	-20.63	+0.05
Year	+ 4.196	+ 4.196	± 0.00

The roots of $\frac{d \mathrm{~T}}{d x}=0$ give the maximum and minimum temperatures daring the year, but the direct solution of this differential equation being too laborious, as no great accuracy is required, the approximate solution by means of the regula falsi has been adopted.

Stopping with our approximation at-

$$
\frac{d \mathrm{~T}}{d x}=+0.00025
$$

which corresponds to $x=215^{\circ} 4^{\prime}$, we obtain the maximum of-

$$
+39^{\circ} .5 \text { on July 21st. }
$$

The lowest temperature occurred in the middle of February, though there was another minimum of-

> -240.7 on Febrnary 3d.

By inserting $T=+4.196$ in the analytical expressiou for the annual fluctuation, the roots of the equation will give the phases, when the mean annual temperature occurs. These roots were found by approximation, "and we see the mean temperatures to occur on-

May 1st and October 8th.
The following diagram exhibits the annual fluctuation of temperature at Polaris Bay:

The stroug curve represents the computed values, the other one the temperatures actualls observed. It will be seen that the greatest difference between the computed and observed ralues oceurs in August, namely, -10.72 . Then follow September with a difference of +10.68 , June with $+1^{0} .38$, December with $-1^{0} .27$, February with $+1^{\circ} .23$, and March with $-1^{0} .02$. None of the other differences exceed one degree. In the present case the greatest difference occurred in summer, while at the other neighboring stations it was found during winter or spring, when sudden changes
of temperature are more frequent. An examination of the hourly observations shows that during November the temperature rose, sometimes within one or two days, from -25° to $+5^{\circ}$. The same was found during the two following months, and especially in February, when changes of 40°, and eveu more, were not at all uncommon.

The following table gives the observed annual fluctuation of the atmospheric temperature for different stations in the arctic regions, four of which are situated on the northwest coast of Greenland, one in the Parry Archipelago, and another in East Greenland:

Periods.	$\begin{gathered} \text { Polaris Bay, } \\ 157-i=. \\ \phi \leq 1030^{\prime} .4 \mathrm{~N} . \\ \lambda 62 \quad 15 \mathrm{~W} . \end{gathered}$		$\begin{gathered} \text { Polaris Honse, } \\ \text { 1 } 72-7.3 \\ \phi 70 \\ \lambda 72 \\ 2.41 \mathrm{~W} . \end{gathered}$	$\begin{gathered} \text { Port Foulke, } \\ 1860-61 . \\ \phi 78^{\circ} 18^{\prime} \mathrm{N} . \\ \lambda 73 \quad 00 \mathrm{~W} . \end{gathered}$	$\begin{gathered} \text { Port Kennedy, } \\ 1=5 \times-59 . \\ \phi 7201^{\prime} \mathrm{N} . \\ \lambda 94 \\ \hline 14 \mathrm{~W} . \end{gathered}$	$\begin{gathered} \text { Sabine Island, } \\ 1869-70 . \\ \phi 74^{\circ} 32^{\prime} \mathrm{N} . \\ \lambda 18 \quad 49 \mathrm{~W} . \end{gathered}$
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Jannary .	-29.3	—6-22	-29.34	-25.97	-34.40	-11.47
February	-23, 20	- 4.43	-25. 37	-24.88	-37.08	-10.86
March .	-3:3.17	-34.8is	-95. 11	-9.3. $3 \cdot 3$	-18.92	- 9.98
April .	- 7.75	-10.35	-4.74	-11.01	-2.92	+2.28
May .	+16.s1	$+13.45$	+19.84	+23.77	$+15.04$	+22.23
June.	+36.44	+30.12	$+33.55$	$+35.11$	$+36.07$
July	+39.5\%	+38.19		$+40.54$	$+40.12$	$+38.84$
August	$+35.91$	$+31.82$		$[+36.07]$	$+36.95$	+33.21
September	+23.	+13.45		+22.60	+25.43	+24.21
October ...	-1.37	- 3.58		+ 7.60	+ 7.44	+ 7.11
November	-8.6.5	-21.95	-1.83	+ 2.84	-11.60	-0.98
December	-15.79	-31.12	-9.15		-33.63	+1.15
	-4.81	-10.59	-3.34	-3.19	-2.04	+ 4.84
Summer..	+37.31	+33.38		[+36.82$]$	$+37.40$	+36. 04
Antumn.	+ 4.41	-4.03	-21.29	+11.01	a $+\quad 7.09$ -35.04	$+10.10$
Year	$+4.13$	- 2.46		[+5.86]	$+1.85$	$+10.98$

OHANGE OF THE MEAN TEMPERATURE WITH THE LATITUDE.

It will be seen that every month at Polaris Bay was warmer than at Rensselaer Harbor, the greatest difference between the two localities being exhibited in December, during which month the mean temperature was $15^{\circ} .13$ higher at Polaris Bay. The nest greatest difference of $13^{\circ} .30$ occurs in November; then follows Mareh with $11^{\circ} .41$. If we except September, which, according to the observations at our first winter-quarters, was 90.80 warmer there than at Rensselaer Harbor, none of the other differences exceed $6^{\circ} .5$. The greatest difference between the mean temperatures of the two localities occurs in antumm and winter, the temperature at Polaris Bay being $8^{\circ} .43$ abore that at Rensselaer Harbor in the former season and 80.16 in the latter. The differ ences between the temperature at the two stations in spring and summer was 50.81 and 30.93 , respectively; and the mean annual temperature is $6^{\circ} .59$ bigher at Polaris Bay than at Rensselaer Harbor.

Our observations taken at Polaris House, which are given in detail hereafter, are of special interest (although they do not extend over a whole jear), as this station is situated be. tween Port Foulke and Rensselaer Harbor. The mean temperature of January was found lowerat our second winter-quarters than that of the same month at the two stations last mentioned, although it was by $5^{\circ} .6$ higher than during the corresponding month at Port Kenoedy. Both February and March were colder than at Port Foulke, but warmer than at Rensselaer Harbor, while the mean temperature of April was higher than that of the two other localities, which was due, most likely, to a body of open water to the sonth and west of the station under consideration. May again was warmer than at hensselaer Harbor and colder than at Port Foulke. The same was the case in November and December; and a comparison of spring and wiuter demonstrates the same fact again. Consequently, there is a decided decrease of temperature with increasing latitude between Port Foulke and Polaris Honse and between the latter station and Reusselaer

Harbor. An examination of the mean temperatures of the station last mentioned and of those of Polaris Bay demonstrates the contrary, viz, an increase as shown in the following table, giving the increase of the mean temperature for 1° of latitude betreen latitudes $78^{\circ} .6$ and $81^{0.6}$ north.

Increase of mean temperature for one degree of latitude between latiturles $78 \circ .6$ and $81^{0} .6 \mathrm{~N}$.

	\bigcirc		\bigcirc		-		-
January .	2.0	May	1.1	September.	3.3	Spring	1.9
Febrinary	1.5	June	2.1	October .	0.7	Summer.....-.	1.3
Mareh...	3.8	July	0.4	November	4.4	Autumn...	0. 1
April. .-.	0.9	Angust	1.6	December	5.1	Winter-........	2.7
Year $=20.2$.							

By omitting Vin Rensselacr Harbor, and calculating the difference of the mean temperature for each degree of latitude for the latitude between Port Foulke and Polaris Bay, we get the following values, + indicating an increase, - a decrease, with increasing latitude:

Difference of temperature for one degree of latitude betueen latitudes 78.03 and 810.6 N .

It will be seen that there is an increase of the mean temperature with the increasing latitude in January, February, April, June, and September, reaching its maximum during the month first mentioned; all the other months show a decrease, which is greatest in November.

The following table gives the difference of the mean temperatures of the months and of the seasons, and also of the annual mean, between Port Foulke and Rensselaer Harbor:

$$
\text { Difference of mean temperature between Port Foulke and Rensselaer Harbor; difference of latitude, }=0^{\circ} .3 \text {. }
$$

	\bigcirc		\bigcirc		\bigcirc		\bigcirc
January-.	2.25	May	10.32	September	9. 15		7.40
February.	1.55	Jnne .--- --. --	3.73	October ...	11.18	Snmmer.	3.44
March .-.	12.56	July	2.35	Norember	24.79	Autumn	15. 04
April...	0.66	Angust.-......	4.25	December	18.31	Winter.	7.37
Year $=8^{\circ} .32$.							

If we make use of the observations taken by Commander Sounders, of H. B. M. S. North Star, at Wolstenholm Sound in 1849 and 1850, in calculating the decrease of the temperature with the increasing latitude, we get the following table, Port Foulke being used as the northern station:

Change of mean temperature for one degree of latitude between latitudes 760.5 and 780.3 N .

	\bigcirc		-		-		\bigcirc
Janmary -.	0.5	May	1.1	September	2.5	Spring	2.6
Felruary	$+5.0$	June	3.2	October .-.	2.11	Summer........	0.6
Mareh .	$\because .7$	July	0.0	Noyember	+11.9	Autumn .-.... .	+2.4
April..	4.0	Angust	+1.3	December	+8.0	Wiuter.........	+4.2 +4.2
Year $=+0^{\circ} .85$.							

There is a decided decrease manifested except in February, August, November, and Decem. ber, and accordingly in autumu and winter the temperature at Port Foulke is found to be the highest. The same takes place in regard to the aunual temperature, which is by 00.85 higher at the latter station. An examination of Hayes's narrative shows that there was considerable open water near his winter-quarters during November, December, and eveu duriog February, which circumstance will readily explain the higher mean temperatures during these months. The mean temperature of August at Port Foulke is not strictly comparable with that of Wolstenholm Sound, as it had to be interpolated, although we doubt that the difference between the value actually observed and the one in question would exceed 10.3.
The observations taken at Upernivik, combined with those of Wolstenholm Sound, give the following result:

Change of mean temperature for one degree of latitude between latitudes $72^{\circ} .8$ and $76^{\circ} .5 \mathrm{~N}$.

	\bigcirc		\bigcirc		-		-
January .	4.9	May	+0.2	September.	1.3	Spring	2.0
February	6.0	June	+0.7	October ..	2.9	Summer	0.1
March....	3.5	July.	+0.2	November	8.0	Autumn	6.0
April...	2.8	August	1.1	December	7.1	Winter........	4. 1
Year $=3^{\circ} .0$.							

It will be seen that there is a slight iucrease of temperature in May, June, and July, all the other months being colder at Wolsteaholm Sonud. By omitting the station last mentioned and calculating the decrease between Upernivik and Port Fonlke the result turns ont more favorably, as may be seen from the following table, in which there is but one slight irregularity in July, this month being by 00.3 warmer at the northern station:

Deerease of mean temperature for one degree of latitude between latitudes $72^{\circ} .8$ and 780.3 N .

	\bigcirc		-		\bigcirc		\bigcirc
January	3.4	May..	0.2	Septomber.	1.7	Spring	2.2
February	2.4	June	0.6	October ...	2.6	Summer	0.2
Marcb ..	3.3	July..	+0.3	November	1.5	Autumn	1.9
April...-	3.2	August	0.3	December	2.1	Winter..........	2.3
Year $=1.8$							

From the above tables it appears that there is a decided decrease of temperature with increasing latitude, between latitudes 790.8 and 780.6 , from whence to latitude 810.6 the coutrary takes place; consequeutly, we might say that the climate of West Greenland is of an insular character on the sontheru part of the coast, assuming a continental character near and in Smith Sound, and growing milder agaiu in the latitude of Polaris Bay. The difference in temperature between the extreme seasous, viz., summer aud winter, increases from latitude 60° to latitude $78^{\circ} .6$, from whence to latitude $81^{\circ} .4$ it decreases again, as exhibited in the following table. Beyoud doubt the difference of Wolstenholm Sound is anomalous, resulting from local intluences:

Stations.	ϕ	Δ
	\bigcirc	\bigcirc
Lichtenan	60. 22	23. 2
Lichteufels.	63.00	27.9
Jacobshaven	69.12	46.1
Omenak...	70.41	45.8
Upernivik	72.47	47.7
Wolstenholm Sound	76.33	66.7
Port Foulke	78. 18	51. 0
Rensselaer Harbor	78.37	62.0
Polaris Bay	81.36	57.7

4 TA

Koldewey, in discussing the decrease of temperature with the latitude in East and West Greenland, between latitudes 61° and 74° north, finds the ratio of decrease to be nearly the same at both coasts, and concludes that the monthly and annual isothermal lines run nearly parallel with each other and parallel with the parallels of latitude across the continent of Greenland.* For the sake of completeness we shall give here the table as calculated by him in degrees of Réaumur, reduced to Fahrenheit's scale:

Decrease of mean temperature for one degree of latitude between latitudes 61° and $74^{\circ} \mathrm{N}$.

	November.	December.	January.	February.	March.	April.	May.
East Greenland..........	0.76	1.35	3.37	2.92	2.72	2.25	1.12
West Greenland	0.45	3.15	2.92	3.15	2.70	2.25	1.12

According to the above table there cannot be any doubt as to the ratio of decrease being almost the same at both coasts (if we except December), but this fact does not include a parallelism of the isothermal lines with the parallels of latitude. At first sight it seems to be rather strange to find the mean temperatures of stations situated under the same parallel, on the eastern and westeru coasts of Greenlaud, almost equal, as the former is under the influence of a cold marine current, so much loaded with heavy drift and pack ice that it is always more or less difficult to reach this coast, while the other, to a certain latitude and at certain seasons, is washed by a warm current. Under such circumstauces we might reasonably expect the temperature to be higher at a station situated at the western than that of another one situated at the castern coast under the same latitude; but this, however, is not the case. Our present knowledge of the interior of Greenland, between the latitudes mentioned above, shows that the so-called inland ice stretches nearer to the west coast than to the one opposite. Therefore, it is easy to perceive that during the warm season the vicinity of the inland ice compensates for the action of the warm current along the western coast, while the more rocky surface of Eastern Greeuland, heated by insolation, modifies that of the ice-stream. Cousequently, the isothermal lines cannot run parallel with the parallels of latitude, but will represent curves, the convexity of which is turned toward the north. Most likely the apex of these curves between latitudes 69° and 74° north will be situated between longitudes 30° and 40° west, while farther sonth it will attain a greater west longitude.

DIURNAL FLUCTUATION OF THE TEMPERATURE AT POLARIS BAY.

The following table, exhibiting the mean maximum and minimum temperatures of each month, with their range and the time of their respective occurrence, is derived directly from Table II, given after the hourly record:

Daily extremes, range, and hours of maxima and minima for each month of the year.

Months.		$\begin{aligned} & \text { 品 } \\ & \text { 邑 } \\ & \vec{B} \end{aligned}$		Time of-	
				Max.	Min.
	\bigcirc	\bigcirc	\bigcirc	h	h.
September, 1871	+23.71	$+22.79$	0.92	$7 \mathrm{a} . \mathrm{m}$.	$11 \mathrm{p} . \mathrm{m}$
October, 1871	-1.15	-1.39	0.24	$2 \mathrm{p} . \mathrm{m}$	
November, 1871	-8.08	-9.56	1.48	$11 \mathrm{p} . \mathrm{m} . .$.	$5 \mathrm{a} . \mathrm{m}$
December, 1871	-14.77	-16.44	1.67	5 а. m.......	11 a.m.
January, 1872.	-21.64	-23.65	2.01	$2 \mathrm{p} . \mathrm{m} \ldots . .$.	0 a.m.
February, 1872	-92.23	-24.08	1.85	0 and $1 \mathrm{a} . \mathrm{m}$.	$6 \mathrm{p} . \mathrm{m}$
March, 1872	-22.23	-24.87	2. 64	Noon	6 a.m.
May, 1872	-4.27 +18.80	-12.21 +13.55	7.94 5.25	Noon	2 a.m.
June, 1872	+37.48	+1.05 +35.17	5.31	$1 \mathrm{p} . \mathrm{m}$.	$1 \mathrm{a} . \mathrm{m}$
July, 1872 ...	+ 40.48	+38.77	1.71	11 a.m.	$1 \mathrm{a} . \mathrm{m}$
August, 1872.	+39.78	+32.70	708	$1 \mathrm{p} . \mathrm{m} \ldots . .$.	$1 \mathrm{a} . \mathrm{m}$

* Zweite deutsche Nordpolarfahrt, p. 554.

It will be seen that the hour of occurrence of the minimum in October is omitted in the precediug table, being due to the circumstance that it is not well established, because the observations for this month are incomplete.

The following diagram exhibits the annual march of the diurnal amplitude for each month:

It appears from the above that the maximum value of the daily range is reached in April, amounting to 70.94 . An examination of the amount of clondiness shows this month to be the clearest one on record, the percentage of perfectly clear hours being 20.3. Consequeutly, terrestrial radiation takes place more freely, and as the sun is not yet circumpolar during the earlier part of this mouth, changes of temperature are more frequent; besides, the temperature of the dew-point is nearly 8° below that of the air. From April the daily range decreases till July, when it begins to rise again, reaching a second maximum in August; the minimum occurring in October. Another small rise takes place from this month till January. We tried to obtain the dependency of the daily range upon the bygrometrical conditious of the atmosphere, but did not get any satisfactory result.

The following table gives the daily range of temperature for six stations in the arctic regions. The maxima are deuoted by asterisks while the minima are placed between brackets:

Months.	Polaris Bay.	Rensselaer Harbor.	Polaris House.	Port Foulke.	Port Kennedy.	Sabine Island.
	\bigcirc	\sim	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Jannary .	2.01	1.55	1.11	1.43	1.41	[0.95]
February	1. 85	3.07	2.49	4.24	1.49	1.94
Marcl	2.64	5.66	4.24	8.87*	9.55	6.16
April.	7.94*	9.09*	7.39*	5.42	7.42	10.06*
May	5.35	7. 34	3.70	6.44	7.94	9.74
June	2.31	5.10		4.99	9. 60*	7.07
July	1.71	3.37		4. 26	6.97	6.80
August	7.08	5.30		3.03	2.63	7.94
September	0.92	5.55		1.83	2.94	5.36
October	[0.24]	1.67		2. 24	2.18	2.34
November	1.48	[1.00]	1. 40	1.55	2.17	1.28
December	1.67	1.65	1. 23	[0.18]	[0.84]	0.97

A glance at the above table shows that the maxima of Polaris Bay, Rensselaer Harbor, Polaris House, and Sabine Island correspond in time, and those of our own two stations also very nearly in amount. At Sabine Island the maximum is greater than at any of the otber localities. The minimum of Polaris Bay occurs in October; that of Rensselaer Harbor a month later. Both at Port Foulke and Port Kennedy the range is smallest in December, while at Sabine Island the minimum occurs in January. The daily range never disappears entirely in any of the abore-named stations, although in winter, when the sun is below the horizon, the thermal wave becomes very insignificant. During this time we might reasonably expect a decrease of the minimum with increasing latitude, but this does not seem actually to be the case, at least it we judge from the observations above given, which, however, do not extend over a period long enough to admit of deducing a general law.

The analytical discussion of the diurnal fluctuation of the temperature at Polaris Bay is based on the table headed "Daily Means," given after the record of the hourly observations.

The annual meaus of every hour of the day were taken and used as phases of the daily period. The elements of the aualytical expression were found as follows:

n	a_{n}	b_{11}	B_{n}	C_{11}
				$\bigcirc \quad 11$
1	-0. 0.89338	-0.22293	0.92078	25.55930
2	-0.0018.3	-0.10781	0.1078	1805 24
3	+0.03907	+0.007875	0.03986	783614
4	-0.06: 5	-0.049073	0.07946	$23151 \quad 37$

Cousequently, our analytical expression becomes-

$$
\begin{aligned}
\mathrm{T}= & 4.196+0.92078 \sin \left(x+255^{\circ} 59^{\prime} 30^{\prime \prime}\right)+0.1078 \sin \left(2 x+180^{\circ} 58^{\prime} 24^{\prime \prime}\right) \\
& +0.03986 \sin \left(3 x+78^{\circ} 36^{\prime} 14^{\prime \prime}\right)+0.07946 \sin \left(4 x+231^{\circ} 51^{\prime} 37^{\prime \prime}\right)
\end{aligned}
$$

The period being referred to noou or miduight at its beginning, the angle x increasing at the rate of 15° per hour. Taking, therefore, successively $x=0^{\circ}, x=15^{\circ}, x=30^{\circ}$, we obtain the temperatures of $0^{\text {b }}$ a. m., $1^{\text {h }}$ a. m., $2^{\text {h }}$ a. m., \&c.

The following table exhibits the--
Diurnal fuctuation of the temperature at Polaris Bay.

Time.	Temperature observed.	Temperature computed.	Difference, O. - C.	Tropical moments.
	\bigcirc	\bigcirc	\bigcirc	
$0^{\text {b }}$	+3.15	+3.28	-0.13	
1	3.17	3.18	-0.01	Minimum of 3.196 at $0^{\mathrm{h}} 56^{\mathrm{m}}$.
2	3. 21	3.21	± 0.00	
3	3.37	3.40	-0.03	
4	3.58	3.50	+0.08	
5	3. 62	3.68	-0.06	
6	3.82	3.90	-0.08	
8	4.70 4.70	4.57	± 0.00 +0.13	
9	4.87	4.97	-0.10	
10	4.97	5.03	0.06	
11	4.99	5.04	-0.05	Maximum of $5^{\circ} .053$ at $11^{\mathrm{t}} 10^{\mathrm{m}}$.
Noon. ${ }_{1}{ }^{\text {h }}$	4.99 5.07	4.99 4.95	± 0.00 +0.12	Maximum of 50.053 at 11 10.
2	4.98	4.97	+0.01	Maximum of $5^{\mathrm{C}} .012$ at $2^{\mathrm{h}} 28^{\mathrm{m}}$.
3	4. 86	4.96	-0.10.	
4	4.79	4. 8.5	-0.06	
5	4.69	4.63	+0.06	
6	4. 56	4.37	+0.19	
7	3.95	4.14	-0.19	
8	3.99	3.99	± 0.00	
9	3.84	3.77	+0.07	
110	3.73 +3.59	3.69 +3.48	0.04 +0.11	
Means.	+4.196	+4.196	± 0.00	

The above values, thrown into a curve, result in the following diagran:
Graphical representation of the diurnal fluctuation of temperature at Polaris Bay.

It will be seen that the theoretical curre is somewhat abnormal, passing through the absolute maximum of $5^{\circ} .053$ at $11^{\mathrm{h}} 10^{\mathrm{m}}$ a. m.; the maximum, as derived from the observed values, occurring at $1^{\mathrm{h}} \mathrm{p}$. m., which seems inore natural. We sball see hereafter that this anomaly is produced by the somewhat abnormal march of the temperature during June aud July, the maximum temperature of the day being reached as early as $11^{\mathrm{h}} \mathrm{a}$. m . in both of these months. In general, the computed values agree very well with those observed, the greatest difference between the two not exceeding $0^{\circ} .19$.

At Van Rensselaer Harbor the maximum occurs at $2^{\mathrm{h}} \mathrm{p}$. m . and the minimum at 1^{h} a.m. At Port Foulke the hours are $2^{\mathrm{h}} 30^{\mathrm{m}}$ p. m: and $2^{\mathrm{h}} 30^{\mathrm{m}}$ a. m., respectively; and at Port Keunedy the maximum temperature is reached between noon and $1^{\mathrm{h}} \mathrm{p}$. m., while the minimum occurs between 2^{h} and 3^{h} a. m.

We shall now consider the diurnal fluctuation during the different seasons. The time being very limited, the respective curves were only computed for alternate hours.*

Spring.-The analytical elements and expression for this season were found as follows:

n	a_{n}	b_{n}	B_{n}	C_{n}
				0

$\mathrm{T}=-4.81+2.260 \sin \left(x+221^{\circ} 38^{\prime} 39^{\prime \prime}\right)+0.309 \sin \left(2 x+123^{\circ} 7^{\prime} 30^{\prime \prime}\right)$ $+0.115 \sin \left(3 x+134^{\circ} 17^{\prime} 34^{\prime \prime}\right)$

$$
x=30^{\circ}, 60^{\circ}, \ldots .
$$

Both the observed and computed maxima occur at noon, the computed minimum at $2^{\text {b }}$ a. m. and the observed minimum an hour earlier. The curve sbows a very regular course, and the greatest difference between any observed and computed mean value does not exceed $0^{\circ} .31$. The mean range, as derived from the computed values, is $4^{\circ} .56$; the range, as observed, is by 00.26 greater.

[^14] cal Observations.

Summer.-The form of the curve for summer is very similar to the one for spring. The maximum is reached at noon, while the minimum occurs at midnight, the mean rauge being 30.36 . The observed values show a slight irregnlarity, as the temperature is a little lower at 1^{h} and at 2^{h} a. m . than at midnight, the decided rise beginning only at $3^{\mathrm{h}} \mathrm{a}$. m., lasting till $1^{\mathrm{h}} \mathrm{p}$. m., when the maximum is reached, this occurring an hour later than in the computed curve. The mean range, as derived from the observed values, is 30.36 , differing but slightly from the one given above. The analytical elements and expression were found as follows:

$$
\begin{aligned}
& \mathrm{T}=+37.31+1.630 \sin \left(x+236^{\circ} 5^{\prime} 3 . \overline{3}^{\prime \prime}\right)+0.066 \sin \left(2 . x+19056^{\prime} 46^{\prime \prime}\right) \\
& +\left(0.154 \sin \left(3 x+22^{\circ} \circ 6^{\prime} 6^{\prime \prime}\right)\right. \\
& x=30^{\circ}, 60^{\circ}, \ldots .
\end{aligned}
$$

Autumn.-As has been stated, the observations for October are rather defective, and most likely, owing to this circumstance, the curve for this season is less regalar than it wonld be conld we have saved our complete record. The analytical elements and expression for this season were found as follows:

n	a_{n}	b_{n}	$\mathrm{~B}_{\mathrm{n}}$	C_{11}	
				0	1
1	-0.007	-0.021	+0.0 .9	198	96
2	-0.022	+0.004	+0.022	280	$1 \sim 17$
3	+0.007	+0.012	+0.014	30	15

$$
\begin{gathered}
\mathrm{T}=+4.41+0.022 \sin \left(x+198^{\circ} 26^{\prime} 6^{\prime \prime}\right)+0.022 \sin \left(2 x+280^{\circ} 18^{\prime} 17^{\prime \prime}\right) \\
+0.014 \sin \left(3 x+30^{\circ} 15^{\prime} 23^{\prime \prime}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots \ldots
\end{gathered}
$$

The computed curve exhibits two maxima of $+4^{\circ} .43$ and $+4^{\circ} .47$, respectively, the former occurring at 4^{h} a. m., the latter twelve hours later. The absolute maximum is the one reached at $4^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. , and evidently it is due to the influence of the sun, which was still above the horizon during September and the first part of October. We shall demonstrate hereafter that the afternoon maximum becomes most apparent if we investigate the diurnal fluctuation of the temperature during the former month. Each of these maxima has a corresponding minimum, one of 40.40 occurring at $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$., aud the other of $4{ }^{\circ} .37$, which is reached at $10^{\mathrm{h}} \mathrm{p}$. m. The mean range for this season is $0^{\circ} .10$ ouly. A comparison of the values actually observed, with the theoretical curve, shows that the first maximum occurs in both instances at the same hour; the same being the case with the secoud maximum.

Winter.-The sun being below the horizon during the greater portion of this season, we caunot reasonably expect a curve of a definite character; besides, there are very sudden changes of temperature taking place, principally due to the alternate action of the equatorial and polar aerial currents, causing the temperature to be very variable, as stated before in the discussion of the annual fluctuation. The analytical elements and expression for the season under consideration were found as follows:

n	a_{n}	b_{n}	B_{n}	C_{n}		
					0	
1	+0.054	+0.212	+0.218	14	17	
2	+0.028	+0.128	25			
3	+0.013	+0.082	+0.131	12	20	

$$
\begin{gathered}
\mathrm{T}=-20.42+0.218 \sin \left(x+14^{\circ} 17^{\prime} 25^{\prime \prime}\right)+0.131 \sin \left(2 x+12^{\circ} 20^{\prime} 21^{\prime \prime}\right) \\
+0.083 \sin \left(3 x+9^{\circ} 0^{\prime} 30^{\prime \prime}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots \ldots
\end{gathered}
$$

The computed values agree very well with those observed, the greatest difference between the two amounting to 00.25 only. The absolute maximum occurs at midnight and the absolute minimom at 6^{h} p. m., the temperature oscillating in an irregular manner between the two. As may well be imagined, the mean range is very small, not exceeding $0^{\circ} .78$, which is, however, more considerable than during autumn.

The following table contains the observed hourly means of the different seasons; also, the bi. hourly compnted values, next to which will be found the differences between the two:

Time.	SPRING.			summer.			AUTUMN.			Winter.		
			0 1 0 0. 0.0 0.0 0.0 0									Difference, O.-C.
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0^{4}	-7.39	-7.08	-0.31	$+35.89$	$+35.75$	$+0.07$	-4.40	+4.40	± 0.00	-20.95	-20.09	-0.16
1	7.41			35.51			4. 40			20.09		
2	7.31	7.24	-0.07	35.80	35.96	-0.16	4. 40	4. 40	± 0.00	20.08	20.27	+0.19
3	7.10			36.27			4. 40			20.10		
4	6.51	6.80	+0.27	36.29	36.32	0.03	4. 42	4. 43	-0.01	20.19	20.19	± 0.00
5	5.97			36.35			4.13			20.01		
6	5.55	5.44	-0.11	36.57	36.81	-0. 24	4. 41	4.41	± 0.00	20.52	20.55	+0.03
7	4.86			37.19			4.57			20.40		
8	4. 20	4.17	0.03	37.82	37.67	+0.15	4.41	4.42	-0.01	20.39	20.41	+0.02
9	3. 38			37.99			4. 41			20.34		
10	3.04	2.99	-0.05	3ヶ. 89	3867	+0.22	4.41	4. 40	$+0.01$	20.80	20.60	-0.20
11	$\because .74$			39.02			4.41			20.76		
Noon.	9.65	-28	+0.13	39.17	39.11	-0.04	4.41	4.41	-0.03	20.36	$\because 0.39$	+0.03
$1^{\text {b }}$	2.72			39.13			4.41			20.56		
2	2.95	2.82	-0.13	38.93	38.86	+0.07	4. 45	4,44	$+0.01$	20.62	20.69	+0.07
3	3.08			38.49			4. 41			20.38		
4	3.97	3.48	+0.21	38.08	38.33	-0. 25	4.50	4.47	+0.03	20.67	20.61	-0.06
5	3.57			37.93			4.41			20.70		
6	4. 24	4.02	-0.22	37.81	37.81	± 0.00	4. 41	4. 43	-0.02	20.84	20.87	+0.03
8	4.69 5.14			36.88			4.41			20.79		
8 9	5.14 5.25	5.06	0.08	36.99 36.52	36.99	± 0.00	4. 41	4. 42	-0.01	20.75 20.32	20.50	-0.25
10	5.60	-5.99	-0.08	36. 32	+36.11	+0. 21	4. 40	+4.37	+0.03	20.20	-20.50	+0.30
11	-6. 25			+36.25			-4. 44			- 00.09		
Meaus.	-4.81	-4. 81	± 0.00	+37.31	+37.31	± 0.00	-4. 41	+4.41	± 0.00	-20.42	-20.42	± 0.000

Although our observations extend over but a comparatively short period of time, we have, nevertheless, investigated the diurual fluctuation of temperature for the different months in order to trace a more complete connection between the thermal, barometic, and hygrometric observations. As may well be imagined, the results are rather discordant in some instances.

In order to get a clearer idea of the march of temperature, the compoted values were thrown into curves; but we abstain from giving the diagrams here, as they would occupy too much space.

To begin with January, we see that both the observed and computed minima occur at midnight, the curve rising gradually from that hour and reaching its maximum at 5^{h} a. m. The observed maximum occurs at 2^{a} p. m., which is more likely than at the hour last mentioned, as it coincides more closely with the time when the sun is nearest to the horizon. We cannot expect, however, to see the hourly variation well pronounced during this month, as the sun only made his re-appearance after the middle of February.

As is the case in January, the curve of February shows no decided character. Both the observed and computed maxima occur at midnight, and the minimum at $6^{h} \mathrm{p} . \mathrm{m}$. , corresponds in regard to time with the observed value.

The curve of March is better marked. The computed maximum occurs at $1^{\mathrm{h}} \mathrm{p}$. 1 u ., while that observed was reached an hom earlier. Both the observed and computed minima are reached at 6^{L} a. m.

In April both the observed and computed maxima occur at noon, the minimum at $3^{\text {h }}$ a. m., and its corresponding observed value an hour earlier.

In May the maximum is reached at 1^{h} p. m., the minimum at midnight, the observed and computed values corresponding with regard to the hour of occurrence.

In June the observed maximum occurs at 11^{h} a. m., the computed one an hour earlier, while the observed minimum is reached at 1^{h} a. m., and its corresponding compnted value an hour later.

In July both the observed and computed maxima occur at 11^{h} a. m. The observed minimum is reached at 1^{h} a. m., while the corresponding computed value occurs three hours earlier.

In Angust both the observed and computed maxima occur at $1^{\mathrm{h}} \mathrm{p}, \mathrm{m}$. , the computed minimum at $11^{\mathrm{h}} \mathrm{p}$. m., and the one observed an hour after midnight.

Although the computed and observed values for September agree very closely (the difference between the two not exceeding $0^{\circ} .42$), we still see that the observed maximum occurs at $7 \mathrm{a} . \mathrm{m}$., while the corresponding compnted value is found to occur at 4 o'clock in the afternoon, thus showing retardation of three bours if compared with the maximum of the month last mentioned. Both the observed and computed minima are reached at $11 \mathrm{p} . \mathrm{m}$.

Omitting October in this synopsis, we see that in November both the observed and computed maxima occur at $11^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. The computed mimimum is reached at $5^{\mathrm{h}} \mathrm{a}$. m., and the corresponding observed value two hours later. The computed and observed ranges are $0^{\circ} .32$ and 10.48 , respectively.

In December the computed curve passes the maximum at midnight. Both observed and computed minima occur at noon. The observed and computed ranges are 10.49 and 10.63 , respectively.

The analytical elements and expressions made use of are given in the following table, after which will be found the results as derived from the same, together with the observed values:

APRIL.

n	$a_{\text {n }}$	$b_{\text {n }}$	$\mathrm{B}_{\text {n }}$	C_{n}
1	-9. 19			○ $\quad 1 \quad 1$
2	$+0.59$	-0.34	+0.62	1135719
3	$+0.31$	-0.11	+0.35	$114{ }^{1} 15$

$\mathrm{T}=-7.77+2.51 \sin \left(x+221^{\circ} 40^{\prime} 41^{\prime \prime}\right)+0.62 \sin \left(2 x+11.33^{\circ} 57^{\prime} 19^{\prime \prime}\right)$

$$
+0.35 \sin \left(3 x+114^{\circ} 4^{\prime} 15^{\prime \prime}\right)
$$

$$
x=15^{\circ}, 30^{\circ}, \ldots
$$

MAY.

n	a_{n}	b_{n}	B_{n}	C_{n}
				- ' "
1	-1.64	-1.46	+1.70	2281920
2	$+0.12$	-0.47	$+0.51$	1654035
3	$+0.13$	$+0.06$	+0.15	121335

$\mathrm{T}=+16.81+1.70 \sin \left(x+228^{\circ} 19^{\prime} 20^{\prime \prime}\right)+0.51 \sin \left(2 x+165^{\circ} 40^{\prime} 35^{\prime \prime}\right)$ $+0.15 \sin \left(3 x+12^{\circ} 13^{\prime} 35^{\prime \prime}\right)$ $x=15^{\circ}, 30^{\circ}, \ldots$

JUNE.

n	a_{n}	b_{n}	B_{n}	C_{n}
	-0.75			○ ' ${ }^{\prime \prime}$
2	$+0.18$	-0.01	+0.19	2423134 931045
3	+0.13	-0.08	+0.14	1213620

$\mathrm{T}=+36.44+0.81 \sin \left(x+242 \circ 31^{\prime} 34^{\prime \prime}\right)+0.19 \sin \left(2 x+93^{\circ} 10^{\prime} 45^{\prime \prime}\right)$ $+0.14 \sin \left(3 x+121^{\circ} 36^{\prime} 20^{\prime \prime}\right)$ $x=15^{\circ}, 30^{\circ}, \ldots$.

JULY.

n	a_{n}	b_{n}	B_{n}	C_{n}	
				0	1
1	-0.57	-0.38	+0.60	236	18
2	+0.09	-0.01	+0.10	96	20
	+0.02	+0.11	+0.12	10	8

$\mathbf{T}=+39.58+0.60 \sin \left(x+236^{\circ} 18^{\prime} 40^{\prime \prime}\right)+0.10 \sin \left(2 . x+96^{\circ} 20^{\prime} 19^{\prime \prime}\right)$ $+0.12 \sin \left(3 x+10^{\circ} 8^{\prime} 20^{\prime \prime}\right)$ $x=15^{\circ}, 30^{\circ}, \ldots$

AUGUST.

n	a_{n}	b_{n}	B_{n}	C_{n}
				0.11
1	-2.31	-1.53	+2.41	2369852
2	+0.23	+0.37	+0.41	315155
3	-0.27	-0.19	+0.32	231515.5

$\mathrm{T}=\frac{85}{3} .91+2.41 \sin \left(x+2366^{\circ} 28^{\prime} 52^{\prime \prime}\right)+0.41 \sin \left(2 x+31^{\circ} 51^{\prime} 55^{\prime \prime}\right)$ $+0.32 \sin \left(3 x+234^{\circ} 51^{\prime} 5 \tilde{0}^{\prime \prime}\right)$ $x=15^{\circ}, 30^{\circ}, \ldots$

SEPTEMBER．

n	a_{n}	b_{n}	B_{n}	C_{n}
		－		－／＂
1	－0．010	＋0．003	$+0.011$	1911835
\because	＋0．005	± 0.000	＋0．005	90
3	－ 01.010	± 10.005	＋0．011	1684125

$\mathrm{T}=+23.25+0.011 \sin \left(x+191 \circ 18^{\prime} 35^{\prime \prime}\right)+0.005 \sin \left(2 x+90^{\circ} 0^{\prime} 0^{\prime \prime}\right)$

$$
+0.011 \sin \left(3 x+168^{\circ} 41^{\prime} 25^{\prime \prime}\right)
$$

$x=15 \circ, 30^{\circ}, \ldots$
NOVEMBER．

n	a_{n}	b_{n}	$\mathrm{B}_{\text {I }}$	C_{1}
				－＇＂
1	＋0．008：	＋0．0086	$+0.0007$	442230
\because	－0．100\％：	－0． 11144	＋11．0190	31840
3	－0．0166	－0．0016	＋10．017！	269214

$T=-8.65+0.0055^{-2 n}\left(x+40^{\circ} 22^{\prime} 30^{\prime \prime}\right)+0.0190$ sin $\left(2 . x^{\prime}+208^{\circ} 48^{\prime} 40^{\prime \prime}\right)$
$+0.0179 \sin \left(3 x+263^{\prime 2} 1^{\prime} 45^{\prime \prime}\right)$
$r=150,30^{\circ}, \ldots$
DECEMBER．

n	${ }^{\prime \prime} 1$	h_{n}	P_{n}	（＇ı
				$\bigcirc{ }^{\circ}$
1	－0．14	－0． 2.5	$+0.30$	3191440
\because	－0．02	－11． 19	＋0． 21	
3	＋0． 17	－0．19	＋0． 24	1381035

$\mathrm{T}=-15.79+0.30 \sin \left(x+209014^{\prime} 40^{\prime \prime}\right)+0.21 \sin \left(2 x+186^{\circ} 0^{\prime} 37^{\prime \prime}\right)$
$+0.2^{2} 4 \sin \left(3, r+13510^{\prime} 35^{\prime \prime}\right)$
$. r=150,30^{\circ}, \ldots$

Time．	NOVEMBER．			DECEMBER．			JANUARY．			FEBRUARY．		
	H1ns．	Compr	$\begin{aligned} & \text { Diff., } \\ & 0 .-\mathrm{C} . \end{aligned}$	（）hs．	Comp．	$\begin{aligned} & \text { Diff. } \\ & \text { O. - C. } \end{aligned}$	Ohs．	Comp．	Diffig,	Olos．	Comp．	Diff．，
	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
$0^{\text {b }}$	－＊．63	－S． 5.3	－0．111	－14． $4 ;$	－14．7．	－1． 11	－23．65	－$\because 6.61$	-11.04	－29．23	－22． 31	-0.03
1	－ 6.63	S 5	0.111	151506	15，\because	－0．184	20．tin	－\％ 01	＋11．83	地枵3	22， 21	0．02
\because	「．tis	¢隹	0.01	15．1 \because	15．2\％	＋0．15	20． 31	？（11）	0.13	20．34	22， 27	0.07
：	6． $6: 3$	E． 62	－0．01	1．5． 31	15．73	＋0．11：	9．93；	¢！． 41	＋ 11.15	29.34	［20．3：	0.02
4	－6．63	$\times 13:$	＋0．61	15．54	15．59	－11．102	$\because 3.100$	$\because 1.55$	－0．45	？ 3.04	－ 9 929 96	-0.06
$\bar{\square}$	9，514	\therefore 佰	－0．91	14.71	14．－！	＋0．12	21． 99	$\because 1.51$	－0．4＊	2： 3.2	23． 27	± 0.00
（i	＊．63	8.80	＋0．11	15． 2 ！	15.09	－0， 81	\％	$\because 80$	＋0． 01	2：3．38	23．39	＋0．01
7	$\therefore 63$	¢． 81	9，11－	15． 51	16． 12	＋ 0.1 .8	景： 11	29：3．31	± 0.00	－3：37	23.41	0.04
$\stackrel{\sim}{*}$	\therefore ¢ $3: 3$	8.71	0.115	15．159	15，7i	0.17	2． 11	20．	＋0．17	23． 37	23.50	0.15
9	¢，ini，	S．tis	0． 11.3	15.4	15．69	＋0．15	21.910	$\because 1.94$	-0.02	23.59	23． 61	0.02
10	rimi	c．in	11．120	1．5．69	15． 63	－0． 16	－0．$\because 4$	以！	－ 1.01	23． 26	23.61	0.35
11	H． ii 3	C．16．	＋0．：3	－16．11	16， 3.5	－0．09	\％ 41	23.46	± 0.00	23，38	23.40	＋0．02
Noon．	\therefore Ei：	8． $6: 3$	± 0.111	16． 4	16，呺	＋11． 12	\％ 29	22． 311	＋0．01	24．03	23.51	－0．52
1^{11}	\％，位	s．tiv	＋10． 16	16． 35	113． 24	0．10：	21.71	2．2． 41	0.70	2：3．71	23.67	－0．04
\because	$\times 7.3$	Sis）	-0.04	16.14	115，	＋0．09	21． 154	\％4．4	＋0．72	2．3． 47	23． 52	＋0．05
3	$\therefore 6$	$\therefore .16$	＋0．0． 0	15．97	15． 2 ci	－11． 11	$\because 1.7$	$\because 1.6$	－11．0．	23． 41	23． 50	＋0．09
4	8.63	以． 60	0．10：	16． $13:$	16，10：	0.11	20．3i；	21.65	11.81	2），62	23.50	－0．12
5	－ 6 6：	8．（ii）	$+0.11 .3$	16，	16i．1：i	－0．09	91.97	21． $\mathrm{S}^{\text {a }}$	－0． $3: 1$	－	23.69	－0． 29
（	¢．63	stid	－0．111	14， 26	16． $2 . .1$	＋0．15	20.17	2is 17	± 0.00	24.0 s	24.87	＋0．7．9
7	8．6．3	\therefore 天碞	1.11	14．15．	14． 11	11．Mi	29．3：3	2.3 .31	＋0．01	24．122	24． 21	＋0．19
$\stackrel{\sim}{r}$	8.10	$\times 3$	11． $1: 3$	1：2， 11%	16． 119	11． 11	29．41；	～2． 34	-0.12	29．83	23.60	-0.33
！ 11	－6．3）	40	0．13	15， 6	15， 91	＋0．09	21．-5	22． 10	$+0.28$	23， 28	23． 11	0.17
10	8.103 -6.0	Stis	－ 11.17	16．11）	15．5．5	－0．13	$\because 1.711$	21．${ }^{11}$	＋0．10	22.83	22.74	0.09
11	－6．00	－K．39	＋0．：31	－15． 168	-15.71	＋ 0.10 .1	－20．01	－21．74	－0．97	－22，60	－$\because 2.47$	－0．13
Means．	－2．65		± 1.00	－15．79	－15．3！	± 0.00	－－3 3	－82． 23	± 0.00	－23． 28	－23．28	± 0.00

thermio tind-rose.

In order to find the influence of the wind ou the temperature, the hourly readings of the thermometer were compared with the Lourly observations on the direction of the wind, and the differences of the monthly mean temperature and the observation under consideration were tabulated according to the different directions of the wind.

The following formula will show how this was done：

$$
\mathrm{R}=\frac{\Sigma\lrcorner \mathrm{N} .}{r}+\frac{\Sigma\lrcorner \mathrm{NE} .}{s}+\frac{\Sigma\lrcorner \mathrm{E} .}{t}+\frac{\Sigma\lrcorner \mathrm{SE} .}{u}+\frac{\Sigma\lrcorner \mathrm{S} .}{v}+\frac{\Sigma\lrcorner \mathrm{SW} .}{v}+\frac{\Sigma\lrcorner \mathrm{W} .}{x}+\frac{\Sigma\lrcorner \mathrm{NW} .}{y}+\frac{\Sigma\lrcorner \mathrm{Calm} .}{z}
$$

In the above expression，R represents the wind－rose and $\Sigma\lrcorner N ., \Sigma\lrcorner N E ., \ldots$ the sums of all the differences between the monthly mean temperature and the temperature observed during the occurrence of the different winds；r represents the nomber of observations during which the wind was blowing from a north direction，s from a northeast direction，$太$ ．

The equations of couditions are as follows：

$$
1
$$

$$
\left\{\begin{array}{l}
\dot{J}_{0}=m-\mathrm{T}_{0} \\
J_{1}=m-\mathrm{T}_{1} \\
J_{2}=m-\mathrm{T}_{2}
\end{array}\right.
$$

m representing the monthly mean temperature and T the temperature observed at a time $0^{\prime \prime}$ ， $1^{\mathrm{h}}, 2^{1 \mathrm{~h}}, \ldots$.

$$
2 \quad r+s+t+u+r+w+x+y+r=n,
$$

n representing the number of observations recorded during the period of one month． The following tible contains the results thus obtained：

Thermic wind－rose，Polaris Bay．

Periods．	N．	NE．	E．	SE．	S．	SIV．	W．	NW．	Calm．	Montbly means．
	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
November	-1.2	－4．3	－2．2			+4.9 +2.7			－2．2	－8．6
Jannary ．．		－ 2.1	± 0.7	－3．8		＋9．2			－2．2	二19．8
Febrnary		－5．4	＋1．9			＋6．2	＋0．1	－4．2	－1．9	二－2．2
Mareh．．		－3．0	＋1．5	＋1．4		＋4．0		$\underline{2.3}$	＋1．0	－23．5
April		＋$\because 0$.	＋1．0	＋0．5		＋25		＋1．4		－7．2
May．		－$\because 0$	-1.3	＋1：5		＋1．$\%$				＋16．8
June	－1．4	－2．5	－0．6		＋3．3	＋4．0	－0．8	-1.0	－1．3	
July ．．	-1.2 +1.5	-4.1 +5.6	＋1．0	＋4．1	± 1.0 $+\cdots .2$ $+\quad .2$	+6.3 +1.0		+4.3 +3.0	－3．2	+39.6 +3.9
	＋1．5									
Ten months． Computed．．	-1.7	－1．4	－0．6	－0．1	＋1．5	＋4．：	－11． 4	＋0．4	－1．6	＋ 2.2
	－1．6	-1.4	－0．9	-1.3	＋1．4	＋2．9	＋11．7	± 0.0	＋0．2	
Difference．．	－0．1	－0．4	＋0．3	＋1．2	＋0．1	＋1．4	-1.1	$+0.4$	－1．8	± 0.0
Winter Spring－．．．．．． Sumuier ．	－0．3	－3． 1					± 0.0		-2.3	
	－0．4	-1.0 -0.3	+0.4 +0.1	+1.3 +1.4		$+2 . \checkmark$ +3.8		-1.3 +0.1	± 0.3	
	－0．4	-0.3	＋0． 1	$+1.4$	＋1．8	＋3．8	${ }^{11} .3$	＋0．1	-1.5	

The analytical elements and expression used in the computation are as follows：

n	a_{n}	b_{n}	$\mathrm{~B}_{\mathrm{n}}$	C_{n}
1	-0.56	-1.67	+1.72	192.32
2	-11.1 .3	+0.60	+0.61	34×41
3	-+0.70	-0.44	+0.82	122

$$
\begin{gathered}
\mathrm{T}=0+1.72 \sin \left(x+198^{\circ} 32^{\prime}\right)+0.61 \sin \left(2 x+348^{\circ} 41^{\prime}\right) \\
+0.82 \sin \left(3 x+122^{\circ} 9^{\prime}\right) \\
x=40^{\circ}, 80^{\circ}, \ldots
\end{gathered}
$$

The above table contains many discrepancies，as might naturally be expected，all the observa－ tions that could be made use of only extending over a period of ten months．These discrepancies will appear even greater if we consider each month separately and analyze the effect of the wind on the temperature in detail，as will be shown in the following synopsis：

NORTH WINDS.

The few north winds on lecord have a depressing effect on the temperatare thronghout the whole jear, except duriug the month of Angust, when it was found to elevate the temperature 10.5 abore the mean.

NORTHEAST WINDS.
Although the northeast winds hare a depressing effect, except in the months of April and Angust, we still see that in the course of a single month the effect can be either depressing or elevating.

At the beginning of Tovember the winds under consideration are warm, elevating the temperature 12°; then they become colder, baring a depressing effect of 10° during the middle and become as cold as -20° toward the end of the month.

The same effects as stated above will be found in Deeember, only less pronounced.
In January, at the beginning of the mouth, the depression below the mean $=1^{\circ}$, toward the middle 5°, and at the eud of the month the wind is warmer by 5 .

The same takes place in February, the differences leing only $-10,-20$ and +20 from the mean.

At the begiuning of Ilurch the effect is +10.5 , during the middle -30 , and toward the end +10 .

April will be found similar to March, the effect being $+20.5,-20.5$, and +10.5 .
May.-At the beginning we see a depression of 70 taking place; during the middle the effect is zero, rising toward the end to $+3^{\circ}$.

June.-The first portion of the month shows an effect of -1° : increasing toward the middle to -20.5 , while at the end it amonnts to +20 .

July.-The beginning of the month shows - 5°; the middle and the end $+2^{\circ}$.
August.-Throngh the whole of Angnst the effect is positive, averaging in the mean 5,6 .

EAST WINDS.

During November the effect of the easterly winds will be found similar to the northeast, being only somewhat smaller, namely, $+\boldsymbol{y}$ for the begiming, -i for the midde, and - for the end.

December. - At the beginning of the mouth the effect $=+10^{\circ}$, toward the midille -3 , reaching -12° at the end of the month.

Jamury gives for begimnins $+2^{\circ}$, middle -3^{2}, and end $+1^{\circ}$.
February.-At the beginning of the month the effect $=-4^{\circ}$, at the middle $+1 \rho$, and toward the end $+7^{\circ}$.

March.—During the whole of this month the effect is positive, averaging in the mean +10.5 .
April.—At first we see a depressing effect of - 2 , which becomes positive, reaching +4 toward the end of the montl.

May.-No perceptible effect can be fond during the beginning of the moath, but toward the end we get the value of -10.3

June sbows a negative effect of -00.6 through its whole duration.
July is positive without any exception, the effect amonnting to +10.0 .
August.-There are hardly any wasterly winds during this month; the few on remon woald indicate a rather negative effect.

SOUTHEASI WINDS.

November.-Hardly any observations. Effect negative.
Jecember.-The few observations would indicate a small positive effect.
Jannary-Entirely negative; the greatest Iepression equaling - t?
February.-There are very few observations on record during this month. The effect of the small number taken into consideration is negative.

March.-Giving $+2^{\circ}$ with hardly any exception.
April.-Is more irregular, being positive by 5 at the beginning, then toward the middle the effect is -4°, vanishing entirely toward the end.

May．－There is no perceptible effect at the beginning；toward the end we get $+2^{\circ}$ ．
June．－The only perceptible effect is positive，there being but a few observations on record．
July．－The few obserrations seem to indicate a negative effect．
August．－At the beginuing of the month the effect is $-2 \circ$ ，turning positive toward the middle， namely，$+5^{\circ}$ ，and reaching $+8^{\circ}$ toward the eud．

SOUTH WINDS．

Up to the month of June there are either none or but a few obserrations on record；aíter this time the effect is positive or zero，（July）．

SOUTHWEST WINDS．
The effect of these winds is positive without any exception，the maximum mean occurring in Jaunary（ $+9^{\circ} .2$ ）and the minimum in August $\left(+^{\circ}\right)$ ．

WEST WINDS．
The number of observations being rather small，a somewhat reliable result could only be obtained for February and June．November，December，Janary，February，and May seem to be positive，the rest uegative．

NORTHWEST WINDS．
Hardly auy northwest winds occurred until February．The few results deduced may be found in the table．

CALMS．
As might be expected，the effeet of ealms during the cold period of the jear must be depress－ ing．In summer we might expeet the eontrary．Our observations show a negative effeet mintil March，wheu it becomes $+\mathbf{1 0}^{\circ} .0$ ，remaining positive for the months of April，May，and July．Dur－ ing June the effect is depressing，and the same for August．

HOURLY CORRECTION＇s FOR THE PERIODIO VARIATIONS OF TEMPERATURE．

The following table，directly ilerived from Table II，furnishes the means of correcting other incomplete observations，to be taken hereatter at Polaris Bay，in order to obtain the mean tem－ perature of the day：

Eorrections to be applied to amy howrly observation，taken at or nerr Polaris Bay，to obtain the mern temperature of the day．

Time．	$\stackrel{\underset{y y}{\mid c}}{\underset{y y y y}{3}}$	范		花	完	$\stackrel{ \pm}{\square}$	$\stackrel{シ}{\square}$	$\begin{aligned} & \dot{B}_{\infty}^{\infty} \\ & \stackrel{E}{E} \\ & \underset{y}{4} \end{aligned}$		范		
$0^{\text {k }}$	$+1.42$	-1.05	$+1.02$	＋3．47	＋3．26	$+1.02$	＋0．54	$+2.92$	＋0．02	＋0．02	－0．02	-0.93
1	0.55	1.15	0.61	4.15	3.03	1． 7^{7}	0.21	3.21	－0，02	0.02	0.02	0.53
＊	1.54	0.94	1）． 40	4． 41	2.65	1． 13	0.65	2.74	0.02	0.112	0． 19	0.69
3	＋0．0．3	0.94	0.91	3． 82	？． 13	0.61	0．42	2.08	＋0．0．2	0.02	0．0．${ }^{\text {a }}$	0．11－
4	－0．93：	C． 24	0.91	2．-7	1．55）	0． 85	0.60	2． 19	± 0.00	＋0．01	－0．03	0.8
\square	－0．24	－0．01	1．1：	1． 5.3	0.34	0.19	0.41 i	2.23	0.00	－0．10．	＋11．91	-1.112
6	$+0.06$	＋0．10	1． 41	＋0．56	＋0．96	＋0．0－	＋0．13	2.00	± 1.00	$+0.01$	－0．02	＋0．10
7	$+0.08$	0.09	0.55	－0．07	－0．30	－0．07	－0． 14	＋0．86	二 0.46	0.01	0.02	－0．28
8	-0.12	0.09	＋0．12	0.4	1． 1%	0.45	0.71	－0，38	＋0．01	0.01	$0.0 \cdot$	0.10
9	－0．97	＋0．31	－0．26	2.40	1． H	0.74	0.45	0.86	0.01	0.01	0.02	0.32
10	$+0.01$	－0．0．2	（1．59	2．-1	1.88	0.97	0.46	3.32	0.01	0.01	0．11：	-0.10
11	0．2：	＋0．10	1.14	3． 26	1.4	1.04	0.90	3.18	0.01	0.01	0.6	＋0．65
Noon．	＋0．06	0.75	1．24	3.50	1．73	0．91－	0.75	3.55	0.01	0.01	-0.02	0.47
$1^{\text {l／}}$	－0．52	0.43	1.17	3． 11	1． 99	0.9	0.65	3.8	0.01	＋0．01	＋0．02	0.46
2	0．59）	0.19	1．05，	9． 615	1． 88	0.68	O．lix	3.52	0.01	-0.22	－0．03	0.8
3	－0．46i	0.13	1.02	2． 5	1． 63	0.31	0.44	2.80	＋0．01	$+0.01$	0.02	0.16
4	$+0.13$	1）． $1: 14$	0.82	2． 18	1.61	0.92	0.3	1．$\otimes 1$	－0．26	0.01	0.10	0.124
5	－0． 00	0.63	0．\times	1． 73	1.11	－0．0．	0.10	1.72	± 0.00	11.01	0.02	0.43
6	－0．060	0． 0^{-11}	－0． $2: 3$	0． 514	0.61	＋0．16	-0.10	－1．95	干0．10．	0.01	0.02	0.47
7	$+0.07$	0.74	＋0．01	-0.14	－0．	0.54	＋0．4：	＋0．30	0．112	＋0．01	0． 12	0.91
9	＋0． 2 ？	＋0．55	$+0.42$	＋0．12	＋10．15	0.62	$0 .: 17$	0.97	0．1而	－0．01	$0.0 \cdot$	0.17
9	－0．41	± 0.00	－0．10：	0． 5.3	0．$\times 3$	0.16	0.63	1.58	0.02	0.01	0.02	0.08
10	0.53	$=0.45$	＋0．41	0.90	1． 06	＋0．17	0.52	2.29	0.02	0.01	0.02	＋0． 29
11	-0.22	－0．68	＋0．14	$+3.05$	＋1．14	－0．16	＋0．	＋2．85	＋0．46	－0．0．2	－0．57	-0.13

TEMPERATURE OF THE AIR AT POLARIS HOUSE.

REUORD AND DISCUSSION OF TEMPERATURES AT POLARIS HOUSE.

The following observations of atmospheric temperature were wade at Polaris House after the loss of the ressel had occurred. The latitude of the place was found to be $76218^{\prime} .0$, its longitude $4^{\text {h }} 41^{m} .4$ west of Greenwich. A glance at the map accompanying this report shows that the station is situated in a little bight between Cape Hatherton and Littleton Islaud, named br Kane "Life-boat Core." The hat in which we spent the winter was situated on a flat spot of the beach only a very short distance from the sea. The box containing the meteorological instruments was fastened to the sonthern wall of that building. In regard to the topography of the place, we may mention that it was fully exposed to the northwest, west, and southwest, while a range of low hills treuded round its northern and eastern shores. As regards the instruments used, all necessary explanation was given in the introductory chapter accompanying the Polaris Bay observations. It is proper to mention that during the latter part of February the box containing the instruments was remored from its original place and fastened to the northern wall of the but in order to protect it from the direct heat of the sun.

NOVEMBER, 1872.

Time.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	n	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
$0{ }^{11}$	-4. 5	-0.1	$+17.0$	+19.0	+3. ${ }^{\text {a }}$	-0.9	-1.8	-5. 5	-1.9	-1.8	- 7.3	-12.6	-4.2	+11.6	+5.8
1	4.6	$+0.3$	16.8	20.3	3.4	0.	2.8	5.3	1.5	5. 1	9.6	12. ${ }^{\text {d }}$:3. 7	11.2	5. 7
2	4.6	1.1	17.8	$\cdots 11$	4.6	0.4	1.9	5.4	1. 5	T. 1	10.5	13.0	3.7	10.9	5.3
3	4.7	1. 2	17.9	20.1	4.0	0.5	1.0	6. 3.3	1. 2	6.5	8.1	13.8	-4.0	11.9	5.3
4	4.3	1.0	17.2	20.5	$6 . \because$	-11.5	-1). 6	5.3	0. 8	4.6	9.1	14.5	+ 0.2	11.0	6.4
5	4.5	1.2	$1{ }^{1} .0$	19. x	7.:	+0.6	+1.11	6.6	1.3	4.2	$!1.8$	14.5	5. 4	11.8	6.2
6	4.0	1.0	17.9	19.4	11.9	1.3	2.19	5.9	1. 1	3.1	10.17	14.5	6.0	11.1	6. 8
7	3.2	1. 5	18.0	19.4	10.7	9. 11	4.5	5.7	1.4	4.0	0.7	14.7	13.0	11.7	6.5
8	9.5	11.5	1-.	19.:3	10.0	2.4	3.	1.8	2.7	5.4	11.7	15.4	7.5	10.2	6.7
9	4.5	11.8	19.3	18.5	9.8	9.7	2.	2.6	3.6	6.0	10. S	15. 1	7.9	11.0	6.1
10	1.8	12.2	1-. 0	$1 \sim \cdot$	4.8	2.4	2.2	5.6	4.0	5. 7	$1 \because .5$	14.7	¢. 2	10.0	6.1
11	2.5	11.6	19.4	17. $\%$!1. 1	2.5	?.5	1.5	3.0	3.0	13.0	15.9	6.8	10.2	f. 1
Noon.	4.6	11.3	19.2	17.5	8.5	3.:	3.5	2.0	3.5	2.8	11.3	12.9	9.7	10.0	6.2
$1{ }^{\text {b }}$	$\therefore 5$	15.0	119.0	17.	8.	3.5	\%.4	¢. 6	3.	3.7	11.1	11.1	10. 3	11.0	6. 2
\because	4.3	11.0	1-5	17.1	7.4	3.5	2. ${ }^{2}$	2.6	1.7	3.6	10.	12.11	11.3	10.0	1.3
3	5.6	14.2	1-0.0	17.3	7.5	-1.0	1.9	P. 0	\because	4.5	11.7	12.6	111.3	11).2	6.5
4	4.15	1ii. 0	1*:	17.4	7. 1	1.6	$\because .0$: 1	?. 5	-7. 6	10.5	1:3.0	111.9	9.6	6.5
5	4.9	16. 1	18.5	17. ${ }^{\text {a }}$	7.0	1.5	3.4	3.6	2.3	13.11	11.9	13.0	111.9	9.0	\%. 4
6	$4 .:$	15.8	19.4	13.0	6.9	1.5	+0. \because	$\because .9$	\%	1.5	11.7	13. 4	111.6	8.2	8.0
7	8.6	15.5	19.3	13.0	6.0	+0.6	-1.5	2.9	2.4	13.2	11.8	13.3	11.3	7.5	8.1
8	$\because .9$	16.0	19.:	19. \because	2.0	-1). 5	3.2	3.3	4.1	6.7	13. 13	13.2	11.2	$\times .0$	9.0
	2.7	16. 1	11.0	1i. $\overline{1}$	0.4	0.8	3.4	3.4	4.2	7.0	12.7	12.2	11.2	7.5	9.3
10	0.8	16.4	1-. 7	$6 .: 3$	0.1	0.19	4. 5	3.1	4.6	7.0	12.5	11.0	11.5	1. 4	9.6
11	-0.6	+16.6	+19.1	+ 6.5	$+0.8$	-20	-5.4	- 2.0	-4.4	-7.4	-12. $1 ;$	-11.9	+11. \%	+ 6.4	+9.6
Means.	-3.55	+ 9.24	$+14.6$	$+16.55$	+6.76	+1. 0.4	+0.17	-3. 7 !	- 2.55	-5.28	-10.6.3	-10.85	+6.99	$+9.70$	+6.93

NOVEMBER, 1872.

Time.	16	17	18	19	20	21	62	23	24	25	26	27	28	29	30
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
$0^{\text {l }}$	+11.5	-1.0	- 5.8	-17.0	-13.2	-13.8	+1.3	+1.2	-5.3	-6.8	-4.3	-5.5	-1.2	-11.5	-9.6
1	91.5	1. $: 3$! 5	17.5	12.2	12.5	0.: $:$	4. $\%$	4.5	6. 6	4.5	5.5	2.3	10. 5	9.7
2	3.0	1. \because	10.2	17.5	1:31	9.3	0.5	4.2	4. $:$	6.6	5.0	5. 2	3.8	10.5	10.2
3	4.8	1.9	11.2	17.4	12.4	8.4	0.9	¢1. 11	3.6	7.11	4.5	4.5	4.2	11.0	10.5
4	8.9	1. 6	13.6	17.6	13.4	7.18	1.1	1. 1	4.0	$7 . \because$	3.5	4.0	5.6	11.5	10.4
5	9.	3.3	14.0	17.6	11.9	8.3	1.1	3.4	4. 1	7.4	3.8	3.1	5.6	11.4	10.3
6	9.2	3.7	15.3	17.5	10.8	10.9	1.4	1.7	4.9	7.5	5.9	2.0	6.0	11.0	10.3
7	3.4	4.3	14.6	17.5	10.0	$1 \% 4$	$2.0{ }^{\text {i }}$	0.19	4. ${ }^{\text {; }}$	7.5	3.6	3.3	6.0	11.2	9.5
8	0.3	4.7	14.7	17.5	10.0	12.9	$2 . \geq 1$	0.4	4.0	6.4	3.1	3.2	6. ${ }^{\text {a }}$	11.2	9.4
9	8.9	6.8	15.1	16i. $\overline{5}$	3.1	10.5	3.1	+11.:	4. 6	6.4	2.4	3.0	7.5	11.9	9.1
10	8. ${ }^{3}$	6.5	15.0	11.6	8.1	11.1	$\because 9$	-0. 4	5.11	5.5	2.0	2.8	7.5	11.8	8.8
11	7.7	7.1	1.5. 1	11:. 6	8.1	10.6	3.8	1.4	3.5	16.1	1.3	2.8	$\checkmark .6$	11.8	8.9
Noon.	7.7	7.9	15.2	16.7	7.1	10.11	3.2	1.19	4.4	5.5	1.7	3.1	\%. 0	11.5	8.5
$1{ }^{\text {b }}$	4.1	8.5	16.11	16.4	6.0	E.	8.7	1.4	4.5	4.7	2.6	8.5	8.3	11.5	7.3
2	3.2	8.8	15.3	15.	1i. z	9.6	$\because .7$	1. ${ }^{\prime}$	4. 6	4.0	3.1	$\therefore 1$	7.6	9.6	7.1
3	1.6	$9 . \therefore$	16. ${ }^{1}$,	15.5	fi, M	10.:	$\because 5$	$\because \because$	4.9	4.0	3.3	\therefore.	\%. 0	6.0	6.5
4	+1. 6	10.7	11.7	16. $: 3$	12.8	7.11	3.11	1.11	4. 3	5.1	4.0	2.9	5.5	7.6	7.3
5	-0. 2	11.6	15. ${ }^{\text {a }}$	16.0	7.8	-3.11	3.1	311	4.9	6.11	4.0	2.9	9.6	7.6	6.5
1	-11.0	12.5	14%. 11	1.2. 5	\cdots	+1.0	3.1	3.1	4.4	6.11	5.1	8.7	0.3	7.3	6.5
7	+0.2	$1 \because .7$	16:3	15.5	(i. 61	2.4	3. 2	3	4.9	5. 0	5.1	2.7	9.3	8.5	7.3
s	+11. 2	12.6	17.1	1-1. 5	7.0	4. \because	4.11	8.11	$\therefore 1$	5.3	5. 6	2.5	11.0	8.7	6.5
$!$	-0.5	$1 \because .7$	17.5	$1 \therefore 1$	31.10	4. \because	4.1	$4 .: 3$	4.9	6.0	1i. 0	$\stackrel{5}{2} 5$	11.0	9.5	6.11
10	0.17	13. 0	17.5	1:3, 3	111.0	2.5	4.6	4.5	5.5	4.5	5.9	2.3	11.8	9.5	6.0
11	-0.7	-13.7	-17.3	-13.3	-12.7	$+1.4$	+1.7	-4.5	-5.5	-5.0	-3.8	-1.6	$-1 \because 1$	-9.5	-6.8
Meads.	+5.08	-7.32	-14.36	-16. $3:$	- ! 4.4	-6.70	+2. 54	-11. $1=$	-4.50	-5. 91	-3.98	-3. 23	- 5.81	-10.17	-8.29

DECEMBER， 1872.

Time．	1	2	3	4	5	6	7	8	9	10	11	12	13	11	15
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	ν	\bigcirc	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {h }}$	－ 6.6	－11．6	－11．${ }^{\text {d }}$	－9． 5	-10.3	－13：	－10．2！	＋7． 1	－0．7	－11．0	-14.0	－11，5	-16.2	$-1 \sim 5$	－10．\％
1	6.3	12.4	$1 \because 5$	9.0	10.9	11.6	11．4	6． 3	1.0	11.3	14． 1	$1 \because 8$	16．：	17.6	10.4
\because	15．9	12.4	$1 \therefore 0$	10．0	11.5	1 2 S	1：3	7.	$\because 1$	11.4	14.0	12.4	16．is	$15 .: 1$	10． 6
3	8.0	$1 \because 4$	1．${ }^{1}$	10.6	10．	10.9	14．3	$\therefore .1$	：3． 1	$1 \because 1$	13，$:$	12.7	16.4	17．4	10.7
4	10．	12.1	16.11	10.1	11.1	111．－	13.6	9.0	：	1：3．	13．\because	11．	11.6	16.4	11．s
5	10， 4	11． 7	14．1	4.6	11．$: 3$	11.4	1：1．3	－．${ }^{\text {\％}}$	4．：3	1：3． 1 i	$1 \because 6$	11.6	17.7	1－7	11．1i
6	10．：	120	14.2	3.15	10．\because	11.7	12.	-7	－3． 1	$1: 4$	$1 \cdots .4$	12．	16．－	14．	11．：
7	7.5	$1 \because 3$	14.5	$\therefore 9$	11.4	10.4	13.7	$\therefore 4$	5.7	14．$\%$	$1 \because 5$	12.9	16．－	14．6	10．5
$=$	$\therefore 4$	13.6	14．1i	$\therefore \bar{\square}$	\therefore ․：	11.4	11.9	-3	6． 9	14． 1	10.8	13．3	17.11	14． i	9.0
9	7．11	12．－	14．0	$\because \because$	$\therefore \because$	10．7	11.0	－． 9	7.	13．－	10.7	13.4	16．：	14.3	9，
10	7.	13．\because	14.0	7．	11.0	12：	9.4	fi，${ }_{\text {c }}$	\％．3	11．\％	10．1；	12.7	17.9	14．\because	9， 0
11	$\therefore .7$	$12=$	15.3	$\bigcirc 0$	9.7	13.1	9.6	（i． 0	$\triangle 4$	11．．${ }^{\text {a }}$	11．${ }^{\text {a }}$	12．$!$	1．：	13．7	11）
Snori．	－． 0	11.1	16，	$\therefore .4$	9.	13．1	10.7	7． 2	9.1	1：11	9.3	1：3．0	1－．1i	1：i， 6	$\therefore 9$
$1^{\text {b }}$	3.0	11．i	15.8	7.7	9．3	14．\because	11．） 1	7．\because	9.3	$1 \because 2$	9.9	13.	$1-9$	13，7	！． 1
$?$	9.4	1：3	15．3	0.1	8.5	15.6	！1，	6.4	11．1	$1 \because 1$	11．：	13．－	19.11	13.9	10.0
3	$10 . \ddot{ }$	10．：	1：3．3	7 O	7.	16.4	$9 . \therefore$	$\bigcirc .0$	10． 3	$1 \because .1$	11．\because	14． 10	13．	14．5	111.
4	10.8	10，	13．：	9.0	7.3	1．3．－	9.6	1． 1	10.5	14.3	11．：－	$1 \therefore 1.1$	19.3	14．6	11.1
5	10.5	13． 1	14.5	$\therefore 0$	9.4	$1 \because 3$	73	13．	111.	14.4	$1 \therefore 1$	14.4	1－－	1：3．9	11.0
6	11.0	12．：	14.5	7.5	$9 .:$	10.7	－6．	6.3	11．：	1： 1	$1 \because .4$	14． 5	19.4	13．0	111．${ }^{\text {－}}$
7	10．$:$	12．	14.6	T．1i	10.1	9.4	$+3.4$	（i，$: 3$	11.6	1ti． 1	13．\because	1．1． 4	11.7	12．	10.5
\％	10.1	13.0	1：3，3	7． 1	$1 \because \because$	$\therefore 3$	\therefore	（i．11	12.0	16.1	$1 \div 9$	15，	19.1	11.5	9.4
11	10．0	11.7	13．3	7.9	111.	2.4	5.9	2.0	12．3	15．4	11．11！	15.3	19.4	11．0	9.7
10	10.2	1：3：	11.1	7	9．4	7.5	3.19	0．：	12．1	15.0	10.1	15，	19．4	11.9	$\therefore 4$
11	－11． 5	$-11 .:$	-11.1	－$\quad \therefore$	－1：3：	－ 7.6	$+7.0$	＋ 10.3	-11.1	－15．0	－11．1	－1\％	－19．1	－111，－	－－i
Dleans．	－ 8.49	－12． 20	－14．11：	－ 2.44	－9，93	-11.54	－ 7.45	＋6．41	－ 7.7	－1：3．41	－11．9：	－17．	-1804	－14．$\because=$	－10．02

DECEMBER， 1872.

Time．	16.	17	1＊	19	180	21	22	23	Q	2.5	46	27	28	29	30	31
	\bigcirc	－	0	0	c	\bigcirc	\cup	\checkmark	U	\checkmark	\cup	\checkmark	．	\checkmark	\bigcirc	0
0^{18}	－85	－10．3	-7.6	－－	－	－1i． 5	－1． 3	＋ 3.4	＋-3	＋14，－	－ 1.1 i	＋ 1.9	－11，$\overline{5}$	－14．－	－30． 6	－ 4.9
1	71	$4.1 i$	7． 4	$9 . \because$	：3．1	7.4	＋11．$: 3$	$\because 0$	－ 5	1 $\therefore 1$	\because	\cdots	11.6	1－1．：	？ 31.0	$\because-1$
\because	7.7	9.7	6． 3	\therefore	3．－	73	1．\because	1．\because	！． 1	15， 5	7.4	4.3	12：	16.1	30.3	$\because 11$
3	7． 3	0.9	S．：	6.5	4.19	T． 5	1.4	2.9	\because	1．：$:$	$\therefore 11$	4．：3	1：${ }^{\text {a }}$	17．$: 1$	$\because 1$.	\because
\pm	13． 2	9.4	－5， 0	7． 4	4.5	－． 4	13．：	1.7	124	11.9	$\therefore 1$	3.7	11．－	17.4	$\because 1$.	？．6
\therefore	（i． 9	$\therefore 5$	$\therefore 11$	$\therefore 1$	4.3	8.5	$\therefore \because$	1.3	\therefore－	$\because .0$	9.3	$+\therefore$－	11．${ }^{\text {\％}}$	17.6	$\because 1 . \because$	29.0
6	$\therefore 5$	10.0	3.6	（i． 4	4．\because	$\therefore 0$	5.1	1．\because	$\therefore 3$	13． 2	9.6	－ 1.4	11．：	17.5	$\because 1.3$	35.7
\％	－3	10.9	3.9	6．5	3.3	7.7	$\therefore 1$	1.9	4.61	11.1	19.5	13： 3	11.0	15.1	$\because 1.4$	\because
－	24	11．\because	1．－	7is	\therefore	$\therefore \mathrm{S}$	$\therefore:$	1．，	4．：i	9.0	10.4	9.11	11．${ }^{\text {a }}$	19.5	$\because 1.5$	\because－
9		9.7	3.1	7	$\therefore 1.1$	$\therefore 2$	－ 6	\because	$\therefore \because$	$\therefore 2$	7.	－	10．9	19.1	？	20，
10	111.0	95	$3 . \geqslant$	3.6	41	－． 3	1i． 0	1，7	4.6	3． 3	7.7	10.0	$\because 2$	19．1i	凹－5	29.3
11	111.	10.3	3.1	3.4	3.7	6.4	6．\because	2．	： 3.4	＋ 3.3	4.5	10.3	9.0	19．！	？－1	$\because-4$
Nuent．	10.4	11．	2.1	5.4	4．\because	6.7	6.7	5.	3.6	－0．61	6.4	10.1	9.4	310	？	$\because 3$
$1{ }^{\text {b }}$	10.7	11.4	2．	4.6	4.7	（1．9	$\therefore 3$	二） 3	11.	＋ $1 . \because$	7．\because	9.0	10．2	20.7	23.4	$\because 11.4$
$?$	10． 5	$-.7$	3.	4.	4.5	5	5.4	6． 1	11.	0.5	7.4	9.1	11．3	$\cdots 11$.	？	24.4
3	10.3	$-.5$	4．11	4.5	4．9	$\because \cdot$	4.6	12．${ }^{2}$	0.3	0.3	7.4	10.7	11．${ }^{\text {\％}}$	$\because 1.11$	\cdots	\because
1	9.9	\therefore	4.5	4.3	\therefore	3.7	4.4	11.7	$0 . \%$	1．－	Bi	11.0	11．3	$\because 1.5$	24．\because	$\because 0$
5	10.1	7.7	1.5	4.11	5.7	3， 3	$\because 7$	3.5	1．1i	＋$\because \because$	5， 3	10.1	10.5	$\because 11.4$	4．4．3	－5
6	$!6$	7.3	6.4		11.4	－ 6	1， 8	7.5	1． 11	－0．3	$\because 1 i$	\cdots	11．4	－1．3	$\because 4.1$	$\because-1$
7	3.7	\％． 4	6.9	$4 . \because$	2．11	$\therefore \therefore$	3.1	7.1	1．\because	0.4	$\therefore .0$	－． 1	1311	－11． 11	$\because 4.4$	$\because 2.4$
E	11.6	7，	7.	4.18	7.6	6． 4	3.7	7	0.1	1． 3	1.6	（1）	1：9	$\because 110$	$\therefore 3$	$\because-0$
9	10．：	$\therefore .3$	$\therefore 0$	4.7	7．	$\therefore \because$	$\therefore 16$	i．－	1．：$:$	$\because-$	0.4	9.1	132	？\square^{-}	に－	$\because 2$
10	10． 1	-1	$\therefore 4$	4.7	7.4	4.6	3，	2.5	：：$:$	$\therefore .9$	0.7	9.1	14．0	2－11	$\because 4.9$	\because－
11	－ 11.5	－ 7.5	－9．11	－$\because .1 i$	－13．！	－4． 1	＋3： 2	＋ $2 . \because$	＋4．\because	－4．－	－ 0.8	－10，0	－1：3 3	-1.0	－	－ 29
Means－9．15－9．09			－5． 91	－5．14	-4.193	－1i．$\because 1$	＋3，－	＋4．－1	$+4.10$	$+\therefore 1-$	5.80	－5．小	－11．4	－19．9	－3．3．	－0\％．94

6 т A

FEBRUARY， 1873.

Time．	1	2	3	4	5	6	7	8	9	10	E 1	12	13	1 ${ }^{\text {H }}$	15
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	2	\bigcirc	u	\bigcirc	0	\checkmark
$0^{\text {b }}$	－32． 7	－2： 5	－22．5	－19．3	－14．3	－$\times .0$	－ 1.	－20．：	－ 9.3	－ 23.11	－22．：	－	－34， 6	－31．	－
1	34.3	2心．3	21.3	13.5	1：0	12.3	21．${ }^{\text {a }}$	$\because 2.1$	9.6	别，	16，0	33．1i	31． 5	3i．3． 4	：2． 5
2	36．${ }^{\text {d }}$	$\bigcirc 0$	$\because 0.3$	17．6	11.7	13．3	21.2	2．） 4	！1．	恕－\because	16． 1	35． 3	： 3.4	in． 8	：31．0
3	35.5	27.2	29.4	16.5	1 i .7	1－is	17.8	$\because 1.6$	10．5	46，	1．5．	：3．3． 1	\％	31.0	31.17
4	3：3． 3	$\because 7.5$	30， 4	16.0	11.4	15．n	16.5	？	11．\because	25.1	\bigcirc	31.6	\％	30.0	：3． 7
5	31.4	$\because 7.3$	19. is	15.1	11． 2	15．${ }^{\text {d }}$	16．0	ゼ， 3	11.5	$\because 1.7$	9． 5	39.0	： 3.1	31.8	（：3． 5
6	： 3.5	$\because 6$	18.0	14.4	11.0	14.3	16.0	29．4	12.4	？	11．${ }^{1}$	： 1	33， 5	：11．9	\％in 4
\％	31.8	？ 0	19.6	13．5	11.1	13．${ }^{\text {a }}$	17.0	$2 \cdot 9$	11.9	17.4	12.6	［3：3	：$\because 2 ;$	浬吕	36
is	31.2	23.9	19．：	14.7	11.3	10.6	17.5	\cdots	11.6	30.5	9.6	3：3，1	34.0	：31．：	： 6
9	31.0	2？， 11	19.0	16.6	10．3	9.4	17.6	35080	14.4	？	9.0	33．\because	31.7	30.5	3 30．0
10	30．$\%$		$1-5$	17.	\％ 5	9.5	17.5	25．5	13． 5	14． i	\because	\％ 4	\cdots	30． 1	号） 18
11	29.5	3） 1	18.6	16.5	9.5	8.5	16．is	27.5	17． 3	1．1． 4	9.4	81.5	： h，$^{\text {a }}$	：31．：	：3． 7
Noon．	30.6	－2， 4	19.6	20．\because	9.5	9.5	14．6	25． 9	\cdots	$\because 1.8$	9.6	31． 5	：11	：12．5	：17． 7
$1^{\text {b }}$	$30 . ?$	$\because 1.3$	19.6	19.5	$\times 3$	12.5	13．9	21.10	？ 19	㫛， 5	111.6	310.6	［5． 1	．$\because 2.19$	： 27.6
\because	2－3 3	$\because 1.6$	1－． 4	1－．11	$\therefore 6$	15．0	1：3\％	？ 3.5	－	$\cdots 2$	17.5	感5	34．${ }^{\text {a }}$	（3） 11	2－3， 3
3	$\because 2$	21.5	$\because 11.0$	19.1	13.5	1.5 .5	9.4	20.18	－5．	－	18.7	\cdots	：4．：	：31．2	嫁．11
＋	Y－0	20.9	\because	19.6	4.0	120	\because.	12． 1	24.1	23．3	\cdots	\cdots	：1． 15	－181	：31． 5
5	U4．\because	21.2	$\because 1.0$	19．	1，5	19.3	$\because: 3$	1\％．t	9．2．19	\％	？ 3,5	$\because 24$	2．5． 0	（31） 5	Sis． 19
6	$\because 13.5$	21．	$\because 1.4$	1－． 4	3.5	1－6	3.0	4.15	23.	$\because 3.7$	$\because 4$	31．\because	：－	31.7	23．${ }^{\text {a }}$
7	30.3	20.4	21.3	17.3	0.3	19.3	「． 0	4.5	？ 8	$\cdots 4.7$	$\cdots 1$	： 11	：3	3%	？ 3
8	$31 . \therefore$	211.6	$\because 1.4$	$11 \mathrm{i}, 3$	1.5	$\because 1.0$	14.5	5.1	\cdots	2． 5	：31， 5	［is． 9	34.3	：3．－	31.7
9	管动	21.0	$\because 11.7$	1－1）	1．	$\because 1.3$	17.4	7.4	［14．	？ 6	：31． 11	：14，	2\％	31．6	［3．3． 0
10	为：	20.8	$\because 1.6$	15．：	1，\％	2：0	3：3．0	－． 11	こ－\％	？：\％	： 14.9	$\therefore 1$	：1． 6	： 12.	31.18
11	－36．0	-1.2	－21．0	-14.6	－ 35	－ 3	-2.35	-8.2	－	－ 0.0	－：3．0	－3：3	－$\because 2.1$	－i1． 5	－$\because: \%$
Heans．	－21．43	－2：3．4i	－211．16	-17.06	－ 2.65	-15.01	－14．9）	－（1）． 3 ？	－1－．4：	－1，\therefore	－1－．191	－ 31.10	$-\cdots 1.11$	－\％－	－：1．\times ；

FEBRUARY， 1873.

Time．	16	17	18	19	20	21	22	28	24	29	26	28	28
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	u	\bigcirc	，	\bigcirc
$0^{\text {b }}$	－33．5	－31．2	-32.4	－33． 2	－：1．6	－3\％ 5	－－3．	－16． 0	-4.7	－5．5	－－，5	－－	－31．2
1	3， 6	30.4	2e． 4	34.5	： 3	呺，	34.1	15．	4.5	$\because 6$	\cdots	2－．i	：1．
2	［1］ 5	30.5	\％	织． 19	31.18	37.7	$\because 2.9$	15． 3	4.5	315	－9． 11	－－	－ 34.15
3	$3: 3$	：31．2	31.6	3： 30	河． 5	37.3	湜 5	16．${ }^{\text {a }}$	3.4	$\because 5$	ソ\％ 5	3！！\because	31.6
4	3.5	31.4	30.7	34.5	31.4	：17．	31.6	15．	5． 11	$\because 2$	$\because 9$	－3，	3．．S
5	品，3	31．：3	$31 . \%$	34.19	31.6	：19．5	： 3.5	14．－	$\therefore 16$	－5，	$\because-5$	2－，	： $2 \cdot$
6	31.2	S0． 19	湤家	2i：3 4	31.0	$\because 6$	：10．3	13.7	¢n	－4．${ }^{\text {a }}$	\because	$\because-6$	3：3
7	30.6	90．$:$	3： 4	31．：3	硕：	：$i=$.	3il． 0	11．5	7.9	9x－4	$\because \sim .5$	$\because 6$	：31．3
8	\％ 31	31.9	哏 6	21.5	3．${ }^{\text {a }} 1$	31.0	？！	12：3	4.11	$\because 8$	3 3	－2．11	： 2.16
9	31.5	32	：2．${ }^{\text {¢ }}$	011.4	： 21.5	2．1． 7	2．1；	12.5	3.11	31， 5	25． 4	\therefore ：$:$	\because
10	（1）． 4	30.5	：31．3	：30， 7	：2， 3	3， 3^{1}	为	12.4	\cdots	2li，	？ 3	31.5	（31） 01
11	－ 2.7	30.8	31.4	30.6	：－4	21； 5	$\bigcirc 7$	13.11	$9 .:$	－ 20	－1． 4	\because－i	？ 5
Noon．	と－，	（3）11	3＇， 6	30.5	：19\％	：1i． 5	\cdots	11.3	12	\because－ 9	－1， 1	？	吅吅
$1^{\text {in }}$	\cdots	： 3.4	湤，\therefore	3in． 6	40.6	：13．5	26．4	13， 5	$\because 1$.	$\because-4$	39.4	是：	16.11
\because	31.6	：3．1；	33.9	30．0 0	41.0	：3， 4	$\because 6.0$	15．4	？ 1	$\because 2$	$\because 2$	Sil） 11	13．6
；	30.0	$\because 4.7$	：5	29.4	＋1．\because	唃， 6	24．${ }^{\text {a }}$	16．5	等：	\because	$\because 1.7$	$\because 6$	$13: 3$
4	30.3	\％	3－3	34.5	41，：3	Sili 7	21.7	$1 \because \because$	$\because \because$	－ 21.	2in）．	－2．	14.0
5	29.5	33.3	3－：	33.5	41.5	37． 14	$\because 6$	$1-4$	\because	$\because 8$	＂13，	$\because 2$	14.7
6	？ 3	： 314	36.0	：3． 5	42.5	：17．3	9－9	17． 3	？－	$\cdots(1$	23．5	？ 36	11．${ }^{\text {i }}$
7	：31．2	： 46.5	34．\because	O1． 2	41.5	O－5	？ 3	$1-3$	$\because 2$.	$\because 2$	－9，${ }^{\text {d }}$	$\because 1.7$	17
＊	20，5	36， 7	24.2	33.1	41.7	：11． 1	84.0	$1 \mathrm{fi.1}$	2－5	－	29.1	： 2.19	15：
3	20， 4	：14．9	S	31.4	411．：3	： $2 \times$	ㄴ．0	16.7	2r． 1	曲	？	$\because 21$	1\％
10		33． 6	33． 5	：3： 11	40.3	：－3	$\because 1.1$	$17 . \overline{ }$	\cdots	21.	$\because-1 ;$	$\because: 311$	16.5
11	-31.7	－ 2.4 .0	－4．\because	－311． 3	－3m． 2	－-16.9	－19．	-16.1	－30．	－2\％．3	－ 21.1	－：4．11	-16.11
Mramis．	－30． 0	－ 3	-33.92	－32．78	－3．	－ 36.5	－27． 11	-15.92	－11：．14	－\％\％	$\because 29$		-2.115

APRIL， 1873.

Time．	1	2	3	4	5	6	7	8	9	10	11	12	13	11	15
	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0{ }^{\text {b }}$	－29．5	－31．\because	-30.5	－9\％ 5	－19．2	－18．5	-14.3	－14．6	－17．6	－24． 1	－ 5.7	-16.1	－16．0	＋1．5	$+11.0$
1	29.5	$\cdots 1$	31.3	$\because 6.3$	17.5	19．2	14.0	14．3	17.5	19.3	5.8	17.3	16．3	1.5	11． i
2	29.6	31.5	30.5	26.2	18.5	19.0	13.4	14.7	17.6	$\because 1.1$	5.6	16.0	17.9	1.5	11.5
3	30.3	$\because 6$	31.1	67.1	18.7	19.2	13，\because	15． 1	17.3	22.8	4． 4	14.5	13.8	2．3	11．2
4	29.6	31.4	31.3	－7．0	17.3	19.2	13.6	14.7	16.0	20.5	4．\because	$1 \because 3$	11.15	1.8	9.15
5	28． 0	214．2	－ 3.7	26.1	1\％．4	18.8	13.5	12.5	11.5	15.0	2.2	10.0	8．5	1． 4	10.1
6	29.1	30.4	2． 0	25．${ }^{2}$	1%	18.7	13.7	11.0	9.4	$\stackrel{\text { ¢ }}{ } 1$	－ 0.3	6.5	6.7	2.4	9.6
7	2． 2	28.5	20.4	23.7	17.7	18.0	19.9	9.6	7.1	2.9	$+0.6$	－ 1.6	4.0	5.3	10.0
8	26.5	29.8	19.5	20.9	17.7	17.2	12.6	86	4.6	1.7	2.7	＋0．5	3.8	4.7	11.8
9	25． 3	20.4	15.4	$1 \times .7$	17.6	16.5	12.5	7.9	13.1	11.7	3.4	2.4	2.0	8.3	14.0
10	24.0	？1）．	1－． 0	16．2	17.3	15.3	12．2	7．${ }^{\text {\％}}$	12.6	0.7	6，\％	1.0	3.5	6.3	1＊． 9
11	21.2	20．5	15.5	15．3	17.3	15.5	11.2	7.6	14．：	1．：	5.4	＋ 0.6	－ 3.1	9.3	17．2
Noon．	$\because 5.8$	23.6	15.3	14.5	17．9	16.6	11.4	7.5	15． 5	0.11	5.9	－ 1.6	＋ 0.5	13.0	11.4
$1^{\text {b }}$	25.7	36.5	17.5	1ヶ． 2	16.8	15.2	11.7	\bigcirc	14.7	1.5	6.0	$\because 4$	－1．3	14．3	11.5
2	21.5	－5．9	$1 \times .8$	21．\because	16.9	15.4	11.5	1.0	15.0	1.9	5.3	－ 1.5	1.4	15． 4	$\therefore 7$
3	$\because 1.4$	36.7	$2 \cdot 5$	93.4	16.5	15.1	12.3	9．$\stackrel{3}{2}$	14．i^{\prime}	？．：	＋0．1	＋ 11.3	0.	15.3	6． 0
4	21.2	－2． 4	\％2．	22．0	16.7	15．${ }^{2}$	$1 \because .1$	-7	14.3	2.5	－4．2	$+0.5$	0.7	14.0	$\because .9$
5	21.6	27.3	24.7	23.5	17.3	15.4	$1 \because .3$	9.9	14.4		5.4	$-\because 4$	1.9	13.4	1.3
6	24．8	29.4	36.8	？ 3.2	17.4	15.6	12.7	10．6	15.0	4.4	7.10	4.15	0.7	13．9	3.5
7	97.3	30.5	92． 1	－4．5	17．${ }^{\text {2 }}$	15.7	13．2	$1 \because .1$	15．5	4.7	9.5	80	－ 0.5	$1 \because: 3$	3.7
8	－5． 6	30.4	27.9	26． 2	17．${ }^{17}$	16.5	13.0	13.5	13．3	4.11	11.5	\cdots	＋ $11 . ⿱ 亠 ⿱ 口 小 彡$	11.9	3． 6
4	26.4	30.6	$2{ }^{2} 4$	36.4	17.7	15.4	13.5	14.5	19.4	4.7	12．5	$1 \because .3$	$\therefore 2$	11.0	4.0
10	31.5	24.7	心2，	25． 3	18.0	15.0	14.0	111.4	21.5	5.5	14.3	9.5	3.0	11． 3	1.9
11	－31．3	－$\because 2.9$	－2ㅅ․ 1	－20．9	-1×2	－15．1	-14.1	-11.7	－5：3	－ 1.11	－15．${ }^{\text {² }}$	－11．6	$+1.4$	＋11．5	$+0.3$
Meatus．	6.67	－ 3 ？ 15	$\because 0.10$	－20． 07	－17．63	-16.70	$-1 \because 87$	－11．44	－10．73	－7．17	－3．03：	－6．33	－4．	$+\cdots 44$	＋$\quad 4.4$

APRIL， 1873.

Time．	16	17	18	19	20	21	28	28	24	25	26	27	28	29	30
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {i }}$	－0．5	－2． 3	－5． 6	－ 8.2	－ 1.5	－2． 6	－2．8	－！－${ }^{2}$	－ 0.4	＋3， 5	＋2． 5	＋1． 3	＋ 5.5	$+7.8$	＋$\triangle 5$
1	9.5	$\checkmark 3$	6． 4	10.6	－ 0.6	1． 8	－3． 5	9.15	11.6	？． 1	1.5	3.3	4.2	7.5	2． 5
2	3．${ }^{\text {i }}$	8.5	4.0	10.5	＋ 6.3	2.5	＋2．0	区：	-0.1	1.5	1.0	1.0	7.2	7． 6	7.4
3	3.9	7.4	0.6	¢． 3	7.5	3.0	-3.2	2． 1	＋ 2.3	1.0	1．3	0.6	7.3	$\therefore 2$	－
4	2.7	7.6	3.6	7.0	8.3	2.5	4.6	6.5	7.0	1． X	3.4	2.6	7． 1	8.5	$\cdots .5$
5	2.5	8.0	6.5	2． 2	8.5	2.0	－0． 6	10.3	․：3	1.5	$\because .4$	1.4	$\checkmark .0$	$\therefore 0$	-2
6	2． 2	－． 5	5.1	7.4	8.4	1.6	＋1．5	$\therefore 2$	$\therefore 4$	\because	$\because 0$	3.5	\therefore	$\times 3$	13.0
7	2.5	7.1	$\because .1$	13.5	9． 0	0.7	2.5	6． 5	13.1	9．5	3.1	3.0	7． 4	$\therefore 4$	11.1
\checkmark	1． 6	5.2	4.8	4．\because	8.8	－0． 1	3.3	－0．1	17． 5	7.3	$4 .:$	$\because 0$	7．：3	$\therefore 2$	12.3
9	1.4	1.3	2.7	1.5	$9 . \because$	＋0．5	6.4	＋ 3.4	※！ 0	7．3	3.0	$\because 3$	7.9	$\cdots .1$	13.3
10	1.0	3.5	3.5	－1．3	9.5	1．：	7.1	－ 3.2	2］．1；	7.4	4.15	2.	10．\because	9.1	14.4
11	1．9	$\because .6$	5.0	＋1．2	10.5	1.3	＋1．3	3.1	31.4	7	d．${ }^{1}$	$\bigcirc .1$	－ 0	1． 0	14.3
Noon．	0．8	1.8	3.5	1.6	8.7	1.4	－0．5	2.3	19.5	3.5	5． 0	$\because 5$	$\cdots 1$	10.9	14.5
1^{14}	3.0	1.5	3.4	3.3	10.1	2.6	1.7	2.5	1－．${ }^{\text {d }}$		3.16	3.6	-6	10．\％	10.7
2	3.4	1.8	2.5	5.1	10.1	3.0	2.3	Sk	20．0	！1． 1	4． 3	4.8	9， 3	9.7	$1 \because 3$
3	3．	1．2	2.3	＋1．6	10．\％	\％	$\because 4$	3.3	19．${ }^{-}$	\therefore	3.6	$\therefore 3$	$\therefore 9$	10.1	14.5
4	3.1	1.9	2． 6	－ 3.16	9.0	2． 4	1． 3	$\because 1$	311．	7.3	3.5	$\therefore \bar{\square}$	9.5	$1 \because .4$	15.5
5	3.4	1.0	2.4	4.5	7.5	9.3	$\because 6$	$\therefore 0$	17.11	6．5	9.5	4.7	19.4	13.5	14.6
6	4.2	1.7	2.3	3.7	5.5	$+3.7$	6． 0	4.6	13．3	6． 0	1.0	5.2	10.1	$1 \because 7$	1×9
7	4.8	2．	4.4	4.2	5.7	－1．9	7.8	$\because \cdot$	13\％	$\therefore \because$	1.4	5.4	10.7	11.7	$1 \therefore 10$
Q	4． 6	2． 3	4．2	2.8	5.8	－2．7	\therefore 方	4.9	$\times 1$	4．${ }^{\text {a }}$	＋11．5	5.4	10．8	11.3	\therefore
9	5.4	3.3	6.6	3.1	4．5	$+1.6$	\therefore ¢	4．${ }^{\text {i }}$	6.1	4． 1	－0． 2	4.6	9.5	$1 \because \because$	2.4
10	6.5	3.5	3.5	2.4	$+1.0$	＋0．3	$\bigcirc .7$	$\because 9$	5.6	3.15	＋0． 4	5.1	＊． 6	14． 5	7． 0
11	－7．5	-5.0	－4． 4	－2．6	－$\because .1$	－3． 4	－5．\because	－ 1.7	＋ $61 . \ddot{\prime}$	＋ 3	＋0． 9	＋1．－	＋$\because 3$	＋13．1	$+7.1$
Means．	－3．15	－4． 41	－3．79	－3．66	＋6． 619	－0．09	－1．31－	－4．5	＋11． 9.3	＋$\%$ ． 16	＋2．4\％	＋3． 45	＋ 4.21	＋10．07	＋10．-3

MAY， 1873.

Tinne．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	c	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
$0^{\text {h }}$	$+5.3$	＋$\times .7$	＋17．6	＋11． 5	－0． 4	$+4.0$	＋5．3	$+11.3$	＋4．8	＋14． 3	＋13．0	＋12．6	$+\beta . \alpha$	＋17．8	＋－， 11
1	4． 0	9.6	$1 * 5$	11．19	＋ 2.5	： 0.0	5.0	11.4	3.5	14． 3	12.5	1：57	3.7	17．0	：30．6
\％	2．	9.7	20.0	11.4	3.3	6． H	4.6	3.2	2.15	14.5	1：3．1；	$1: 5$	11．${ }^{\text {a }}$	11i．！	31.1
3	4.5	10.3	2．3	$1 \because 0$	\therefore	5.15	13． 3	$\because 5$	1.4	14．1；	13．3	12：	11.0	11.0	$\because 1.9$
4	$5:$	12．	3：\％	$1 \because 11$	$\therefore .7$	4.7	7.4	4.5	$\because 0$	14．	13．0	$1 \because 1$	11．${ }^{\text {i }}$	1.1 .1	：11．：
5	15.3	$1 \because .7$	S 5	$1 \because: 3$	5.6	111． 4	！1．11	\％\because	\because.	14.5	1：19	13.4	11．\because	16， 3	：31． 8
6	7.11	$1 \sim 3$	$21.1 ;$	$1 \because:$	T，\％	H．	10．3	4.19	3． 5	13， 2	15．11	13：\％	13．${ }^{\text {a }}$	1－3	31.6
7	6.5	1 N .5	20.5	$11 . \mathrm{H}$	7.3	13.0	11.5	7． 2	4． 11	1：3，7	11.7	13.7	13．5	－11． 5	
\checkmark	$\times .8$	1－4． 4	$1 \% 11$	11.9	7．：	$1 \because 5$	11.0	1）＂	4．\because	1：319	11．	14．i	16．4	\cdots	48
9	10．：	1－11	1－11	11.1	\cdots ；	11.4	16.	3.9	4.1	11.5	15．9	15．1；	1－3	$\because 4.8$	3
10	11.5	18． 1	17.5	10.7	11.4	$1 \because 1$	11．\because	bi．s	13．\because	14．${ }^{\text {i }}$	17.5	15，${ }^{\text {c }}$	16．5	？ 5.7	331． 5
11	11.0	$1 \times .7$	1，2：3	11.11	5.1	196	13．2	5． 3	5.7	14．4	16．3	1r．3	17.13	$\because 1.11$	\because
Noon．	10．：	12.5	12．2	110． 4	（i．）	111.4	11.1	6． 11	5．${ }^{\text {c }}$	11：$:$	15．3	$1 \times .3$	20．${ }^{\text {a }}$	$\because 1.1$	空． 19
$1{ }^{11}$	9.1	19．5	17．：	$\therefore 4$	4.15	3．－	－ 13	$\therefore 11$	13．4	1：3． 6	1．5． 2	17.5	$\because 1.1$	ㄴ：9	勺\％
\because		1－．${ }^{\text {a }}$	17． 5	7.5	5	\cdots	$\cdots .4$	1i．，${ }^{\text {c }}$	7.11		15．11	1×1	$\because 1.8$	2－5．5	2.4
3	10.9	21． 3	17.4	¢． 1	1.7	N． 1	7．4	4.9	7.11	1\％\％	1．4．\because	$1 \times .3$	$\because 110$	U3． 7	27.5
4	10．$\%$	1－3：	16．${ }^{\text {\％}}$	\％$: 3$	（1．）1	7.11	（i， x^{\prime}	3．4	7． 3	18．	11． 2	$1 \times$.	19．4	？ 4.	？2．01
5	9.5	1－． 1	17.1	\therefore ，	7． 1	1．\because	1i． 5	$\cdots 1$	\％．	$1 \therefore .5$	1：． 6	17.	1－． 6	21.6	？
13	9.3	17.7	17.3	\cdots	7.11	S． 6	I． 1	1.7	$\therefore \because$	1， 5.19	13．3	11.9	1！ 1 －	31.	㫨 9
7	9.5	1－． 4	16.3	7.11	6． B	4， 3	2	1． 1	10． 1	15．19	13． K	15．1i	$\because 11$.	S 5	－
B	8.15	111.5	1－1i	4.5	7.7	1．$\overline{7}$	11.19	$11 .:$	11.19	14.4	15． i	111．：	$\because 10$	号 5	3×9
9	9.19	16.1	14.8	8.6	$\therefore .9$	6．\because	11.8	11． $1 ;$	12．0	14.7	12．	－． $\mathrm{il}^{\text {i }}$	19．19	$\because 1.4$	99．7
10	$8 . R$	15． C	13.5	$+2.1$	6.0	7.5	II． 1	11.8	$1 \because \mathrm{~L}$	11.11	12． 7	6.9	19.5	$\therefore 1 .:$	－！
11	$+1.0$	$+15.7$	＋13．6	-1.1	＋i）． H	$+1.7$	$+2.4$	＋ 0.0 ．	＋10． 2	＋1：3： 3	$+1 \because$	＋ 8.3	＋19． 7		＋ 37.3
Ne：ans．	＋$\times 21$	＋15．\cdots	$+1.0 .112$	＋－！	＋${ }^{\text {a }}$（ 6	＋ 2.3	＋ 7.3	＋ 1.11%	＋ 6.23	＋14．74	＋14．1：	＋14．	＋16．131	＋只， 51	＋ 29.31

MAY， 1873.

Time．	16	18	18	19	90	21	48	＋23	21	2.3	26	27	48	29	30	31
		\bigcirc	\bigcirc	c	\bigcirc	－	\bigcirc			\bigcirc	0	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0^{6}	＋+3.3	＋1．0	＋ 3 员，	＋ 3	＋11． 1	＋+3	＋2．k	＋2－8．	＋20 \because	＋21．	＋20．1	＋2：	＋21．：	＋ 1.11	$+16.5$	＋13：$: 3$
1	2－3	20．${ }^{\text {F }}$	况 4	24．	号家 7	24．：	－ 11	$\because 7$	\％ 7	ご！ 0	－5，		\％．！ 0	19，\because	16.7	1\％．！
4	26，	20．7	31.9	26.5	$\because 7$	－5．0	29．$:$	？ 3.5	？4．：	$\because 1.9$	－	$\because 1.3$	$\because 5.7$	$1-.8$	13.11	13： 2
\because	4．11	？ 2.8	21.5	必碞	21． 5	？ 3	31.1	－2．： 9	\cdots	$\bigcirc 1.4$	\because	21， 1	2！\because	$1 \sim 2$	17.3	13.0
4	27.3	？10． 1	？－15	31.7	¢ 3 ，	31.7	\therefore 示：	－7．0	？	$\because 1.0$	\％！！	：31） 1	31.1	1－7	17.0	11．${ }^{\text {\％}}$
5	2i．15	21.4	3 5	涼	2－9．0	3：3	3： 6	31.9	$\because 4.7$	$\because 1.4$	$\because 1$	\because	31.	1－6	16.9	11.6
${ }_{6}$	27.9	$\because 1.8$	\％	：11．9	21.7	$\because 1.1$	\％iol	\％	2：0	23． 5	5	：31） 1	$\because 1$	19.4	17.3	$1 \because .1$
7	31． 3	2？：11		：1．4	24.11	2．8． 7	$\because 2$	2.1	\％－1	$\because 4.5$	$\cdots 1$	31.7	26.4	1×9	16.7	1．4．：
$\stackrel{\sim}{\sim}$	\％1．5	－11	29.3	： 2×3	24.6	？ 21	\％	$\cdots 1$	2fi，	为	$\because 4$	濐1	21.1	12.9	16， 3	14.1
9	35．3	？ 1	23．	31.3	O1．	Cin	\cdots	\％	26，	？ 3	\cdots	$\because 1.19$	2： 7	17．\because	1\％\％	14.11
10	31． 3	？	？ 11	20．15	明！	2i．	31.3	\％ 0	$\because 4.4$	－3	\cdots	310				13． 16
11	3：3． 1	\％11	310	［3， 4	－		\％	\cdots	－1． 5	24.0	号	\because	－	11.9	1．，	14．：
Nuobr．	3×11	\％	$\because 1.18$	3： 31	$\cdots 7$	$\cdots 1$	碞：	27.1	31.7	迷号	\cdots	－110	23： 11	17.3	11.3	15.8
$1^{1 \mathrm{~h}}$	？ 3 \％	2－	31． 3	29	213.5	－1	$\because 1.5$	31	2－8，	为	－3．9	－3，	$\because 9$	1	11.5	$1 \% 4$
2	确品	9－1	沙： 5	96． 7	213.3	27．7	：$\because 1.5$	（2） 5	品， 9	\cdots	$\because 1.8$	3！ 011	$\because 1$	18.7	11.7	1－1．${ }^{\text {a }}$
3	澋洨	9－13	30， 5	－8．9	26	2－2． 1	：30． 7	O2，	－4．	$\because 1.19$	\cdots	$\because 1$	\cdots	17． 4	11.8	15.5
4	3：	30.10	30.4	－5，	\％ 4	26	31.9	－	－ 4	？ 39	为	Sink	\cdots	17.6	11.3	16． 2
5	颔4	21.1	311．11	36.1	3%	23.6	－2x．	－ 4		？	－3	$\because 1.6$	为	13.6	14.0	16.2
$1{ }^{1}$	31.18	19.5	29．15	26.2	25． 6	䇛	O10	$\because 4.7$	$\because 1.6$	3： 5	$\because 1.1$	$\bigcirc 1.8$	\％11	12.7	$1: 3$	16.1
7	29．9	23， 6	㗊号	\％1	$\because 6$	号仿	－9．1	S－	$\cdots 4$	－14．6	46	31.7	3.4	11.9	13，${ }^{\text {c }}$	116.
$\stackrel{3}{9}$	\％	$\because 8$	36． 3	\％－1	－26．11	21i．	㫛： 3	3：\％；	为	$\because 4.4$	界：	4	1．	12.5	1：3	16.3
9 10	\bigcirc	$\because 1.5$	26.1	23.5	2－2． 4	＊1． 7	～． 3	为曲	291	$\because 1.2$	－	24.0	20.0	17.4	1：3． 3	15．3
10 11	＋	21.5 +11	＋5．0．	95．8	24， 3	24．	？ 4.7	$\because 1.1$	3．1．	$\because 1.1$	\％， 3	$\because 3.1$	19.1	16.9	12．$\%$	15.1
11	＋ 2 \％	＋11．3	＋？： 1	＋ 21.4	＋+ 4i， 1	＋ 26.1	＋こ，\％	＋！	＋$\because 2.5$	＋	＋3－5．6	＋+3.18	＋18．6	＋16．1；	＋1：0	＋15．6i
M			7．（i）	＋	＋－－1i8	＋	$+\because 1$.		＋ 21.12	＋23． 6.3	＋5．3． 11	$+7.11$	＋$\because 3.16$	＋17． 9 9 ${ }^{\text {a }}$	＋15． 110	＋14． 311

From the preceding record it appears that Janary was the coldest month，with a mean tem－ perature of－ 290.34 ．The lowest temperature noted is $-2^{2} .5$ ，ocemring at $6^{14} p$ ．in．on February 20．The absolate maximm daring the seven months we spent at Polaris House occarred Mat 16th and $22 d$ at 9^{h} and 4^{4} a．m．，respectively．The lowest temperature recorded by the Kane expedition during the same period of time is $-66^{\circ} .4$ ，occurring February $5,185 \pm$ ；and the minimum as observed by Bayes $\mathrm{is}-45^{\circ} .4$ on Jannary $2.5,1861$ ，at $6^{\prime \prime} \mathrm{a}$ ．w，which latter valte differs but 3.9 from onr own minimum．

The following table contains the absolnte maximand minima，as observed from Norember 1 ， $187{ }^{2}$ ，till Jume 1，1873：

Absolute maxima ant minimat observal at Polaris Honse in 1872 and 1873.

Monthes．				Hour of maxi－ numu．A．M．\quad P．M．	$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	Honr of mini－ เиш． A. M. P. M.
November	0 +20.5	－17．16	4		19	
December	＋15．5	－49．7	2.	¢and 3	31	9
Tanna＂	－\times ！ 1	－41．${ }^{\text {a }}$	5	10	30	10 and 11
Pemany	－0．3	－ 2.5	5	．．．．${ }^{\text {¢ }}$	911	－．．．． 6
Manh	－ 2.5	－40．\times	21	1	5	9
Apil	＋	－31．5	24	9 － 3 ．		$2^{\text {．．．．}} 10$
May	$+35.3$	－ 1.1	\｛ $\begin{aligned} & 16 \\ & 4 \\ & 4\end{aligned}$	$\begin{aligned} & 9 \\ & 4 \end{aligned}$	，	11

The two following tables give the observed daily and houly mean tempriatnes extracted from the precoding record：

Duily means of temperuture observed at Polaris House．

Date．		$\begin{gathered} \text { Dec-mber, } \\ 1 \approx \tau: \end{gathered}$		$\begin{gathered} \text { Febrams } \\ \text { 1 } \sim \text { 为 } \end{gathered}$	31arch，183．	Aprit， 1573.	M11，${ }^{\text {，}} 1873$.
	\bigcirc	13	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
1	－－ 3.55	－＊90	－92．$=$	－99．4：	－1－2， 5	－ 3 ，新	＋$\because \because 1$
\because	＋9．81	13．	31.0 ：	$\because 3.41$	昭位	23， 4	$1 \therefore 2$
3	14．62	14.08	31． 3	21． 19	314.04	$\because 1.10$	1－08
4	113，55	$\therefore 44$	31.4	17． 1613	31.09		－． 93
5	4， 71	4．0	17．\because	7． 117	316， 76	17.63	5． 5
（i）	1.04	11． 51	24．（i．）	15． 111	31． 73	18．70	7．72
7	＋ 0.12	7．47	14． $3:$	14．11－	3\％．54	12，	7．$: 7$
H	－3．76	6.41	14.12	30， 11%	21.9 ；	11． 44	4.03
9	$\bigcirc 5$	7．72	17． 131	18．13：	16． 11	111． 78	fi． 26
10	5，	13． 41	17．刃心		2！1：3	7． 47	14.74
11	10．13）	11．！！	31.15	1， 6.4	23， 15	3.03	14，1：3
$1:$	-12.85		31． 3 ：	31.6	1\％．7\％	13.83	14.05
13	＋6．31	1－．04	31． 31	34.40	29， 419	－4．45	113． 64
1.1	4.70	14．	：3． 1.	3 3.21	36	＋244	23． 56
1.5	6， 9.3	10．02	30． 21	34.3	25， 51	＋$-4!1$	23.31
$1{ }^{1}$	＋ 5.08	9.15	31.51	311，m 3	2？． 15	－ 3.15	29， 5
17	－7．30	9．10：	33．mix	32．65	19．39	4.41	$\because 3.15$
$1 \times$	14.36	5． 21	31． $7: 3$	33．	31． 41	3.79	27.13
19	119．3：2	5.94	：11． 5 \％	颔令	19．88	－ 3.66	2－26
20	9． $4:$	4.93	2 S .119	32． 23	13，的	＋ 6.66	25， 67
\％1	－（i． 711	－ $6 . \because 1$	34．13：${ }^{\text {a }}$	315，	ソ0， 33	－ 01.19	$\because 6.36$
$\because=$	＋2．51	＋3．30	34.16	碞． 11	96	1.120	31.99
23	－0．1－1	4．84	33． $3:$	15．	然，4	－ 415	骂，
：4	4．50	4．12－	32.80	16． 14	11． 49	＋11．93	21.14
踪	5.91	$+5.18$	35． 31	\cdots	\％4．4\％	$\therefore 11 i$	？ 3 ，6， 6
26	3． 114	－5．73	9\％．11	22． 91	2－1：	$\because 4$	2－ 11
？	：3．	5.92		99．4．	8， 7	3.4	27．1 19
98	5． 81	11．4．	29.20	－ 1.115	※－311	$8 .: 4$	里保 6
29	11）． 1 \％	19.27	31.80		27．73	10.07	13．92－
30	－$\because \cdot \underline{y}$	2．88	35.50		2゙・••	＋10．3	1．1． 16
：31	－	－ 27.94	－21．51		－ 5.73		＋14．31

Hourly means of temperature observed at Polaris House．

$\operatorname{Tim} \theta$ ．	$\begin{gathered} \text { Novinuluer, } \\ \text { 1. } 28 . \end{gathered}$	$\begin{gathered} \text { December, } \\ 1872 . \end{gathered}$	$\begin{gathered} \text { Jauuary, } \\ 1873 . \end{gathered}$	$\begin{gathered} \text { February, } \\ 1873 . \end{gathered}$	March， 1873.	April， 1873.	May， 1833.
	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
$0^{\text {h }}$	－2．${ }^{\text {a }}$	－7．48	－94．54	－ 26.13	－ 25.97	－8． 41	＋［17．60］
1	－， 3	7.90	29.53	26.34	25． 64	［8．69］	17． 25
2	－． 31	9．15	20． 12	26． 35	$\because(\mathrm{i} .07$	8.43	18．68
3	6． 39	9． 06	2！ 9.4	25，-3	26.21	8.10	18.98
4	－0．04	B，W	2！ 6.69	95.10	9．3． 91	7.47	19.43
5	1.95	9.14	49．73	95． 1 d	25． 77	6.82	20.03
6	1． 8	9.66	？！1． 81	$\because 4.95$	25．63	5.50	20.10
7	1.30	9．21	29，633	$\because 4.65$	25． 11	4． 10	20.72
8	1． 39	（1．3）	9！1． 67	94．1：3	24． 28	2.71	21.15
9	1， 39	9．21	－39． 29	$\because 4.08{ }^{*}$	93． 96	1．58	21．30＊＊
10	1.50	9． 3 \％	9！）． 41	24． 23	23． 61	1．30＊	20.76
11	1． 34	！1．39	2！ 9.30	94．43	23．33	1． 49	20.99
Nooll．	1．25	9．34	g9． 30	25． 11	2． 90 ＊	1.61	21． 25
$1^{\text {h }}$	1． 17°	9.48	20， 30	65， 34	23.08	2．0．2	21.06
3	1． 3	［9，71］	42， 29	25．4．3	23． 19	1．81	20.99
3	1． 49	9，47	69．00	25． $5 \times$	23.59	2．34	20.20
4	1．518	9.61	－3！． 04	25． 31	23． 25	3.34	20.89
E	1．54	19． 54	2！9． 17	25． 14	94． 65	3.47	19.92
$1 i$	1． 61	9.50	22，8－4	－5． 27	25．4R	4． 2 r	19.81
7	1．76	11． 40	24.90	2\％．8．3	26． 24	5.15	19．83
H	$\because 2$	19． 41	29．14	［ 510.502$]$	26． 93	5.74	19.25
9	2． 3	9.04	ご，＊！	25．91	26． 128	6.15	18.81
11	2．39	11.03	［ 29.54 ］	26．15	27.06	6.4%	18.50
11	－［：\％．\％］	－r．93	－94．55	－26．0\％	－［27．14］	6.71	
Means	-1.83	-9.15	－394．34	－25． 37	－25．11	-4.74	$+19.84$

Nore．－The maxima are denoted by asterisks，while the minima are placed between brackets．

ANNUAL FluUUTUATION OE TEMPERATURE AT POLARIS HOUSE．

Of the seven months observations given in the preceding register，six，comprising winter and spring，were salfecter and submitted to amalytical treatment．

The means of the actual months and those of the equi－intervals are as follows：

The analytical elements and expression are as follows：

n	a	b	B	tan C
1	＋91．79：3	－2．937	$\because 1 .-12$	－9．5\％ $0^{3}=180-842^{\prime} 10^{\prime \prime}=99^{-} 57^{\prime} 50^{\prime \prime}$
\because	＋ 9.1% 园	＋0．0993：37	9.1304	＋98．7334－．．．．．．．．．．．$=802520$
3	$+0.5015$		0．501．	＋ 6 －．．．．．．．．．． 2090000

$\mathrm{T}=21.5918 \sin \left(x .60^{\circ}+95057^{\prime} 50^{\prime \prime}\right)+9.1201 \sin \left(3 x .60+89025^{\prime} 20^{\prime \prime}\right)+0.5015 \sin \left(3 x .60+90^{\circ}\right)-12.317$.

The monthly means thas computed aud the obsersed ralues are given in the following table:

Norual months.	Ouserved.	Computed.	\triangle O. - C.
December	$\begin{gathered} 0 \\ -8.38 \end{gathered}$	\circ -8.38 -8.	$\begin{gathered} \stackrel{\circ}{ \pm 0.00} \end{gathered}$
Jannary .	-29.31	-29.31	${ }_{0.00}$
February.	-25.47	-25.47	0.00
March	-25.21	-25. 21	0.00
April.	-4.60	-4.60	0.00
May.	+19.118	+19.08	± 0.00
Winter. Sprivg .	$\begin{aligned} & -21.07 \\ & -3.58 \end{aligned}$	$\begin{aligned} & -21.05 \\ & -3.58 \end{aligned}$	

Greatest difference between any observed and computed value $=0.002$.

As the anumal fluctnatiou of the temperature at Polaris House was discussed in detail when treating this sulject of our more northern station, no further remark will be needed.

DIURNAL FLUCTUATION.

As the time at our disposal was rather limited, and as the obserrations extend over a short period only, it was thonght sufficient to take the bihourly means of the day and to use the same as phases of the daily period.

The elements of the analytical expression are as follows:

n	a_{n}	b_{u}	$\mathrm{~B}_{\mathrm{n}}$	C_{n}
1	-0.549	-0.548	+0.729	2240226
$\ddot{3}$	+0.109	-0.114	+0.157	1362109
	-0.025	+0.093	+0.096	3451458

Consequently, the aualytical expression becomes-

$$
\begin{gathered}
\mathrm{T}=-12.317+0.789 \sin \left(x+224^{\circ} 02^{\prime} 26^{\prime \prime}\right)+0.157 \sin \left(2 x+136^{\circ} 21^{\prime} 09^{\prime \prime}\right) \\
+0.096 \sin \left(3 x+345^{\circ} 14^{\prime} 55^{\prime \prime}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots \ldots
\end{gathered}
$$

The following table gives the diurnal fluctuation of the temperature during the winter-half:

Time.	Observed temperature.	Computed temperature.	Difference, O. - C.
	\bigcirc	-	0
$0^{\text {b }}$	-13.32	-13.14	-0.18
2	13.49	13.19	0.37
4	12.93	12. 80	-0.13
$1 ;$	12.47	12.47	± 0.00
8	11.50	11.87	+0.37
10	11.17	11.9.2	0.75
Noon.	11.17	11.80	0.63
$2{ }^{1 /}$	11.41	11. 60	+0.19
4	11.80	11.69	-0.18
6	12.27	11.96	0.31
8	13. 07	13.57	0.50
10	-13.20	-12.93	-0.27
Means.	-12.317	-12.317	± 0.00

7 тA

The following diagram represents the diurnal flactuation of the temperatmre during the same period：

The following table contains the mean maxima and minima of the serm months in question； also，their range and the time of their respertive ocenrence，as derived from the table headed ＂Hourly Means：＂

Daity extremes，range，and hours of maxima and minima from Norember，1572，fill June， 1873.

Months．			䎂	Time of－	
				Max．	Min．
	＂ 12	\bigcirc	\bigcirc	h.	
Novem！${ }^{\text {a }}$ ， $1 \sim 0$	－ 1.17	－只菏	1．411	$1 \mathrm{p} . \mathrm{m} \ldots$ ．	$11 \mathrm{p} . \mathrm{m}$
	－7．48		＂3．30	\％ $612.12 \ldots$	10 ${ }^{2} \mathrm{p}$ pm．
February，1－23．	－ 4.43	－ 6 （ 5	2．4：	$9 \mathrm{a} . \mathrm{m} \ldots$	${ }_{-1} \mathrm{p} . \mathrm{m}$
March，ista．	－2 90	－ 27.14	4．24	Noon．	11 p .17.
April，147：	－1．：3	－－8．69	7.39	$10 \mathrm{a} . \mathrm{mm}$ ．	$1 \mathrm{a} . \mathrm{mm}$
May，1873．．．．．．．	＋21．33	＋12．60	3． 20	y a．	$0 \mathrm{a} . \mathrm{m}$

As the daily range of Polaris House was considered in one of the preceding paragraphs， further details in regard to this snbject will be superflnons．Wra shall now proceed to the diurnal flactuation during the seasous．

As the diurnal range of every month was incestigated in a similar way，as stated in the course of the Polaris Bay observations，the diurual range of the seasons was not properly computed．It was thought sufticiently accurate for our present parpose to continue the computed bihourly means of March，April，and May for the representation of spring，and those of December，January， and February for the winter－curce．These curves，with those relating to the seasons of Polaris Bay，will be given hereafter in the discussion of the dew－point．

The values obtained for spring，in the abore－mentioned manner，are as follows：

	0^{11}	2	4	6	8	10	Nonn．	$\mathbf{2}^{\text {4 }}$	4	6	8	10	Mean．
Observed Coniruted．．．．	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	－5．59	－5． 2	－4．6．5	－3．68	－1．95	－1．39	－1．09	－1．：34	－8989	－3．${ }^{\text {a }}$	－4．48	-5.01	-3.34
	－5．45	－5．38	-4.76	－3． 51	-2.12	－1．23	-1.05	－1．44	－	-3.37	－4． 40	-5.08	-3.34
Ditio． 1 ．－C．	－0． 14	＋0．11	＋0．11	-0.17	$+0.17$	-0.16	-0.04	＋0．11	－0．42	＋0．05	－0．08	$+0.07$	± 0.00

[^15]By means of the curve, we find that the temperature rises till about half an hour past meridian when it obtains its maximum of -10.35 , the observed maximmo of -10.09 oceuring at noon. Both the observed and computed minima are reached at midnight. The maximum ocemes almost at the same time as at Polaris Bas, the minimum two hours earlier. The range, as derived

The following table furnishes the values for the winter-curve:

Probable error of a single representation $= \pm 00.20$
1'robable error of mean..................... $= \pm 0 . .06$

A comparison of the diurual range of temperature at this place with that at Polaris Bay shows that the theoretical curre agrees better with the observed value than in the former instance. We see the hour of the maximun to be the same at both stations; but while at Polaris Bay the computed minimmm was reached at in $^{\prime} \mathrm{p}$. m., the minimnm in this instauce ocems at noon. The range equals 10.11, being 0.33 greater than at the more northern station.

The analytical elements and expressions nsed in the computation of the diarual rauge for the six months, from which winter and spring were derived, are as follows:

FEBRUARY.

n	a_{n}	b_{11}	$\mathrm{~B}_{\mathrm{n}}$	C_{n}
				0
1	-0.918	$+0,061$	+0.917	311349
2	+0.014	-0.312	+0.309	23738
3	-0.096	+0.193	+0.283	6000

$$
\begin{gathered}
\mathrm{T}=-25.389+0.917 \\
\sin \left(x+303^{\circ} 49^{\prime}\right)+0.309 \sin \left(2 x+931^{\circ} 38^{\prime}\right) \\
+0.223 \sin \left(3 x+60^{\circ}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots
\end{gathered}
$$

MARCH.

n	a_{12}	$b_{\text {a }}$	B_{u}	C_{1}
				- , "
1	-1.634	-0.**)	+1. 2.11	2431019
3	-0.136	$+0.614$	+0. $1: 3!$	
3	-0.108	+10.47	+0. 3.9	3:3以 2038

$\mathrm{T}=-25.069+1.831 \sin \left(x+243^{\circ} 10^{\prime} 19^{\prime}\right)+0.629 \sin \left(2 x+345^{\circ} 30^{\prime} 10^{\prime \prime}\right)$

$$
\begin{gathered}
+0.293 \sin \left(3 x+338^{\circ} 20^{\prime} 38^{\prime \prime}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots
\end{gathered}
$$

APRIL

n	a_{11}	b_{11}	B_{11}	C_{1}
				- "
1	-2, 2	-2.130	+3.458	2315913
2	+0.633	-0.305	+0.836	111 迷 16
3	+0.025	$+0.070$	+0.075	193337

$\mathrm{T}=-4.759+3.458 \sin \left(x+231^{\circ} 59^{\prime} 13^{\prime \prime}\right)+0.836 \sin \left(2 x+111^{\circ} 22^{\prime} 16^{\prime \prime}\right)$

$$
+0.075 \sin \left(3 x+19^{\circ} 33^{\prime} 37^{\prime \prime}\right)
$$

$$
x=30^{\circ}, 60^{\circ}, \ldots
$$

MAY.

n	a_{n}	b_{n}	B_{n}	C_{n}	
				0	1
1	-1.393	-1.748	+1.508	247	24

$T=+19.816+1.508 \sin \left(x+247^{\circ} 24^{\prime} 19^{\prime \prime}\right)+0.278 \sin \left(2 x+202^{\circ} 5^{\prime} 19^{\prime \prime}\right)$ $+0.159 \sin \left(3 x+158^{\circ} 13^{\prime} 55^{\prime \prime}\right)$ $x=30^{\circ}, 60^{\circ}, \ldots$

The observed and computed values duriug the six months in question compare as follows:

It will be seen that in December both the computed aud observed curves attain their maximum again at midnight, as we had occasion to notice iu our examination of the winter-curves of the two localities, the minimum being reached at $2^{n} \mathrm{p} . \mathrm{m}$. The diarnal range, as derived from the comproted values, is 10.58 , while the other is 0.65 greater.

In January the observed and compnted curves pass through the maximum of - 280.58 and $-28^{\circ} .96$, respectivels, at 6^{h} p. m., while the minimnm occurs in both instances at 6^{h} a. m. The diurnal range, derived from the computed valnes, is $0^{\circ} .50$, the other being 00.93 .

In February the observed and computed curves pass tbrough the maximum of $-24^{\circ} .13$ and $-24^{\circ} .11$, respectively, at about S^{11} a. m., the observed minimum of $-26^{\circ} .52$ being reached at $夕^{\mathrm{h}}$ p. m., and the corresponding computed ralue of $-26^{\circ} .10$ betreen 9^{h} and $10^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. The diurual range derived from the observed values is $2 \circ .39$, while tbat dednced from those computed is by 0.10 less.

In March the observed and computed maxima ocenr at noon and $y^{10} \mathrm{p}$. m., respectively, while in both instances the miuimum is reached at $10^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. The diurnal range of this month, as deduced from the computed values, is 30.91 , the one observed being 4.16 .

As the snn was circumpolar from the 17 th of $A_{p r i l}$, the dinrnal march of the temperature during this month is iufluenced accordingly. The curve shows a decided rise from miduight till $10^{\mathrm{b}} \mathrm{a}$. m., when both the observed and computed maxima are reached. The minimum occurs at y^{t} a. m . The daily range is about twice as great as during the last month, hariug riseu from 30.91 to 70.30 .

The eurve of May assmmes a more regular character than we have seen hitherto. The time of occurrence of the maxima is noou, while the lowest temperature is reached at miduight. The daily range was 30.58 less than daring the last month.

THERMLO WND-ROSL.

In investigating the relation of the atmospheric temperature to the direction of the wind, the same method was used as stated in the discnssion of this subject in the course of the Polaris Bay observations.

The analytical expression for the wind-rose wan fond as tollows:

$$
\mathrm{T}=+0.26+1.95 \sin (x+21625)+0.65 \sin \left(2 x+2 x^{\prime}\right)
$$

The following table contains the representation of the effect of the winds on the temperature of the air during the winter, + denoting an elevating, - a depressing, effect:

Months.	N.	NE.	E.	SE.	s.	sW.	W.	NIV.	Calm.	Means.
Itander	\bigcirc	7	-	\bigcirc	\bigcirc	6	\bigcirc	\bigcirc	9	4
J:muar'y	-2.4	-3.2	-1.0		+3.	+4.3			-1.3	-29.3
Febrnary	-5.9	-3.0			+4.3	+ 4.4			+0.2	-25.5
March		-5.2	-2.1		+3.2	+ 53			-3.3	-25.1
April.		+0.9		+0.4	$+0.4$	+3. 1			-3.6	-4.6
May.	+3.1	+1.2	+0.2	-1.7	- $\because 5$	-3.9	+3.0		+0.6	+19.1
Italf-year.. Computed. Difieremee	-0.4-11.6	-1.9-1.1	-0.8-1.6	$\begin{aligned} & -0.9 \\ & -0.6 \end{aligned}$	+1.7+1.7	$+\cdots 8$ $+\cdots$ $+\cdots$	+1.4 +1.15	$\begin{aligned} & +0.0 \\ & \pm 0.0 \end{aligned}$	-2.1-2.2	-12.3
	+0.2	-0.6	+0.5	-0.3	± 0.0	± 0.0	- ${ }^{1.2}$	+0.9	+0.1	± 0.0
Winter $-\ldots .$.Spring -	-1.9+1.0	-2.6	-0.2	\cdots	+2.7+11.4	+4.1+1.5	+1.0	+0.1	-2.0-2.1

It appears that the N., NE., E., and SE. winds are cold, while the S., SW., Wr., and NW. winds bave a contrary effect. Calms usually depress the temperature. It must be borne in mind, howerer, that the observations extend over too short a period of time to give any reliable result. Schott finds for the winter half-gear at Port Fonlke that the N., SE., and SW. winds are warm, while northeasters and calms depress the temperature. As the E., S., Wr., and SW. winds were of rather rare occurrence at Port Foulke, their cffect on the temperature could not be ascertained doring the winter. We noticed, both at Polaris Bay and Polaris House, that the N. and NE. wiuds were warm at certain times. At the former locality this was found to be the case during September and October, 1871, and formed frequently a snbject of discussion. Most likely the wind was blowing over a body of open water, of greater or less extent, to the north of us (though not an opea Polar sea), for while on a sledge-journey in September, 1871, we observed a dark water-sky north of Hall's Land, and our late commander noticed the same fact a month later. At Polaris House the north winds were warm during the end of October, but we refrain
from offering any explanation of this fact, as we noticed in evers instance that the upper clonds had a sonthern direction; consequently, the elevating effect of these winds on the temperature of the air conld not be due to a southerly curreut of air passing orerhead above the northerly. A glance at the abore table also demonstrates that the east winds were warm during December, which could be noticed, too, during the preceding month, which is not embraced in our table. A very striking effect of a warm easter was felt in the latter part of October; but as our instruments were not in working order at the time, on account of the general derangement resulting from the loss of the ressel, there are no definite data on hand. It seems to us that at certain times the eastlerly winds in Greenland show a similar clatacter to the "Foebn" in Switzerland; and since the second German Polar Expedition discovered very high mountain-ranges in the eastern part of this arctic continent, we do not hesitate to pronomee such winds as described hereafter to be true Foehns. The followins passage, relating to this subject, is a translation from Rink's admirable work on the geography and statistics of Greenland:
"The great changes of weather seem to be mostly prodaced by the warm wind blowing from E. or SE. over the ice-corered interior. This wind, which may be looked for in every month during the year, and along the whole coast, always produces a rise of temperature, which is especially perceptible in winter, when the thermometer may suddenly rise $20^{\circ} \mathrm{R}$. It seems to come from the Athantic, and to produce a compensation between the milder temperature of the latter and the cold regions in TVest Greenland under the same latitudes. We cannot expect this warm aerial current to come from the south, in which direction the coasts of Labrador and Newfoundland are sitnated, but we may conclude that the next warmer body of air will be met with toward the E. or SE. Considering the pbenome non in such a manner, we can best explain the origin of this warm wind, which apparently eomes from the great Ice Desert.
"The approach of this warm sontheaster is generally marked by the greatest depression the barometer ever shows. It is not a rare occurrence for the colum of mercury to fall below 27 inches, and if it gets down as low as $26^{\mathrm{in} .} 10$ or lower, hurricane-like gnsts of wind may be looked for. At the same time the sky is slightly overcast, especially with long oval clonds of snch a singular bluish appearance that it is scarcely possible to be mistaken in considering these as precursors of the storm. These clouds appear to hang rery high, and never tonch the summits of the monntains like those accompauying other storms. Meanwhile, it is dead calm, both at sea and on land; and both in summer and winter the air becomes sutfocating, owing to the sudden rise of temperature: The atmosphere exhibits a remarkalle transparancy, and distant land, which moder ordinary circumstances is invisible, can be plainly distinguished. Suddenly, the gale begins to rage on the higher mountain-chains; the snow drifts oper the highlands, and if an olserver be stationed on the ice covering the fiord, near the steep precipices north of Omeuak, he can hear the roaring of the storm, while on the ice where he stauds the air is still perfectly calm. Sometimes it blows for two or three days or longer, but not constantly, as the wind occasionally falls to a light breeze, blowing now and then in heary gusts. Sometimes, although seldom, the beginning of the sontheaster is accompanied by rain-showers, even in January and Febrnary. Then the clouds begin to disappear, and while the storm lasts the sky is perfectly clear. The extreme dryness of this wind is very remarkable; the thermometer, ranging between $+3^{\circ}$ and $4^{\circ} \mathrm{R}$., sinks to 0° if moistened, and the snow-covering of the land diminishes visibly, although not a drop of water is seen trickling from it."

In a foot-note Rink remarks that Professor Petersen holds the opinion that this warm wind might possibly be produced by the returning trade-wind, which, however, does not seem to us to be the case, as, according to Rink's own statement, the wind assmmes a direction due northeast in the district of Julianehaab.

The following table, derised directly from the table headed "Hourly means of temperature observed at Polaris House," might be found nseful:

Corrections to be applied to any hourly observation talen at Iolaris. House to obtain the mean temperature of the day.

Time.	November.	December.	Jannary.	Februars.	March.	April.	Mity.
	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {h }}$	+11.50	-1.67	+6.18	+0.76	+0. 86	+3.67	+2.24
1	0.50	-1. 25	0.19	0.97	0. 5i,	3.95	1.99
2	0.48	± 0.00	0.28	0. 12	0.96	3. 69	1.16
3	0. 46	-0.09	0.14	+0.46	1. 10	:3. 36	0. 26
4	0.21	0. 2 s	11.34	-0.27	0. -0	ソ. 73	$+0.41$
\square	+0.1:	0.01	0. 34	0.19	0.66	9.118	-0.19
6	-0.02	-0.09	0.47	0.4*	+0.52	+0.76	0.24
7	0.13	$+0.06$	0. 91	0.78	± 0.00	-0.6i4	0.88
-	0.44	0.90	+0.33	1. 24	-0.8.3	2.03	1.31
9	0. 44	0.06	-0.05	1. 34	1.15	3.16	1. 46
10	0.96	0.12	$+0.117$	1. 14	1.50)	$\therefore .44$	(1.92)
11	0.49	$0 .: 24$	- 0.104	0.94	1.78	3.74	1. 15
Noon.	0.5 6	0.19	-0.04	0. 266	2.21	3.13	1.41
$1^{\text {l/ }}$	0.16	0.33	+0.04	- 10.00	:10;	\because	1. $2:$
$\stackrel{1}{\square}$	0. 0.50	0.56	-0.05	+0.106	1.99	2. 2 $_{4}$	1. 15
3	0.34	U.32	0. 34	-0.09	1.5\%	$\because 41$	0.48
4	0.5	0. 46	0. 330	0.06	1. 36	1. 45	0.45
5	0. 99	0.39	0. 17	0.19	-0.46	1. 27	$-0.0 x$
6	0.19	0.35	0. 46	-0.10	+0.37	-0.46	+0.03
7	-0.107	0.25	0.44	+0.46	1.13	$+0.41$	0.01
8	10.49 +0.49	$+0.26$	0. 16	1.15	1.82	1.00	0.59
9 10	0. 49	-0.11	- 11.45	0.54	1. 27	1. 41	1. 03
10	0.56 +0.74	0.19 -0.92	+0.65 +0.91	0.78 +0.71	1.95 +6.03	1.74	1.34
11	+0.74	-0.22	$+0.81$	+0.71	+2.03	$+1.97$	$+1.82$

HYGROMETRICAL OBSERVATIONS.

-

HYGR0METRICAL OBSERVATIONS.

RECORD AND DISCUSSION OF PSYCHROMETRICAL OBSERVATIONS MADE AT POLARIS BAY.

1NTRODCOTORY.

Abstract

As far as we know, none of the varions arctic expeditions aver attempted to make psy-

 chrometrical observations during the cohl season of the sear, or, if the attempt was made, the results were so unsatisfactory that the experiments were in a short time abandoned. Still, it is not impossible to make good hygrometrical observations, eren at the lowest temperatures, provided the obserser nses the necessay precantions and exercises due patience. According to our experience, no better instrments ar lequired than two sensitive mereurial thermometers, or, if the temperature be very low, a spinit pichrometer. At the same time, it might be well to hare one of Regnaults dew-point instrnments, to be emabled to tosit at once the accuracy of the results obtained. Decidedly, bowever, the simple psychrometer is to be preferred to the more complicated apparatus; for, under certain circumstances, as for instance, during snow-stoms, when the suow is difting, the latter is of but little use, and requires abont ten times as long to prepare it for an observation as is needed to rearl the dry and wet bulb. Besides, at very low trmperatures, when the percentage of relatior humidity of the air is small, the use of Regnault's instrument is attended with great difficulties : and wr are in donbt whether the results obtained therewith are more accurate than those derived from the readings of the pschrometer. If the temperature is below - 30 F ., the precipitation upon the polished-silver crliniler takes place so slowly that much practice is required to determine accurately the moment when the first ice-crystals form. Oiten, indeed, we bad to make use of a large lens of considerable focal length to fix this moment ; for the centers of erystallization, when first forming, are almost microscopic. But even in emplosing lenses of long tocus (we nsed one of about six inches diameter and four inches focal length), the heat randiated by the ohserver serionsly affects the accuracy of the result. Perhaps this inconvenience may be overome by using a telescone of considerable light, and a magnifying-power of about ten or fifteen tmes; also, we should recommend, if future observations should he made, to combine an aspinatme with the Regnanlt apparatus, since, at low temperatures, it is extremely uppleasant to form the air throngh the siluer ressel by means of a montl-piece for tive or eight minutes. The moisture coutained in the wam breath soon condenses in the rubler tale connecting the mouthpiece with the cylinder, and obstmets the tube so that but very little air can pass through it. We hardly need to mention that, it an aspirator be used, it should be filled with alcohol rather than water, or with some other flnid that does not frecze at low temperatures. The dew-point instrument used in the conse of our observations was made by Green. The immersed thermometer was divided from -80° to $+110^{\circ} \mathrm{F}$., and had a length of $13 .:$ inches. The other one, giving the temperature of the air, measured 8.4 inches; its scale-division extenting from - 60° to $+110^{\circ} \mathrm{F}$. Both instruments had çlindrical bulbs filled with uncolored spirits.The following recond contains the observations made at Polaris Bay; the homly series beginning November 6, 18:1. For convenience, the reductions are given opposite the psychrometerreadings.

The first colom contains the time; the second, the reading of the dry bulb; the third, the reading of the wet bulb; the column headed k . H., the relative humidity; the column headed F. V., the force of vapor; and the colnmon headed D. P., the dew-point.

For temperatmes above $3=$ F., the Smithsonian Metcorological Tables by Guyot were used in the reduction; the reduction of readings below the freezing-point was made by means of the tables given at the end of this volume.

DECEMBER， 1871.

	9.				10.					11.				
Hour，	D．	W．	R．H．	F．V．	D．P．D．	W．	R．H．	F．V．	1．P．	D．	W．	1．H．	L＇．${ }^{\text {ct．}}$	D．P．
0^{14}	－ 21.3	－ 1.4	60.1	0.0091	－ $29.9+3.0$	－！：	15．9	0.0 國	只：	2.3	－！ 27	－6， 3	0．03：3	－5． 4
1	2．2． 4	2？ 2	6ii． 4	． 0094	29．5 4.1	3．：	－-9	． $14.41: 3$	0.9	1.3	1.7	－13． 7	． $0: 30$	4.2
$?$	20．5	21.1	53．${ }^{\text {d }}$	． 10.5	31.4 3．9	2． 2	－ 0.5	． 0400	1.9	$\because .11$	$\because .4$	\therefore mi． 4	． 01.42	5.11
3	$\because 1.9$	32.5	31.0	11084	：i，$\because \quad 34$	1．－	$\because 9$	． 1401	-1.6	$\because .4$	\cdots	2ib．	． 03.31	5． 5
4	2e．8	23．3	25．4		\％－－	7.6	4． 2	． 10.308	$+4.6$	9.1	2.1	－3． 0	． 0327	5． 9
5	21，	2：3	－13．6	（11）	32．6 6，3	5.5	－11．6	． 1466	1.6	4.4	5.	tig． 6	－1104	11.7
${ }^{\text {i }}$	？	24．：3	4ti． 4	（1102	：5， 10.9	9.4	－3．3	． 11.58	6.0	（i．）	7.5	lisi． 5	．（121：	14.15
7	20．0	？ 6	＋r．2	． 0063	34.910 .3	9.5	Q 3 3	． 0153	6．\because	4.4	4.9	－1． 1	． 1 （120\％	8.7
\％	$\cdots 7$	23 ${ }^{\text {d }}$	21.15	． 0083	42， $3,111.7$	9.	81． 1	． 10.30	1． 1	3.7	4.7	（i：3，${ }^{\text {d }}$	．1023	13． 0
9	$\cdots 3$	S3．4	：19－	． 00.7	आi，-7.9	16.8	7．1．：	． 0466	1.4	4.11	4.3	73，	． $12 \cdot 6$	10.1
10	20.5	$21 . \because$	415， 6	． 115	：3．4 1i． 4	5． 13	－81． 11	． 0469	＋ 1.8	7.5	M． 1	73．9	．10：2\％	13.5
11	$1{ }^{1 \times 1} 6$	19	： 3.5	． 11 Mrici	$\because 3.73$	3.11	－1．1	． 11.41	－ 0.0	9.4	1110	\％－11	． 0×20	15．${ }^{\text {c－}}$
Noon．	16．5	17.1	（61．）	． 01.21	2．5 5 1．0	0.7	－3：	－M3：	20	7.9	－ 3	（i．）． 4	． 0202	15.9
$1^{\text {b }}$	15.7	11.4	57.2	． 0117	46， 0 \％	$\because 0$	－11，\because	． $0: 5105$	$\cdots 1$	9.4	11.7	－6， 3	－03：4	$1 \because 4$
2	12.6	13.5	50，	． $01 \because 1$	$\because 1 . x$－ 6	1.9	－11．\because	，11：93）	2.	10.7	11．：	20． 7	－U1世	17.5
3	10．9	11.3	55． 4	． 0144		1．$: 3$	74．3	，12：${ }^{\text {a }}$	4.1	11.1	11.3	20．：3	． 11101	1－2
4	3． 8	11.	53.0	． 114.4	20．0 +0.5	$+0.0$	-4.7	． $11: 36$	3.1	11.0	11.6	211.4	． $41 \times$	$1 \sim 0$
5	7.1	7.9	isi． 1	．D20－	$15: 3-0.9$	－ 1.5	－11．	．03：36	5.5	10． 2	10．9＇	titi． 1	． 1112	$1 \sim 3$
6	6.3	6.9	55． 1	． 1245	12.0 1．4	1．－	－6， 7	． 10.5	4.3	10．：3	11.11	$13 i .0$	． 0173	1－． 4
7	-1.4	-1.1	77． 1	－ 13×3	1.5 .7 1.1	1.5	－4i， 9	． 13359	4.0	11.9	$1: 26$	（ii．${ }^{\text {a }}$	． 0157	20.6
8	＋1．7	＋ 0.9	73．7	． 0360	＋3．9 0．5	1．： 3	A ： 7	－ 03 s	4．5	13.9	14.7	tia． 11	． 0135	2 2.6
9	3． 3	$\because 4$	7－0	－ubis	$\because 1 \quad 3.0$	8.5	？	． $0: 310$	\％．0	14．11	14.7	60.6	．01：31	ㄴ：3． 6
10	＋3．9	2.1	75.8	． 1330×1	$\therefore 4$ 2． 2	3.1	213． 1	－13：29	5.9	14．0	14.3	fill． 6	． 1101.1	23． 6
11	＋$\because 9$	＋3．1	「．	$0.040{ }^{-}$	$+1.2-5.5$	－ 1.1	75.9	11． 12.50	－11．1	－14． 1	－14．＊	tiil． 4	0．01：4	－－3：3 7
Means．			57.31	0．01111	－		－1．50	0．041：	-1.48			7． 91	0．0595	$\left\|-1.4{ }^{4}\right\|$

： H о

DECEMBER， 1871.											JANUARY， 1872.				
Day．－30．															
1	17.3	121	47.7	． 1069	：11． 1	19.7	30.5	41.5	． 11 Mri－	34．：3	2i．	－3\％ 0	49.0	．11， 10.4	：3．2
\because	16.7	17.7	：13． 3	． 110120	3： 3	211． 10	21.2	53.6	． $110 \sim$	：31． 1	27．3	$\because 7$	410.0	． 1048	：11．9
：	14.6	15.4	3：${ }^{2}$	． 0116	26.8	2是	$3: 4$	30，	． 11050	316.	\because	$\because 2$	：1．1）	，orn	$4 \because 6$
4	16.6	11.6	37.3	，1115	33.6	19． 3	20.11	49.0	． 111104	31.4	$\because 4.5$	2．） 1	＋1． 7	． 14.16	： il ， $\mathrm{N}^{\text {a }}$
5	16.7	12.5	49.0	，111546	？ 31	17.7	10．4	Sis．	，11892－	29．0	$\cdots 4.4$	－5， 0	45.0	． 000515	
6	21.2	21， 0	40． 0	． 000.4	：－ 1	$1 \% .:$	17.9	$\mathfrak{i l} 1$	． 11114	$\because 3.5$	$2 \mathrm{c} / 19$	－9．9	（i\％．2	． 00 a 1	： 3 ，
7	$1 \times .6$	19．3	ת1． 1	－गider	：311． 6	17.3	17.9	（i1． 1	． 11114	26．s	［31．11	30.4	小－s．	． 1204.8	89， 3
8	9\％	$\because 1.4$	19．3	．110－	4．${ }^{\text {S }}$	$19 .:$	21）． 0	49.0	，（10） 1	31.1	38.9	3）．4	411． 4	． 0040	411.7
9	15．	$1 \therefore$.	ti4．$=$	． $111: 4$	－ 5	19.7	20.6	34．	． 141.81	：31． 19	27.4	\％\％． 9	41，\％	． 0049	\％
10	19.0	19.7	11． 9	． 010×10	31.1	17.4	1－1；	41.2	－（1）	：31．：	3 2i． 11	$\because 6.4$	819	． 11011	：4．：3
11	$1 \div 1$	$1 \times .7$	－9， 6	． 0106	27.6	$\because 1.1$	$\because 1.5$	मin．	． 0106	ご，	316	\because	41.1	．W0゙	39
Noon．	19.4	$\because 1.0$	Mi． 0	． 0092	31.5	31．	2， 5	43.0	，（1012）	\％ 1		$\because 21$	$\because 0.0$	，10ヶ－	4．：
$1^{\text {th }}$	19.7	21． 5	41.5	の桭	$\therefore 4.3$	211.7	21.5	か－5	，Nohial	ili． 1	21.7	$\because 7$	（6．1）	． 11029	1：i． 4
2	18．5	19.4	： 17	． 006 F	： 4.5	19.5	1 31.3	121	． 1710	： 14.1	36.7	\because ？\because	1－4．4	． 01050	37
3	17.5	1×4	41.20	． 0175	33.0	$\because 1.1$	P1．7	－id	． $10 \rightarrow 0$	： 2	2．${ }^{\text {a }}$	？ 6	10.3	． 0044	39.1
4	17．2	1－0	小． 0	． 10951	：31．\because	$\because 4.8$	－ 4	4：3．	． 1065	：	2－5	2i． 1	：3．1	． 6043	313，
5	18．4	111.2	41． 6	． $01012 \cdot 1$	为：${ }^{\text {a }}$	$\because 4.4$	20．0	45.0	． 10006	itic． 6	？－1	吅，	23．10	． 0140	41.6
6	17．2	17.9	51.1	． 0103	昭：	2n，	21.4	11.18	－（0） 17	Sn，	？4． 11	？	14． 0	．Onlir	： 3.4
7	1×6	19.9	27．5	． 0066	34.7	21.3	3i，${ }^{\text {a }}$	41.6	－ 0 ¢，	37.1	21．1i	－	15，1	． $1912: 1$	46.11
s	17.9	$1 \times$	30．5	． 10071	｜33．6｜	\％	？\％．6	洨， 8	． 1073	33．${ }^{3}$	\＃1．：	24．3	40.3	－193）${ }^{\text {a }}$	：14．5
9	16.5	13.1	1：i． 3	． 11024	$3: 3$.	25.9	21.7	1s：	． 10 昭	－1， 2	？ $\mathrm{S}_{\text {a }}$ ：	5－9	＋1．：	－00．80	：－30
10	19．3	20.7	411， 3	． 110 mat	：it． 12	26．${ }^{\text {a }}$	－2． 1	品云	． 110.11	＋29	3！！	景号	$\therefore \% .0$	－1441	40．1i
Me：urs．			44.42	0．00， 01	－39．04			45.4	0.0070	－31．4			11． 411	11.1645	－－－－
ARY， 187															
Day．－．n．															
Hour．	$1)$.	W．	R．H．	F．V．	D．P．	D	Wr．	R．H ．	F．V．	D．P．	11.	W	R．H．	F．${ }^{\text {r }}$ ．	D．P．
$0^{\text {h }}$	-2.2	－45． 7	506	0．0064	－35．5	－$\because 0.3$	－21．0	4． 0	0.111%	－ 31.11	-16.11	－169	H．${ }^{\text {H }}$	11． 118 Cl	－ 610.7
1	\cdots	24.4	29．8	． 040.21	41.6	$\because 1.1$	21.7	4\％． 6	． 01070	：34．	15：	16．1	$4 \% .2$	． 1145	29， 1
$\stackrel{1}{9}$	$\because 4.7$	2． 4	：34．0	． $014 \mathrm{l}:$	32．	16．3	17.1	49.	． 111111	O－－	14．5	1－3．6	N， 2	（11）年	20．3
3	综． 3	9．5	50.6	－ 10 unit	35．	16．9	17.6	5．5．4	． 0160	$\because 2$.	14．${ }^{2}$	15，7	41.9	.0101	㤩 4
4	24.1	？4，	：66． 4	－ 1044	S－5．9	1－11	127	$\therefore 2.9$	． 1095	－	13.3	14．：3	44.1	． 11104	$\because .11$
5	45.1	2\％．s	32． 0	． 1044	40． 13	18．＇	$1!1.4$	万2．	． 11100	$\because 9$	12.7	13．	41.6	． 11699	20
6	24.7	饮3	44.1	． 1005	37.1	17.7	$1 \sim 4$	5：1，	，butar	99．11	17.15	$1 \sim 7$	27.9	． 11050	S
7	$\cdots 6.4$	$\because 1$	号号	． 0031	$4 \because!1$	17． 1	13.7	61.3	． 0116	413	18	19．1	26.6	－1144	30.0
$\stackrel{*}{\square}$	23：	－t． 9	3．5． 3	． 0053	37.15	17.5	1－\because	－4．4	． 0100	－2，	1－．$:$	111：	2.21	． 1035	36.9
9 10	23.4	$\because 1.1$	3is．	－165\％	： 2.0	17，	$1-5$	83.5	． 11097	$\because 10$	$\because 1.5$	\because	41．	． 1 minif	3is． 0
10	－4．0	$\because 4.6$	45.8	．Onni＂	36.	17.5	1＊． 1	111．${ }^{\text {a }}$	． 111175	air 1	2－8	213：3	41.1	－1045	$\because 7$
11	4－16	2－6	43． 2	． 0050.3	： 17	17．\％	$1 \times$.	39	，015：	23．4	\％．11	$\because 7.6$	：11． 16	．（6）40	410.7
Noon，	9．9．6	\cdots	31.7	． 0061	35.9	17．11	17.7	－ 1.3	． 0161	$\therefore 3.9$	资．${ }^{\text {a }}$	\cdots	$\because 1.5$	． 10124	44.7
$1^{1{ }^{\text {b }}}$	㫛 4	3？ 4	41.1	．00tio	34， 5	17．11	17．	4.4	chater	$\cdots 3$	3．-1	！ 1	3：． 0	，intid	4．0
\％	17.1 $1 \sim 1$	12.0	40.5	． 0074	3：3． 1	17．	1－，：	47， 1	－1112－2	：i11．	？	2－7	3： 3	． 11015	：\％．0
3	$1 \because .1$	18.9	4.3	． $110 \times$	31.9	16．1	12.11	313	． 1115	： 21	？ 31	\cdots	51．	－ 0 060	江：
4	18．1	18.9	4．5． 3	．0182	31.9	51．7	17.5	43.0	1119，	（2）！ 1	30． 5	：111． 6	$4 \times$.0044	\％9，5
5	18.1 $1 \times .1$	1×9 1×9	45.3	．0183	31.9	16．0	16.9	41.0	（11）－9	$\because 11$	：31． 6	31.3	41.3	，185：	41.1
6	1\％． 1	12.9	4．）． 3	．01－2	：31． 3	15：	16．\because		10： 10	？1）：	30.4	\％10．9	34． 4	－1mb	$4 \because 3$
7	17.4	18．	17．4	． 00×1	30.16	1－10	19.1	：3， 11	1110，	： 216.3	织1i	：3： 1	－4．	． 111120	4.513
8 9	1\％． 1	1.9	4i3	． 0180	：11． 11	17.9	12.7	$4 \mathrm{C}, 19$	1111－4	$\because 1.5$	3．3．4	：$: 1.1$	\therefore	． 111839	111． 5
9 10	12． 1	$1-9$	4，\because	． 118	31.11	17．：	$1-7$	4×1	（11）－4	： 11.	3： 4	： $3=$	呮－	（ wi：\％	4？． 6
10	129 -19	1：1．7	4：， 6	． 0075	33．1	17.3	12.0	1－．11	． 14191	：i1）	：3．1	： 3	：3， 1	－11123	48.1
11	－1195	－$\because 11.3$	4： 1	0.110811	－34．11	－16． C	-17.6	4 CH	0． 10180	－89．9	－	－：36．11	景吕	0.1102	－4．${ }^{\text {a }}$
			42.39	11． 1105	－35．3			4－4：3	0． 111109	－：31．45			$\therefore-94$	0.100 .4	－37．3\％

Diy，	JANUARY， 1872.															
	11.					12.					13.					
Honr．	D．	Wr．	R． 1 ．	F．V．	1）P ．	11.	W．	12．H．	r．V．	D． 1^{\prime} ．	D．	17.	R． 11.	F．	1．P．	
$0^{\text {h }}$	－－2\％． 4	－359	41.3	11． 1111419	－	－乐号	－－9！ 1	23．4	0． 0103	－1：3	－－－ 7	－：$: 11$	里	$0.015 \cdots 3$－		
	26.7	2号．	4\％． 4	． 11416.8	：37．	3 31.	：31．$\%$	3－3	． 110 ：．：3	12：	： 11.	31.11	：4．11	． 0093	： 40.8	
$\stackrel{2}{ }$	26.5	$\because 7.0$	49.11	－110：9	32． 2	准：		493	． 0042	：31：$:$	：in．	：319．！	31． 4	（10）：	4.7	
：	26.5	$\because 1$	：－6 6	－114．4：3	411． 11	－星．	－99，	（3）． 1	－ $16+1 i^{\prime}$	：3． 1	31.	：3．10	65.11	． 1001	40.0	
4	26	ッフ．0	49．11	．（11）， 11	36.3	－3．1． 1	09．$\%$	S\％	． 1483	4.1	$\because!$	$\because 3.7$	第，	． 110	4.1	
－	38.4	2×1	$\because 2.5$	． 1102 易－	4.4	$\because 2$	㟺里	41．${ }^{2}$	． 11641	41.4	－\％	必齊	：	． 116 C ：	\％	
i	Sr． 3	$\because-7$	－3，！	－ 110 arim	：37．0	处． 4	$\because 1$	$1 \because 4$	． 1144 ：$;$	\％	－i，	27.6	2－0	－114．	40.7	
7	－ 28.6	$\because 2.1$	4．3， 6	． 1114 sin	3－：	$\cdots 21$	$\because 6$	\％ 1.8	． 1115	4.5	$\because 3$.	27．19	3ibi 10	． 104	11.7	
＊	30． 2	30.5	39.8	－117031	4．${ }^{\text {a }}$	39． 13	：31． 1	23.6	－Mas：is	41.10	27.	小－	：3．： 5	－mua	41.9	
9	29，	311．${ }^{3}$	336.0	． 114 Ba	4． 0	30.11	20． 5	3is． 0	． $1110: 3$	＋ 3	$\because 6$	27.5	？ 1	． 11020	$4 \% 1$	
11	｜ 31.1	31.7	： 14	－Ou： 2	4．3	：30．0	211．6	$\because 1.6$	． 1421	4.3	ㄹ－0	2：9， 4	Si－2	． 110	$4: 1.7$	
11	$\because 31.0$	：11．5	3： 11	．11429	$4 \therefore .5$	：20．19	：31． 1	2：3．${ }^{\text {a }}$	，Mn：3	$4: 30$	23：	39．19	$\underline{4.6}$	－1102	44.4	
Nomis．	29．4	29．－	－11． 6	． 1174 4，	is． 4	：31．1	：1．4	4， 1	． 11414	40.7	）	37.9	$\because \because 1$	－1102	4.13	
$1{ }^{\text {b }}$	1	シ\％	23！	－ 11006	：7．0	： 1.3	81.7	： 3.3	． 1 Hes	4：2．7	－\％．0	总：$:$	？1．	． 1112	4.7	
3	ぶ，	23． 1	$\because 2.6$	． 1002	43.7	＊！ 9.7	：31． 3	28．	． 1175	45.0	20，	：31）！	20.4	． 0011	小仿： 1	
：	－31．\％	嗤 1	38.5	－11080	＋4．1	314． 4 ；	31．	30	， 161	45.3	St．	？－0	\％ 5.11	． 1415	41.4	
4	澋	33.4	\％		14． 6	： 11	2， 11.7	$\because 1.8$	． 10 里	4is． 6	2 s	24．	11． 1	． 1144	：3－5．	
5	332.0	湿只	ソ，号	． 11004	45．11	30.4	31.10	21．0	． 10 （19	1fi， 1	St．	S6， 1	120	． 1044	38.2	
6	30.4	31.0	－ 110	． 0019	46.11	3110	谁． 16	$\because 1.6$	． 0101	$4 \therefore .5$	20.	号．9	H．：	－（10），	3－0	
\％	－ 3	：31． 7	：11． 6	－1143：	42，－	\％1．8	305 5	\％．x	（ i11） 217	41．1	\％．	36	1－．13	． 110	－ 120	
－	以 2 $\because 6$	$2 \times .7$	43．${ }^{2}$	． 1104.8	30.5	：318．	$\because 1.0$	：4．0	． 11.11	$4 \because 2$	$\because 4$.	紫。11	1．-11	－ 1010.0		
9		$\because 7.1$	4！ 01	，105 4	：36	8	21．4	\cdots		45.2	2\％	－4．1；	3i，in	，thrs	： 21	
111	$\begin{aligned} & 6.5 \\ & 26.3 \end{aligned}$	$\because 1.8$	48.6	． 10050	37.11	331.5	31.5	$\because 21$	－10123	45.1	$\because 4$.	？－11	15． 0	191．0）	：31． 1 i	
11	－27．9	$\because 8.44 .4$		0.01041	－30．！－ 30.4		－ 21.6	2？ 11	0． 10615	-45.1	－	－ 31.5	2\％．0	11． 16.50	－3， 4	
Heans．				－40．80，	31.49		0．01030	－4：311				11．013：36－41．71）				
Day，	JANUARY， 1872.															
	11.				15.						16.					
Hour．	D．	W．	R．H．		1．${ }^{-}$	П．Γ ．	1.	W．	R．H．	F．V．	D．P．	D．	π	R．H．	I＇，V．11，${ }^{\text {r }}$	
$0^{\text {h }}$	－ 4.3	－2．0， 0	36.0	11． 1194.5	－－39， 1	－ $2 \cdot 611$	－¢ ？－	31－	0．1144；－： 0.9		－13．0 $0-1.3 .7$		1i？ 3	$11.014 \%-38$		
1	94.5	25．1	4.7	． 110.015	： $6, \mathrm{c}$	$\because 1.7$	$0 \cdot 5$	3．11	，mai	：n． 7	15.1	15． 7	$\therefore-1$	． $01: 2$	9－0	
2	9．3	$\because 4$	45：	． 10150	36.5	？	－	39	． 1165	38.11	15．7	17．$\%$	49.0	． 10 ¢ 2	－9．3	
$:$	36.5	$\because 2.11$		． 16.6	枵．${ }^{\text {a }}$	？	Stis	31．	． 11010.3	4\％	13.7	15.4	1iit．\because	． 11101	\％7．	
4	－ $\begin{array}{r}2.8 \\ 24.1\end{array}$	－ 4	41.4	． 10 ¢ 4 －	：	？${ }^{1}$	2． 7	3	． 1600	： 7 \％	16.9	17．19	$\therefore 2$	． 11111	－7．8	
E		$\because 4.7$	48	－1015：0	36．\because	Sti，：3	－2．11	小－11	． 0031	4.8	17.7	12：3	iii． 4	． 1111	37． 10	
6	$\begin{aligned} & \because 4.8 \\ & 20.7 \end{aligned}$	25	3：3．5	． 1044	411.11	31.5	\％－1	： 19	． 1014 ；	40.0	16.4	17.0	以21	． 111%	－3	
7		3	$\therefore 1.4$	． 1 （1）60	：13． 1	36．4	？\％． 1	－7	，101：31	＋2． 9	17.1	17.7	01，：	． 1111	26．3	
8	$\begin{aligned} & 2-7 \\ & 26.6 \end{aligned}$	\％	S＊）	． $1411 i^{\circ}$	\％${ }^{\text {a }} 11$	？ 3	边	3，	． 1015	42.2	17.5	1心11	19．11	． 1118	－4．9	
9	S6．3	\％\％	－11	． 1 ¢ $1: 1$	4 $\because=$	$\cdots 1$	盟佼	4i：6	． 1044.5	39． 4	$11 .:$	16．－	1i2． 4	－119	－ 0	
10	$\begin{array}{r} 26.3 \\ 26.5 \\ \hline \end{array}$	26.9	：	． 11744	湤， 6	＂．	$\because-9$	1．．．	． 11020	4．5．！ 9	18.1	$1 \sim .7$	120	． 118 m ！	¢！9．7	
11		$\because 7.2$	St．0	10130	43． 1	$\therefore 1$	St．	－4．$\%$	－160\％	\％	$1 \sim .4$	19.1	51.8	． 11015	311． 3	
Noon．	26.5 26.0 26	26.9	示：	． 1135	$1 \because 6$	26． 2	26．	： 3.6	． 0045	： 11.1	15.	$1 \cdots 1$	23．4	． 11010	$\because 1.1$	
$1^{\text {b }}$	3.4	\％－1	－7．5	．010：1	13.9	？－20	2－1；	13：	． 10.5	88	近！	399	100．11	． 1118	$\cdots 9$	
\because	25.620.1	26．3	36． 1	，0，mid	41． 4	\％et 1	？．1）	340	． 1173	41.2	$\because 4.4$	－4．3	-1.4	－ 11111	$\because 0$	
$:$		6t． 9	17．4	．010．3	4．15	11．\because	？1．	$5 \cdots$	，11101！	32．8	号：	品 15	211．${ }^{\text {a }}$	－ 1100	$\therefore 1.9$	
4	24.4	$\because 1$	姿，5	，10：31	$4 \because 9$	1！：$:$	19．9	S1， 3	， 1005	90． 4	\because	20．0	－6i． 0	－ 100 C	：11． 2	
F	$\begin{aligned} & 24.6 \\ & \because 4.5 \end{aligned}$	－－5． 1	Sis	11175	3 H .1	12.7	11）． 4	50．K	－Mre9	： 16	$\because 7.5$	然题	？ 0	－170． 1	41.5	
\because		？	14.7	（10．a	36.8	$1: 19$	1．．7	60．3	． 0145	？ 29	29．6	：3111	211． 11	． 11012	：r． 7	
7	号号	3－6	bill．$\%$	． 10707	： $3: 1$	$1 \because .19$	$1 \because: 3$	103.7	． 0149	$\because 1 . \%$	31.	81.7	31．${ }^{3}$	－wre	40.3	
8	$\begin{aligned} & 24,1 \\ & 3 \\ & \because 4.6 \end{aligned}$	21.4	6i9． 6	－1170－1	颔1	$1 \because 1$	1\％8	（i．）． 4	． 1185	211．9	29.1	？！．9	419．19	－ 110 ： 2	$41 . \%$	
！ 10		27.0 .0	5n． 0	． 114 niz	樃11	1：3． 19	1：3．7	10：$: 3$	． 0145	昭	2n．6	里：3	1－．${ }^{\text {a }}$	． 1648	369	
10	$\begin{array}{r} 36.6 \\ 210.9 \\ -\quad 4.3 \end{array}$	别， 3	87.4	. "икі	湤 4	$1 \because 6$	13.4		，01：3i\％	\because	\％ 9	：31． 0	50． 11	． 11648	3.7	
Meran．	－	－20． 0	41．1）	（1． 11050	—3ii．${ }^{\text {\％}}$	－－1：9	-13.7	fin $:$	11.014 .5	－	－ 2	－36．5	19．1）	19．1625	－ $11 . \mathrm{H}$	
			42．80	0.0050	－的湿			4.80	0． 0084	－34．4			$5 \% 10$	11.1112	－3， 6	

JANUARY, 1872.

: II 0

4 II O

JUNE， 1872.

Day．		－－－						16.					18.		
Hour，	D．	W．	R．II．	1．V．	I．I＇．	11.	W．	R． 1 I．	F．V．	D．P．	D．	W．	R．H．	F．V．	1．1．
（1）	＋ini． 1	＋32． 1	－4． 1	11．11，${ }^{\text {a }}$	＋$\because-5$	＋+2.5	＋ $3-3$	44.2	1．11：1	－ジ，	＋	＋！2	71．	0.1494	＋心． 4
1	： 5.7	： 1.0	$\therefore-.1$	． $1: 12$	\because	4； 1	： 31	413.4	．1015	品只	\％． 7	：32，	71，	． 1494	2－4
$\stackrel{1}{6}$	3：	3 3	－ 3	． 16.2 I	310， 11	$1: 7$	：3．3	： 1.	． 1119	$\because 4$	：$:-.7$	：3．11	（iis． 1	15－1	29
3	：4．11	$\therefore 3.1$	＊${ }^{1}$ ． 1	． 132.	$\because 1.9$	1： 1	2n，	41.7	． 11.34	？ 2.4	3．3． 7	： $2 \cdot$	2．8． 1	15．4	＂－
4	$\therefore 1.1$	\％	－3．9	． 1120	31.3	4：3．6	：3i． 1	411： 3	． 1149	品为	：1i． 0	：31．\because	76.6	1664	29．7
\square	in． 7	$\because 2.4$	\cdots－ 1	．11i＊）	311．	44.5	：3\％ 0	41． 1 ；	． 130	2\％．9	：n－5	2， 4	71．：	． 16.54	（3）． 9
i	：4．	38	-1.4	．16isu	919，	33.1	：3， 11	716．${ }^{\text {a }}$	． 1573	24	39.3	：3i． 11	1－2．	．1034	310．－
－	24． 4	O2．6	－1．\because	，11is？	2！ 110	\％i． 11	湤 1	$\therefore 1$	． 1215	$\because-3$	：37． 4	： 8.1	$19 .:$	． 13	$\because 6$
\cdots	：4．4；	3 ${ }^{\text {a }}$ ，	－1． 5	． $113: 4$	99．7		34.11	71.5	．1614：	－11\％	$\therefore 2.7$	\therefore	（is． 3	． 1596	2！\％
9	：－1． 4	$\because 2$	－1，\because	．11is：	29，6	：\％，\％	20， 7	－ie． 1	．119\％	？13，$:$	R．，！	\％ 3.	7：3：	，151－	－\％
10	4． 19	3：3 1	－！ 1	． 175.8	31．\because	： 27.1	\％ 31	\cdots	． $1 \cdot 31$	Si， 1	$\because 4$	\％． 11	3： 1.4	． $11: 10$	\because
11	aib．${ }^{\text {a }}$	： $1+11$	74． 7	． 1617	－3	3.7	哏： 1	， S_{2}	12：1	？！$!$	3.3	31.7	－ 4 （ $:$ ；	．1．74	8－\％
Ston．		34.9	Tis．	．1tiol	：30．！	：\％\％ 19	：3．11	－11．9	． 128	－6．3	： 27	：31．：	－3．$\%$	．1504	\because
1^{12}	：17．7	3is．${ }^{\text {a }}$	－1．9	1－が	：3i，：	： 3	S 27	－5， 0	． $1 \because 11$	31.1	： 3 ， 1	S1，：	涼！	． 14.5	25
\because	\therefore A． 3	：35．4	-1.0	． $10.14{ }^{\text {a }}$	：4．：3	37．－	3 3 3	－s．11	． $1: 301$	21； 11	： 3.3	$\because 1.5$	$\therefore 1.9$	． 10103	足． 4
；	3，${ }^{\text {a }}$	3， 0	\cdots	．100	\％	呺 1	：3．9	61.0	． 1414	S－3		$\because 1.2$	2．\％	． $1 . \mathrm{nrit}$	－3． 6
\pm	31.11	： 3.4	$-1 .:$	． 1379	：11．0	$\because \cdots$	3．：	－39	． $1: 50$	C－：	3．3．9	31.1	－1．	．1－\％	$\because 20$
3	34，	3： 0	-1.6	． $11: 51$	郎．	？ 3	in！	$\therefore 4.6$	． $1: 3$	ソ－， 0	\％	31.11	$\therefore 2$		\cdots
6	85．	30	7． 1	． 1 L！	\because	31.6	：4．5	\therefore－ 5	． $1: 36$	为：	为足	311．2	\cdots	1－1．）	$\cdots 4$
7	：3： 3	31.6	－ $3:$	－150	20， 11	： 3.1	33．	61．－	． 1411	最 5	31．	2？ 9	\cdots	112：	\bigcirc
	3．3． 1	31.7	-1.7	． 113 a	9．6	37.7	：	（ii）$\overline{1}$	． $1: 15$	\because	31．：	： 11.0	$\therefore 1.0$	． 115	$\because 2 . x$
9	33：0	31.8	－1．7	． 1.04	S9．0	$\therefore 1$	：3．3	134．$\%$	． 1412	2\％	31.4	09.7	－1．9	． 1446	31.6
10	11.13	36.3	－4．3	． $14: 3$	29．7	37.	\％1．	71． 1	． 16111	81． 7	：311． 2	2.11	－1．6	． 1414	3 3， 0
11	$+4.7$	＋3，${ }^{\text {a }}$	16．）	0．12－	＋2x． 6	＋：3i：	＋ 3.0	1i．） 1.	1． 14.51	トン－	＋：30．7	＋$\because 1.10$	~ 1.5	0．1：197	＋号！ 9
Means．			－ 2.91	11． 1636	＋30．11．				0．133：4	トッバ！			71，mi	11． 15×6	

Daj．

6 II 0

Fote, -Original xechril from July th to July 11th lost.

Dins．	AUGUST， 1872.														
			4.					5.					6.		
Hour．	D．	W．	1：H1．	F．V．	D．1＇．	I 1 ．	W．	1． 11.	F．Y．	D．$]$ ．	I）．	W：	1．1］．	F．V．	D．P．
$0^{\text {h }}$	＋3．0	＋33．11	7：！ 7	（1）1120	＋	＋111．	＋37．	75．${ }^{3}$	1）．1－9 ${ }^{\text {a }}$	＋34． 3	＋36． 4	＋is． 0	21i，\％	11.114	＋－31，0
，	： 3.1	20．7	－	． 1187	31．21	40.7	13.7	73．1；	． $1-73$	：3．1	＋ 36.4	13：3．	7i：${ }^{\text {a }}$	． 1182	ソ－，
2	34.4		－	11i．！${ }^{\text {a }}$	：31．1．	－ 40.91	183	$7 \% .0$	． 1,12	：3．1）	：3．4	3：3， 0	こ： 1	． 170	碞：
3	$\because \% .4$	\therefore ： 5 ．$: 3$	79.9	． 1701	3？	40.7	：i．	－i， 6	．1－：	$\therefore 3.1$	：3．4	： 27	It． 9	． 1711	枵 ${ }^{1}$
4	41.8	3－3． 9	－a．：	－吅以号	36． 5	$4 \because 2$	：－20	（i－．${ }^{\text {a }}$	．1－4！	：1． 2	41.1	： 20	7：311	． 1×-7	＇$: 14.3$
5	39． 15	\％\％．0	7i．j	．1－4i4	：3： 1	45.4	11．${ }^{\text {a }}$	（i）． 1	－ 2141	36.4	41．：${ }^{1}$	1 3	26． 5	．1：191	3－3：
6	：2i． 4	： 3	2！1，	17.1	： 2.2	4： 3	30， 3	6i． 1	． 1×2	： 1.1	？	：37．9	－	19\％－	：$: 1 .: 3$
7	：31．6	\％5，	Tิ， 3	． 1744	$31.1{ }^{1}$	（46．：	411． 5	55． 5	． 176	：3． 3	3\％．0	：－5 3	74． 7	． 10.00	20．9
$ז$	$43 . \chi$	330.4	fit：	．1，44	31.0	41.7	： 5.9	46.9	．1：9\％	2－2．9	：9，	31：3	71.0	．102－	： 20
9	4.15	：3．1．	53， 5	．11il／	：$\because 21$	$4 \therefore .7$	： 3.	\％－	．16：－	\cdots	$4: 1$	： $2=.9$	15．，$:$	．נ－゙面	：31．：
10	419．19	4？	－3．9	．1－20	： 3.4	＋1． 7	\because	51.16	． 1529	［3．11	$4 \therefore 1$	：319	5！ 59	．13：N	21.3
11	，i11．	4．\because	$\therefore 7.7$	－ 293	23.16	14．	： 2 L	4． 6	．130	景． 9	$\therefore 2.7$	：14．9	（5in． 2	．1．，4ic	－31．7
Noon．	4！． 6	4%	S！ 1	－$\because 19$	［3：\％	48.1	：37．4	5n！	． 14×3	里，「	41.5		51．：	． 1465	
$1{ }^{\text {b }}$	$4-5$	＋2．	5×2	－ 2004	36．${ }^{1}$	47.0	411．8）	－4， 0	． 1741	：3， 3	40． 1	：11．：	fili．${ }^{\text {a }}$	．16id	：31．$\%$
$\underline{2}$	51.7	14.0	4 c	．1－74	\％，${ }^{\text {a }}$	＋ٌ 0	：3． 3	（i）．	．161－	： 3119	37.5	$\therefore 3.0$	61．9	． $1.8(1)$	－
3	47．\％	41.4	天－\％	．1－17	34.31	142.5	：3－0，	位：$:$	． 1700	：1．0． 0	：39．7	in． 1	1if．	． 1.50	： 31.
4	41．0），	31．	63.5	． 1103 m	311．	42.2	：12． 3 ，	二小．	． 1509	： 11.9	：37， 7	33.3	［12． 9	． 1814^{\prime}	米：\because
5	41.7	： 31.9	65．	． 1283	\％ 3	42：	：\％．：	カ2，	． 12190	：$\because 2.1$	31.9	$\therefore 3.5$	が， 1	．155	8！． 7
（i）	4：3．	411.4	7	－ 36 C	31． 1	11.1	： 13.	6： 2.7	．16：	： 0	： 3 －！	3i． 0	1i1． 4	．	4 2.4
7	$41.9{ }^{\prime}$	St． 4	711．	． 1.40%	\％ 3.1	23： 3	： $3^{2} .6$	Citi． 6	． 1608	：31．\times	\therefore－	（2．）． 0	bis． 7	．1－5）	－317
8	40.6	：2．0	75．	． 1121	3：3． 6	＋11． K	：3．2	lin． 5	．17．\％	$\therefore 2$	：3．6	： 14.5	71.7	． 1.29	： 2
4	40.5	32.4	7：6	．1－3：\％	3010	：3，	：if． 4	199．5	． 1710	： 0	：3． 7	： H ，${ }^{\text {a }}$	\％ 1	． 16.4	$\because 2,1$
10	40.5	：3， 4	12．19	．1－3：	：3\％． 0	$\therefore \sim 1$	（3）． 1	20．19	．16i，${ }^{\text {a }}$	31.9	：3．2	： 4.1	710.4	． 150	－！！\％
11	$+40.5$	＋：2\％	29．3	$0.15 ッ 1$	＋：31．9	＋：3\％	＋34．3	Tu．	0． 13.54	＋29．7	＋ 85	＋：3．7	ポき	0.1650	＋31．0
Meaus，			（ii．．ia	0．1．45	＋ $3 \cdot 4$			（1），	0．170：	－トッツ．3！			61．40	11． 161%	：31． 3
AUGUST， 1872.															
7.						8.					9.				
ILour，	D．		R．H，	F．V．	D．P．	D．	TV．	R．H．	F．V．	D．P．	D．	W．	IR．H．	I＇，${ }^{+}$	D．P．
$0^{\text {L }}$	$+36.0+34.3$		4？	0．175\％	$+31.0+3.1$		＋3．3． 1	F1． 7	0．158x	1＋3，${ }^{\text {a }}$	＋ 2×6		74.1 11．1735		＋ 20.1
	315.7	35.8	86.4	．1203	3： 5.5	31.7	34.7	20． 1	． 17.0 \％	38.3	$3 \sim 2$	35． 4	71.4	，16ifi	30， 3
2	316	31.11	$7: 8$	． 1604	$\because 11$	37.19	3，3．：3	－3． 6	．1－3．	33．0	$\therefore-1$	3， 6	71．\％	．17－5	： 31
？	374.4	34.0	76.5	． $164 \times$	81.10	35.2	34.7	－	．1－15\％	湿兑	： 39	：37． 3	7．in	．1－8．0	33.1
4	3n．		-1.0	．16i4	：10． 9	2is．	34.0	－4．9	． 1760	O3． 4	41.5	26．6	7：	． 151	： 1.
5	3is．	\％ 31	－10．0	－16iso	－33！	3－3	： 4.0	－4．9	． 17619	St 4	41． 5	？－3	724	． 1901	： 1.1
¢	3318.4	34.1	79． 3	． 1100.1	？1． 1	3．5． 5	\％1．0	－4．9	． 18619	：32． 4	41.9	32．3	69.4	．1－14	： 3.1
s	36.9	：－ 0	$\checkmark 1.6$	．17－2	： $2 \cdot 2$		34.8	c4． 3	.1811	： 3.3	43． 0	3 3． 6	63.6	． 1712	：
－	3 Bin ，	： 4	$\bigcirc 1 .: 3$	．17－3	湿： O	－ 3.	3in． 7		．In－it	：3．3．3	4．5． 1	40．：3	1is． 4	，18T－	$3+4$.
$\stackrel{9}{10}$		31． 3	810.4 72	． 17.12	31， 3 ，	－ 40.10	：	7，	． 190	34.3	4．1． 1	3）． 1	51.8	．17：3	： 3.1
11	\％． 6	35． 4	71.4 79.1	． 17 17\％	：33：	4.0	40.3	64．${ }^{\text {6 }}$	． 193.5	31．：3	4i． 7		（i）． 9	17－3	$\cdots 3$
Noon．	：17．7	2－4	识：	－17\％	0	40.8	37.8	号号	－14＊	：ii． 1	＋⿻－	\cdots	60． 1	． 1602	
$1^{1 /}$	3－．11	3－3．5	71.5	． 17.10	3	39.3	36.5	24．6	－1790	39.7	44.7	39.	56． 7	．16i－11	为：11
2	37，11	$3{ }^{3} 5$	11． 2	． $17: 37$	20．5	40．0	37.3	75.9	．1sxis	：3：3， 1	＋1．\because	30，\％	51． 9		： $3: 1$
3	37.3	景， 4	ミーシ	． 17610	哏：	， 31	3：3．6	78．	．1213）	3.6	$4 \because 3$	B7，	fien	． 171111	$\because 0$
4		江， 0	71，	． $12-13$	：3． 1	3 ${ }^{\text {a }}$	311.4	$7 \because 0$	． $174!$	2－5	43.7	：-7	6if． 7	．1－゙：	34.2
5	39.5	36.1	71.7	． 1214	34.4	40.5	36.9	に゙． 3	． 17 易	380	4： 7	32.6	6i． $\mathrm{S}^{\text {a }}$	．1－11	34.3
$\frac{11}{7}$	39.9 39.1	湤总	75． 8	$.1-70$	34.4	41.5	31.3	29． 1	． 1,11	\％in． 1	44.5	40．：	1i6． 5	．19．4	：3． 3
$\stackrel{3}{4}$	39.1	3i， 3	7113	． 120	33．3	40． 2	23．3	（i9）． 4	． 1714	呮1	48.7	23，\％	6－6． 4	．191－	： 3.0
9	：37．51	3－0	76.2 ®1．0	． 1710	3	41.10	\％	15\％．4	． 17 ＋20	i2． 0	43．${ }^{3}$	$\therefore 2 \mathrm{c} 1$	$5 \times$	． 100%	$\because 0$
10	\％	号 1	81，0	$10-1.1$.173 .5	吹？		\％ 3	70.2 -4.0	．1783	38.1	4：3，		64， 8	． 1703	31.9
11	＋$\because 1.4$	＋35． 4	－4． 9	0．1：12	＋+3.4	＋	＋	－4．0	.1754 0.179	$\begin{array}{r}3 . \\ +\quad 30 \\ \hline\end{array}$	44.3 +41.4	＋	bin． 4 fi！． 0	0．1．0．01	31.3 $+3: 3.1$
Means．			7，明	0．1763	＋－3\％！¢			76.415	0.1793	＋33．21			（6），	0.1%－	＋33．1

Day，	AUGUST， 1872.														
	10.					11.					12.				
Hour．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
$0^{\text {b }}$	＋39．6	＋36．5	22． 1	0．1757	$+33.1$	$+35.7$	＋33．7	81． 1	0． 1676	＋31．0	＋33．5	$+31.4$	vo． 2	0.1514	$+27.0$
1	37.5	34.8	7.3	．16ibs	311．9	：3：5	31.9	－i． 7	． 15139	\cdots	33.1	31.1	79.	． 1.149	38.0
2	37.3	34.7	丞 1	． 16 ita	30.7	： 2 S	：31． 1	8．3． 4	． 1.430	$\because 2$	32.1	30.3	－1．3	． 1476	23.1
3	39.4	36.5	73． 7	． 1783	：3\％． 1	36.7		8.8	． 1903	32：	37． 1	35.3	82.6	－10，	3： 5
4	42.5	39.4	75，${ }^{\text {2 }}$	． 2106	316.4	41.4	35.0	㕲． 7	．1者	35.4	3 n ， N	37.1	－4． 2	． 194%	34.3
5	44.7	41.1	71．4	． 2110	3	410.7	4.6	8．3	－$\because 178$	$4 \because$,	4	40.0	S®9	． 11.31	3 Bi .4
6	43.2	39.8	71.8	． 2010	36.4	$4 \because 7$	40.8	－4．0	－	Bris	40． 1	：2．11	7－4	． 17.9	3：3． 1
7	43， 3	39．${ }^{2}$	66.4	．106	34.2	29．5	3.30	Mi． 3	．$\because 100$	35.4	4． 3	41．：	50.9	．1\％40	： 4.2
8	42.6	32．：3	64.0	．12x	3i． 1	44.3	40.3	（is． 0		：5．$:$	43． 3	36.0	65． 4	．1＊：3 4	：34． 1
9	43.7	Sis． 1	54.9	． 1566	：11．9	41.5	41.0	$55^{-5} 5$	．1－．51	： 4.3	43． 5	3．9	12.4	．17バ	3．3． 1
10	43.1	37.8	56.3	． 1583	：3． 0	4，5	$4 \because: 3$	（ii）． 7	－2101	3it． 4	46.4	41.5	（i）．α	．1906	36.4
11	42.8	37.8	5－5	－ 16×2	：3， 1	415.7	11.9	63．6	$\therefore 311$	$\because 3.5$	45． S	411． 2	61．	．1900	3－3
Noou．	41.2	36．5	59.5	． 1.549	－3， 7	46． 6	41.8	56.4	－1315	33.3	4．5	3） 3	\cdots	． $17: 3$	3：1
$1{ }^{14}$	41.4	313.3	55．6	． 1460	：11．9	4.1	：3．8	（iin． 3	．1－1．13	涼：$: 1$	42．1	3－4	6\％	．1－35	：3．3．
2	40.5	3．5． 4	55， 4	． 1414	$\because 2.5$	3＊．	35.0	711．9	． $16: 4$	：31．9	41.5	：$: 17$	36is	． 1741 \％	：1：1 1
3	：3．7	34.5	2？6	．16ite	30.9	316.9	34.3	34．9	． 1641	2！ 2.5	3－0	3，	71.9	． 16.519	：31．9
4	46．2	33.9	47.3	． 14.8	31.0	37.5	：4．9		． $1112+1$	：31．！	36.9	：3． 4	66.4	．14N	\cdots
5	37.9	35．：3	T．5． 6	． 12 ± 1	30.9	：36． 5	23． 4	10， 1	． 1509	2－5	40.5	36.3	tio． 1	． 15	311． s
6	37.2	35.1	－4．19	．1－75	33．3	34.4	： 3.0	75． 4	． 1.19%	2×4	：3：3	31．	25．9	． 145	20． 7
7	35.7	33： 5	\％ 8	，16：3 4	31.0	33.7	： 2.1	－3． 1	． 1614	？－：${ }^{\text {a }}$	30．${ }^{2}$	景	\cdots	．1511	$\because 2.3$
8	：3．5	：$: 3$.	71．！	． 159	\because	： 2.15	淙．	7！ 11	－16it	31．4	323	30.9	81.6	． 1.119	$\because .7$
9	36.5	34.3	T＊．6	． 163	21.1	：34．9	：3： 1	-1.6	． 165	29.7	31.7	30.1	$\because 1$	． 14×5	$\because 2.3$
10	35． 9	33.9	80	． 160	81．0	3：3．	31.	－11． 13	． 1599	－	： 11.9	－ 80.8	\cdots	． $14!!$	－
11 Means．	＋35． 2	＋33．0	i2．${ }^{\text {ch }}$	1）．1－194	＋29，	＋34．	＋i： 0	13．2	0．1504	＋	$+30.8$	＋$\because 9$	－-7	11．14\％	＋$\because 1.5$
			69.08	$0.150:$	＋ 31.9			\therefore 的 16	）． 17 洪	＋+15			73． 41	$0.16 \mathbf{S}^{4}$	＋311．91
Day．	AUGUST， 1872.														
	13.					11.					15.				
Hour，	D．	W，	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
$0{ }^{\text {b }}$	$+30.7$	＋29．2	ど3． 7	0． 1435	＋26．5	＋30．7	＋ 29.2	9．3． 7	0.14%	＋26．5	＋33．2	＋ 81.6	－3．3	0.1 .82	＋
1	30．3	29.0	8.8	． 1446	26.7	30.7	29．11	－1．5	． 136	25.9	31.0	29．4	\cdots	． 1437	26． 5
2	30.4	29.1	8，\％	． 145	26.9	3： 1	31.7	8.8	． 16 ± 3	89．4	39.4	\％	Hi．3	． 14104	$\because 1.0$
3	31.7	30，${ }^{1}$	84，	． 1504	\％\％．6	31.5	310.3	－2．3	．1247	$\because 2$	29.7	9） 1	4 Bl	． 153	$\because-1$
4	36.7	：3．0	※．5	1－14	23： 4	31．s	30.8	－ 3.4	． 1604	$\because 9.1$	30.2	－9．3	W．1	．14\％	27.6
5	36.9	（in） 4	－5．4	1－8	： 3	： 2.4	：$: 1.6$	H8． 6	． 163	29.5	30.8	\cdots	－－1．9	． 1473	？ 2.2
6	34． 6	昭：3	715.5	－15\％	－2．9	：3． 7	：2． 6	7r． 5	． 1579	－2．0	31.7	30.6	$\cdots .4$	．15－0	2s，
7	37.8	3 Bi .0	8，\％	．1－94	33.6	38.3	？ 3.0	ご， 1	． 13.11	次： 2	呮禹	31.3	－ 4.15	． 16.17	$\cdots 1$
8	40.9	37.1	67.0	． 12×0	：3． 1	：5， 6	：3： 1	7， 1	． 1.167	28.6	2．1． 0	\％ 3.9	crs	． $17: 30$	$\because 9.9$
9	38.7	36.1	71.1	． $17 \sim 1$	$\because 4.5$	：1if． 0	33．9	792	． 1639	31.11	34.3	（3）． 0	－ 11.10	． 1711	31.1
10	3\％． 2	3is． 0	711.8	．11：4	：12． 4	31.1	34.1	71．：3	． 1.50	20.7	：i4． 7	33.1	－3．6	． 1624	311.9
11	37.2	34.5	7i． 9	． 1712	：11．9	$36 .-$	34.5	71． 1	． 1701	：$\because \cdot 2$	：3．1	：2－1	\cdots		咬 3
Noon．	37.5	35． 2	7－0	． 17.57	？ 1	： 310	：$: 4.0$	71．${ }^{\text {a }}$	． 1500	29.5	36.7	34.6	7！ 6	． 1733	31.0
$1^{\text {b }}$	43.4	40.3	74.5	． 3197	35． 9	318.1	3：3．5	74.4	． 1.00	2－5	：3i， 3	34.3	N1． 4	． 17.24	：310．9
2	4.5	41.0	64.1	． $1-211$	34.8	： 4.5	Si． 4	T：	． 1.56	$\because 2.15$	35.5	： $3: 7$	＋11． 1	． 112016	29， 8
3	41.7	3 3 .5	71.5	． 1919	$\therefore 4.8$	35.5	：3：． 4	7－9	． 1639	29．8	3－3	23．7	S．	． 1103	？0，
4	$3 \times .7$	36.5	79．2	． 1 － 4	33.8	源 4	3：3．5	－ 0.9	． 1683	31.11	3－7	34.11	Kin． 0	． 1734	32.3
5	33． 5	31， 5	511．4	．154：	$\because 7.7$	34.7	3：3．0	$\cdots 3$	． 166.4	89．－	涼：	31.10	－－8，	．1－14	31．2
6	3.4	？ 30	17， 3	．15：4	$\cdots \sim 1$	3－3	$\because 4.0$	－3， 11	． $12: 3$	30.9	：3．1	3－3． 3	\cdots	．1－5	31
8	34.2	32.2	79．：	． 1.514	20．8	洼 5	\％	\cdots	． 170	39！！	31.8		－81．6	． 17216	319.9 -119
8	38．6	$30, \%$ 31.8	81.5	． 1511	$\cdots 7.6$	38		－2． 1	． $12 \because 1$	30.3 30.7	31． 11	34.1 33.	1.1 -1.6	1716 .1691	$3!19$ 31.1
9 10	33.2 31.2	31.8 29.4	8゙i，K	． 1616	20．5	\％ 6	3	－1．${ }^{3}$	． 1374	30.7	34.2	33．	－3．6	． 16.91	31.1
11	31.2 +31.6	21.8 +29.9	80.7 82.0	0． 1460	$\begin{array}{r}26.1 \\ +26.5 \\ \hline\end{array}$	3.6 .5 +34.8	3.6 $+\cdots .1$	20．	0． 1604	31.1 +31.0	34.0 $+3 \cdots$	＋+1.4	81．	0．1．3\％	＋+3.3
Means．			529\％	0． 16163	＋30． 5			－0． 64	0.1629	＋30．76			84.3	0.16 .9	＋！

7 H 0

Day．	AUGUST， 1872.														
	16.					17．					18.				
Hour．	D．	W＇．	R．H．	F．V．	D．P．	D．	TV．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
0^{12}	＋3：30	＋：1．2	－5．6	0． 1504	＋2\％	＋ 31.7	＋31．0	昭6	0．1155	＋ 29.9	＋31．5	＋39．6	89.8	0.1415	＋26．0
1	\％：3．7	182． 3	2！． 4	． 17.19	？ 3.9	： 2.	31． 5	91.6	． $16 i-1$	：311．9	：30． 3	20.9	7！ 4	． $1: 3: 1$	$2-4$
2	3×15	31.3	－6i． 13	．16，1\％	$\because 1$	30.9	：21．0	（111）：$:$	． 1.1510	2	31.1	29.5	－2．	． 1444	26
3	38	31．${ }^{\text {\％}}$	（31． 5	． 16.61	：31． 4	31． 1	30.4	吅号	． 1612	－ 4.3	：31． 9	29． 2	－1．7	． 1411	21
4	3i： 6	：1： 1	－4． 1	． 11023	？！${ }^{-2}$	23． 6	31．${ }^{2}$	91.7	． $1711: 1$	31． 5	20．9	螴	$\checkmark 1.7$	． 1411	2i． 1
5	3i． 7	30．3	\therefore	．164！	$\because 7$	：\％	次：	m）：	．16：4	（3i）． 1	31.5	－	－ 2.11	． 11.73	26.7
6	34.7	2\％ 3	＊－ 1	． 17 \％	81． 2	：3． 5	： 2.7	91．5	． 17618	30.	：3．6	30.1	\cdots	． 143	27． 1
7	\cdots	84	－！！	． 1541	\％ 5	\％ 3.9	：3．） 10	919.5	． 171 lim	：31．1	楽：	：310， 6	－ 3.4	，1500！	20，\％
\therefore	3.9	36.8	－11． 1	． 1911	：3．：3	$\therefore 1$.	33． 11	$\therefore 8.5$	． $13: 12-$	31.0	：3． 2	$\because 1.4$	－1．${ }^{-}$		$2{ }^{2} .3$
9	3－． 6	33：5	70． 1	． 1647	：31．11	［35． 11	：3i． 0	70.7	．1180	29．4	：11． 1	\cdots	78．6	． $1: 10$	25，3
10	：3．7	35， 8	－1． 13	． 120	： 3.3	： 4.0	枵3	\cdots	． 1615	\cdots	41.6	：37．0	liv． 4	．11：34	\％ 3
11	36.7	34.8	-1.4	． 175	3	：4． 4	31.8	8 S .7	． 14131	？－5．6	$4: 3.8$	39.9	199．0	． 1971	： 3.3
Noon．	36.9	34．4	－4．\because	．187）	31， 11	36.7	：4．5	为．	． 1714	31.0	$4 \% .2$	41.11	1i\％． 0	－ 30.4	淮， 3
$1^{1 / 2}$	：53． 1	：3．2	－1i． 7	． 175	： 3.4	86	： 5.0	－1．6	． 18×8	：$\because 1$	14．${ }^{\text {2 }}$	41．$: 3$	河：	－ 2140	314． 7
2	31.9	\＃1：	－2． 7	． 16 iox	\％ 8	：37．0	\％$\quad .6$	（ix． 5	． $150 \sim$	\cdots	4.8	36．	liii． 7	． 1×4.	33， 6
：	R3． 9	：	Si，：	． 16% \％	： 11.	36.4	吅是	（i－． 1 ）	． $14=11$	28．9	43.5	39.4	$1 i 3.5$	． 18.3	34.8
4	：3： 1	：$\because 1$	－2． 3	． 13 3 27	：310．0	3．．＂	虽 1	66， 5	． $13: 3$	$\because 7.1$	49.5	：32． 3	til．${ }^{\text {a }}$	． 1774	33.1
5	$3 \times$	31.8	81.7	． 1639	：31）	3n－m	昭成	31.4	． 1476	$2 \% .0$	43.7	：3． 4	（i．）． 0	．1＊＊	$3{ }^{2} \cdot 7$
6	：12．4	：31．：	－2\％ 6	．16：	$\because!5$	85． 11	楽1	70． C	． 144.5	？7．\because	41.5	：17．：	1i4．0	． 1 lix 1	3 0
7	里：	31.8	29．5	．16－1	21．	：34． 5	： 31.16	75．4	． 14.00	－9．1	3． 9	：	隹． 9	，16ism	99\％
\checkmark	$\therefore 2$	31.5	E－6	．16id	－31．	：3．\because	31.6	－3，${ }^{\text {a }}$	． 1.19	29．0		吅！ 1	－ 21	． $1: 314$	31.1
9	？ 5	31.5	81.6	． 1685	29.9	5	31.1	二י．4	．144x	27.3	39， 5	：31． 1	75． 4	． 1443	2x． 4
10	：3， 0	211．9	2r． 3	． 1601	24.1	3： 2	30.6	－3． 4	． 15.21	U，	：2， 4	：31． 3	－11， 11	． 1518	2．5． 6
11	1＋$\because 1$.	－r：30	9：3	0．11il！ 1	＋+3.4	＋$: 11.15$	＋3：9！	\cdots	0．146：	＋36．8	＋99．6	＋+80	－0，0	0．1320	＋24．5
Meaus．			4， 33	1）． 1699	＋311．54			－1．72	0． $150 \cdot 1$	＋			74.72	11． 16.50	＋ 39.4
Day．	AUGUST， 1872.														
	19.					20.					21.				
Hour．	I．		R．H．	F．V．	D．P．	D．	W．	R．II．	F，V．	D．P，	D．	W．	R．H．	F．V．	D．P．
0^{12}	＋29．5	＋ 8 \％	77.9	0．12911	＋ 24.2	＋34．2	＋32．0	87． 1	0．1724	＋：31．1	＋33．6	＋39．1	84.1	0．1637	＋ 49.9
1	23．11	次：	－11． 7	，120it	2：39	34.1	32.7	850	． 1630	：	33． 5	是 11	－4． 1	． $16: 0$	：$: 1.0$
2	$\because 2$	？ 2	81）． 6	． $1 \cdots 2$	2\％	34.3	3.30	86	.1711	31.5	33， 9	32.7	－7．3	． 1711.3	20，
3	21．	2i．	－11．8	． 129	34.1	33． 7	32.6	－-4	． 170.1	30.1	$\because 2.4$	31.1	－5，	．1．73	2－6
4	29．5	ご． 11	＋：3 1	，1：35	25.9	3：3．6	3	vi． 3	． 16 sid	－9．9	33． 1	31.7	－-7	． 1603	听． 4
5	：31．	$\cdots \sim$	81.5	． $13-4$	－5． 6	33.7	30 0	上－3	． 1594	穴． 9	34． 11	3： 5	－1． 3	． 16 湤页	－ 11.9
1	$\because 1.4$	2193	719.7	． $13: 14$	2－	34.5		＋21． 5	． 16.51	29． 7	\％ 4	33， 3	－ 4.1	． 178	：31． 1
7	：	（ 31.5	719.7	，14：11	2－9， 19	34.5	3－9 0	8．3． 3	．1－41	32．9	36	35． 0	－3． 3	． 1×41	3 3.1
\％	34.5	昭：	7i． 5	．1－3，	$\because-5$	3．5． 2	34.4	27．0	，1－3：	： $3: 3$	39．0	3－5	＊ 6	， 3 合可	355.5
$!$	31.1		76.3	．15： 3	27.1	36.5	35.0	ど）	．1－40		4.6	43． 2	－2． 6	． 2160	41． K
10	？	： 2 ！ 9	74.1	． 1.510	2	：3． 4	35.6	\cdots	．1\％1！	13：3 2	$4 \times .11$	41.1	－-7	，2－8！	449
11	3193	36.5	\％．． 4	．1－119	$3: 30$	3n， 7	84.2	－10	． 1371	32.5	$4 \because 7$	39.5	15．\％	．1－7！	$3{ }^{3}: 3$
Norm．	410.9	3r．	7	． 1×10		31．	34.5	－	． 1.119	32.4		30.4	73.1	－ 1161	策：
$1{ }^{\text {b }}$	41.7	㫛 18	73．4	． 1191	34.2	33.1	34.6	$\therefore 81$	． 1×10	：3．4	43．	31.5	73.4	． 1946	38． 2
${ }^{2}$	315	36.2	38.9	．1－10	34.4	31.1	34.6	85． 1	． 1×10	234	40.4	37.2	71． 7	，1－0）	：3． 1
3	： 3	：i4． 1	24.9	． 13 （ii）	3 3	3.5	$3 \therefore 0$	8 Br	． $1-1 / 1$	3：9	$\because 8$	34.11	6土． 6	． 1531	$\underline{39} 6$
4	4：3．0	｜ 11.0	84.9	－¢－in	39.7	136.2	34.8	21．2	． 13 3	32	：4．	$3: 1$	S2． 6	． 16 洼 1	31.1
5	4：1．7	41．	713．：3	－ 31810	31.7	41.9	3： 31	2．3． 3	－200\％	： 3	3： 3	31.2	80\％	． 1631	\％9．
6	41.5	－32． 11	1：4．9	． 1 － 3	$\therefore 1 .: 3$	37.4	\％	－i）． 1	． 1×31	： 4.4	昉	M，	＊） 9	． 1729	：31． 11
7			İ．${ }^{\text {d }}$	． $15 \mathrm{~T}: 3$	$\therefore-6$	35．${ }^{2}$	34.0	－： 1	． 1721	$\because 1.3$	\cdots	$31 . \mathrm{K}$	85．	.1631	519
8	－ 31.15	：34．0	$\cdots 1$	． 150	里夏	34． 5	3： 3.	$\therefore 5$	，1湤	$\because 1.4$	3.1	311．9	87.4	． 1.21	$2 \times .9$
9 10	－ 34.5	－ 3 ：3．0	－4．5	． $16: 4$	30.5	： $3: 5$	$\because 1$	$\therefore \square$	． 11035	23.7	31.7	30.5	－1．3	．1：30	$\because \times 4$
10	$\begin{array}{r}\text { a } \\ +3 \\ \hline\end{array}$	3 $+\quad 3$ +1.0	4.8 -4.9	（1． 1680	2.9 +31.6	33,6 $+\cdots 3$	31．	－3． 0	1－64	－\because	：31．6	：$: 11.9$	8．	． 1.10	2，
／Neans．	＋ッ．．．	＋．， 0	－4．9	\％． 1760	＋31．6	＋32．	＋31．1	As． 5	0． 1615	＋景： 3	＋31．5	＋311．2	W6i．	0.150	＋28．11
			28．61	0.1639	＋99．51			84．06	0，1744	＋31．4．			6゚． 42	0.1790	＋31．95

Day．	AUGUST， 1872.														
	22.					23.					24.				
Hour．	D．	W．	R．H．	F． V ．	D．P．	D．	\cdots ．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
$0^{\text {b }}$	＋31．2	＋：31．0	87， 1	0.15	＋27．9	＋33．9	＋：3：3	90.7	0.1768	＋32．9	＋+9.0	＋28． 1	89.7	0， 1431	＋26．5
1	：31． 5	？ 30	－ 36	． 1421	？6， 3	33， 7	32.4	ric． 3	． 1669	31.6	צ－0	22． 2	90.5	．1：107	2\％
\because	： 11.0	：31．11	－19．	． 1.54	$\because-3$	33.7	：3，	（11． 6	． 1754	31.5	\％	24.6	29，	． 1400	？ 9
；	3 O .4	31.0	\therefore－	．1－2\％：	乐． 6	23．7	虽为	90.6	． 1754	31． 5	29．3	2×． 4	N\％	． 1451	$\because 6.9$
4	3 3	：31．	Mi． 5	． 161819	昭9．19	33.3	蟔楽	90.10	． 1751	31.5	29.6	98．7	$8!9$	． 1471	$\because 7.1$
5	33， 1	： 3.	Mi． 7	．16il！	－3． 7	33.5	：		．17－9	31.4	30.6	29．-	91， 2	，10．5	空． 4
6	；i．3． 4	： 21	－ Br	．16iti	20． 7	：in． 11	：3， 3	91.6	．17，	31.1	：33． 1	32	90． 4	． 131%	30． 2
7	：3．6	枵 4	\therefore－	． $160 \cdot 9$	30． 31	：3．9．9	滈．0	00.6	． 17162	31.2	3－1， 7	： 3.4	14.9	．1902	：$\because=$
8	： 4.4	：3．： 1	A6，	． 1719	31， 3	36.1	\％3．0		． 1×12	31.5	3.85	35.5	－21． 9	－1＞20	$\cdots 1$
9	：3． 7	：14． 3	85.11	． 1731	3×3	品， 2	：31．7	$\times!.0$	． 1×2	$\cdots 3$	$\because 2.6$	ii． 1	48.0	$\therefore 119$	3.5
10	：$: 10$	：3， 7	示是	． 1×15	楽吕	$\because 3$	34.5	京，	－1294	\cdots	411． 7	濐，	［13．11	，2：340	：3． i
11	：3． 0	［3：$\%$	2b． 7	． 17 cia	：31．1	：3\％\therefore	33.4	－0．0	． 1709	$\therefore 1.0$	38.7	：31．2	－15，9	．1， 115	：3．3
Noou．	34.7	：	77．6	．15．n！	－2．5	38.	： 5 ，： 3	713． 4	． 1734	： 3.1	38.4	：n． 3	71． 1	． 1791	：3． 1
$1{ }^{\text {b }}$	33.9	33.11	90.6	．17tis	！1，！	84.0	30.0	81.1	．1atio	33.3	：12．：3	\％－	71.7	． 1314	： 3.11
\because	34.0	33.2	91.6	．17！	33， 0	3－19	25． 7	动3	－ 1712	湤 1	2311	3i．3	－1．3	． 1791	：3i． 1
3	34.0	碞：	91.6	．17：	33.0	36．\because	：14． 4	A－2，	．175	31.1	39.11	316	7	．17：3）	：32． 0
4	S．4．5	只心	！ 1 为	1rin	：3，\times	：1i． 0	$\therefore 2.1$	81.1	． 1716	31.1	336.1	\％ 3.14	Tく．	． 1690	30．9
5	：4．6	\％ 3.6	91.8	．1－3\％	：3．3：	：2i． 1	： 2.1	81． 3	． 1711.8	31.0	2i． 7	湤， 6	－9．1	． 16 ij	\％9．
6	34.5	品：	21，α	．12：0	： 3 ，		33.6	El．	．16il：	$\because 1.1$	$\therefore 4.1$	3	－1．：	． $15 \cdots$	$\because-6$
\％	枵． 1	吅：	90． 7	－17－3	：31． 1		\％	－11． 4	－112．0	31.7	\cdots	30， 5	$\cdots 31$	． 1504	\because
$\stackrel{ }{*}$	\％：3． 9	：3．2	be 7	．Jink	31.19	：3． 1	31.9	4．${ }^{3}$	－16ife	？9．9	汭．	2！ 8	4，3．1	． 1490	－
9	$\because 4.1$	3：3．： 3	91， 7	1 10.30	31．：3	$\therefore 1$	81.19		．J6ink	$\because 2$	3110	\cdots	$\therefore 1.8$	． 1411	$\cdots 1.1$
10	澋	33．1	晾 7	（1）${ }^{1,-01}$	＋31．11	30.7 +30.6	－3．7	－！	，10－2	－$\because 0$	$\because 7$	搨：	mi，！	1204	？1．8
11	＋ 3 \％ 2	＋ 23.1	92，	1）．1－101	＋31．1	＋星仿	＋2－7	－1． 3	0.1471	＋27．1	＋ 2 \％${ }^{\text {a }}$	＋935	Stis！	11． 130 s	＋穴4
Mealls．			［2．53	0.1215	＋：31． 110			－5．54	0．17：	$+31.29$			－4．5\％	11． 1134%	＋ 59.72
Day．	AUGUST， 1872.														
	25.					26.					27.				
Hour．	D．	W．	R． H ．	F．V，	D． P ．	D．	W	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
$0{ }^{4}$	＋26．2	＋45．5	91.3	0．103．	＋ 4.1	＋25． 4	＋62．6	－9．4	0．120	＋29．9	＋：31． 4	＋30．3	Re． 4	0． 15.54	＋28．5
1	1 26．4	2－5 6	90.1	．1ヶ゙安	$\because 1.11$	25， 5	？4．α	91.1	． 1.3	\cdots	\％！19	2－4	－2， 7	． 14.54	26，${ }^{\text {a }}$
$\stackrel{1}{4}$	－ 26.9	$\because 1.1$	90． 2	． $1: 314$	？4．6	213	S－\％	91．4	，1：31：	$\because 4.4$	O． 4.5	示， 6	$\cdots \mathrm{l}$ ！	． 1501	2\％．6
3	－2．11	2i． 3	91.15	．1：34	2， 0	$\because 7.7$	26.19	90.5	． $1: 365$	25． 4	？－2	$\because 7.2$	－5．3	． 1362	25．3
4	97， 11	31	－11	． 13318	$\because 1.3$	21.1	最：$: 3$	（10．1）	．1920	93.7	99.1	$\because 2.1$	－5． 5	． $14 \div 0$	41.3
5	？	\％， 0	90．5	． 1383	25	26.4	21.11	90．	．1：31：	$\because 2.4$	30.7	\cdots	［11． 3	． 1547	$9 \times .3$
6	濐 4	31.5	911． 6	．IGiti：	：31． 1	$\because \mathrm{C}$.	\％7．0	－9．4	．1：3tio	号乐	做 1	311.9	8 B .4	． 1512	2．9
8	2099	澔 1	吅 4	．17：31	$: 11.9$	31.4	2．5	8	． 1454	27．11	33.5	吅 3	ㅂ．3	． $115 \mathrm{~F}, 5$	－31． 9
8	36.9	35． 7	8.3	，1－tre	$\because 2.4$	31.0	2！． 9	－x．	． 1531	38．11	36.10	34.5	$\cdots 1$	． $1-00$	3，3 3
9	（ SN．${ }^{\text {a }}$	： 26.5	－6i． 7	－$\because 1115$	33． 4	31，6	30.5	$\therefore 4$	．15：3	？2． 7	\cdots	33.9	Ais	． $1: 14$	31.1
10	4.36	41．．3	－119	$\because 4,3$	3－1	？ 31	：11， 4	－i，	． 164	99．4	36.9	24．！	-11.7	．15：	里足
11	4.2	41.5	－211．4	为：3－3	30． 2		3：3	－	． 161611	\％ 6	$\because 3.1$	3115	－1．6	． 19.9 －	31.4
Noon，	12.5 41.4	碞号	75.0	． 1142	311.9	3	31.9	－8，	． 16310	－9\％	3：1 4	：$: 17$	N11． 8	． 1954	3，5． 5
1^{11}	41， 4	\％	7T．	． 21.2%	ini． 4	33． 31	\％	－9．7	． 160%	30.4	3	？	$\cdots 1$	－ 1.1017	：34．5
＂	3iti． 7	：1， 3	76.7	． 1180	－319 9	：1． 5	嫁：${ }^{\text {a }}$	－7． 6	．174	31．：3	：39．9	：ix：	81.5	$\because 114$	31.10
4	3i． 9	？ 3.1	70.2	－ 1171	29，\％	34．	\％i．i． 4	－ 5	－1731）	31.4	39.4	：$\because 1$	－	－ 114	
4	3 3.7	31.9	91.7	． 17111	：31． 6	：3．3．3	\％．：．9	S． 7	．1770	31.9	31．${ }^{\text {哭 }}$	：－0	－9，	$\therefore 1.34$	36,4
5	湿吕	311.8	8	．15，	－ 24	：3．${ }^{\text {a }}$	：3．4	－s．11	－1－2：4	31.1		：－0	－3， 7	$\because 1171$	36.6
$\stackrel{1}{7}$	$\because 1.9$	：11，	E－i 4	． 15.6	$\because 1$	3－3．${ }^{3}$	：31． 0	－4．3	． 1760	3 3	40.1	$\because-11$	\cdots	－ 2117	？ 3.5
$\stackrel{7}{6}$	311.4	29．	si，${ }^{\text {a }}$	． 1471	$\because \% 0$	33．1	38.	－4．：3	． 16.1	31.7	？ 3.1	21.10	¢7．0	． 1439	23：5
Y	6！	$\stackrel{\square}{\because-1}$	81.5	． 1419	21.1	3.31	： 3.1	－11． 7	，164\％	31.1	31.0	？9．0	Ni． x	． 1450	24.4
（1）	込	2\％	81， 1	． 13×3	恕：	31.9	30.10	－13． 4	，12nin	\cdots	311．	29．11	81， 7	． 145	96
111	$2-2$ +26.5	27 +25	2－： 84 84	0． 0136	$\begin{array}{r}\text { 2，} \\ + \\ +3: 5 \\ \hline\end{array}$	310.11 +31.4	30.4 +30.3	-8.4 -5.4	（0， 1,000	＋35	＋ $\begin{array}{r}\text { 2－9 } \\ +2.8\end{array}$	＋ $\begin{array}{r}29 \\ +2.9\end{array}$	－2．0）	.1419 0.1399	$\begin{array}{r}20.0 \\ +25.9 \\ \hline\end{array}$
Muntis．															
			si． 57	0． 1616	＋5－12．i			－7．8\％	0， 1544	＋28．24			46，2：	0.1714	$+30.78$

Diy．	AUGUST， 1872.									
	28.					29.				
Hour．	D．	V．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
$0^{\text {b }}$	＋ 87.7	＋27．0	91.7	0.1305	$+25.7$	＋32．7	$+5.5$	En． 1	0.1382	＋25．3
1	97.5	2tios	91.7	．1：	2． 5	？－3 3	27.3	S－2 3	． 1368	25.4
2	$\because 7.5$	26.8	91.7	．1：17：	9．5， 5	－\％	27.2	－x． 2	． 1362	25.3
3	※x．3	27.5	91.8	． $1+1 \times$	4.2	2－3	27.3	－2．3	． 1368	95． 4
4	97.7	27.0	91.7	，120	－3．7	28． 6	27.6	－2． 4	． 1410	95.9
\square	$\because 7.9$	87	91.7	－1：3\％	－3．9	\cdots	－ 0	－2． 5	． 1413	\％tic 1
1	30，	$\cdots 91$	19：	． $1.5 \times$	27．${ }^{\circ}$	30.3	－ 1	86.8	． 1464	26.9
7	29.9	96． 1	！11． 11	． 1510	$\because 7.7$	32.3	31.0	＊ii． 5	． 150	92． $0^{\text {S }}$
α	3：3\％	： 1	＋6．3	． 167.1	29.9	30.5	\％1．8	！1． 3	． 1571	3－6
9	：3：3．9	： 2	－2， 5	． 1733	\％9．0	31.9	30.9	－9． 5	． 1611	\％${ }^{\text {1 }}$
10	36.0	：14．9	\cdots	． 1737	：3．3	33． 6	：3， 3	86.3	． 1662	17.3
11	36.7	：24．9	$\times 1$	－17933	\％． 3	\％ 3.6	\％ 3.2	85.3	． 1642	16.2
Noon．	38.7	：3．5	Mar	－$\because 0$ 年！	35．	：3． 5	32.2	67.3	.1345	24．26
$1^{\text {h }}$	41.11	：30． 11	91.11	－？	37.7	$\because 3.0$	35.8	－6． 3	． 1948	$2 \cdot 2$
2	40.7	：39．5	－3．3	－ツ－24	36.7	40.0	：\％．0	E．e． 0	． 2030	19.9
3	42． 4	41.5	织 4	－80，13	40.9	3 sm .4	：3．0	86.9	－2018	\％2 4
4	40.0	：－6	8.4	． 210%	31．${ }^{\text {a }}$	：\％． 1	35.6	$\bigcirc 7.4$	．19：35	21.7
5	40． 11	： 2	-3.1	－	3． 7	$\therefore \mathrm{BL}$	： 27.0	8i， 9	． 2018	20，4
i	： 3.9	：34．8	-3.1	． $1 \sim 2$	呺：	21：3	37.5	83.5	－ 2016	20.5
7	$3: 6$	： 2.5	－2． 4	． 17112	O！ 9	31．${ }^{\text {S }}$	301． 1	Ris． 4	． 17 ml	11.1
8	？ 4	：11．3	－2．6 6	． 163 ？	29.5	31.5	30.3	23.3	． 1.547	2x．3
9	31.7	：11．2	8.7	．154	：1．	31.0	20.9	と． 1	． 1518	27．\times
10	30.2	63， 0	811.7	． 1457	O\％	311.7	20． 1	xi． 2	．1443	11．：
11	＋30． 1	＋ $2 \times .9$	46.6	II． 1450	＋2\％．7	＋29．1	＋：7．8	－1．2	0.1368	＋ 55.4
Meins．			－ 3.17	0.1727	＋130．4．5			46， 17	0.1619	＋ 3 3．
Day．	AUGUST， 1872.									
	30.					31.				
Hour．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
0^{16}	＋26．7	＋85．8	Ex． 9	0.1 － 9	＋24．0	$+31.3$	＋30．2	$8 \times .2$	0.1552	$+2{ }^{2} 4$
1	2－5	28．0	9， 4	． $1 \because 31$	23）． 0	31.9	31.0	90.5	．16：31	29.5
4	4.6	20，	91.7	．13：	2－5． 5	31，w	31.0	91.5	． 1643	23.7
3	3．7	26，${ }^{2}$	22.4	．1：34	थ\％ 1	湤：	31.3	90.6	． 1654	29.9
4	2.7	24.9	－8． 9	． $1: 37$	¢3．${ }^{\text {c }}$	$\cdots 3$	31.8	90.7	． 1691	30.4
I	27.6	26.8	90.3	，1： 2 d	24．	：3， 5	31.5	clo． 6	． 1656	29.9
6	2\％．9	37.0	81.4	． 1316	2－5：	：$\because 8$	3， 0	91.7	． 1717	30.7
7	$2 \times .9$	2－\％	91.9	． 1412	2） 9	33， 7	32.9	91.6	． 1774	22.7
＊	311.1	处． 9	26． 7	． 1450	$\because 6$	33． 9	33.0	90.6	． 1768	21.9
9	311．	29.8	\％1：	．153is	式， 1	33.7	32．9	91.6	． 1754	29.7
111	31.5	30.1	8－3	． 1509	－7．7	33.8	33.0	91.6	．17－1	22.9
11	34.5	32.9	－1． 5	． 1650	15.5	36.4	34.9	85， 3	． 1832	1×9
Nomn．	37.7	36.3	94．6	．1：4te	$\because 1.6$	35.7	34.5	R－6． 0	.1844	20.9
$1^{\text {b }}$	36.4	34.9	8， 3	． 193%	19.0	35． 9	34.7	－\％ 1	． 18.18	21.2
\because	41.0	20．4	－5．9	$\therefore \therefore 13$	$\because 3.7$	35． 7	：14．4	$\bigcirc 0$.1819	19.9
3	\％：1．1	$3 \div 11$	4．9 9	$\because 147$	$\because 6.1$	36.7	\cdots	8 si .3	． 1×2	21.3
4	：3．6 6	32.0	8： 1	． 1607	14． 4	36.9	35． 8	81.3	． 1961	23． 5
5	： 2.5	31．2	cii． 5	． 1600	29． 0	34， 9	35.1	82.5	． 1809	17.3
${ }_{6}$	江，2	33． 3	－2．	．12．i4	$1 \therefore 6$	35． 7	34.3	E6． 0	． 1×12	19.0
7	34.7	32．0	心．6	． 16594	15.0	31.4	33.0	－	． 1698	17.3
8	30．0	30.5	8． 8.6	． 1552	1：3．9	33.4	32.7	8－4	.1716	19.7
9 10	30.5	29.1	84.7	． 1441	20．6	32.5	31.5	81． 6	． 1657	29.9
10 11	30.6 +30.7	393 +694	8.9	，141i\％	资， 1	32.7	31.9	91.7	． 1710	30.6
11	＋30．7	＋29．4	859	0．14：3	＋6\％．2	＋33．0	＋32．1	90.4	0.1705	＋20．8
Means．			86.76	0.1568	＋23．07			89.03	0.1747	＋24．08

FORCE OF YAPOR．

The following two tables contain the daily and hourly means of the force of vapor extractad from the preceding record：

Daily means of forct of rapor abservel at Poluris Bay．

1）：y of month．	1 ごさ．				105\％							
	关	$\frac{ت}{E}$						$\underset{y}{\vec{z}}$		$\stackrel{3}{\square}$	$\stackrel{\text { E }}{\#}$	
	Inches．	ruches．	Ynehers．	Inches．	Snches．	Inches．	Imoher．	Iuches．	Inches．	Inches．	Inches．	Indur．
1	11． $11: 10$	11． 12680	0．（6itom	10．1110－2	0．0144\％	19．012は	19．101594	0，024，	0．19：314	11．12304	11.17115	0．1－：317
\because	．13900		－． $160 \% 10$	． 01711		－Whers	． 10×191	－021011	． 14.558	． 15540	． 1505	． 1 198
3	．13170	． 182720	． 166800	． $11112-13$	． 00900	． $100-16$	－160？ 1	1110\％	． 04330	．15リ\％	．10，！n！	． 1×0
4	．1：3170	－1020 0^{10}	－ 115 B ¢	－10：419	． 00540	－111910	． 17410	． 11123	． 10 209	． 1 14\％	．12， 10	．1－6．．．
5	． 11331	－167－20	． 1 （190\％	． 01711	． 10 ¢5：	－11558	． 011411	．13，足！ 1	． $031-1$	． 14040	． 13,1010	． 13019
$1{ }^{1}$	－11：90	－ 12 T 20	－ 10 ioved	－（111）${ }^{\text {c }}$	，00：5－7	－ 11050.5	－ 10 at	－10301	－ 1146	． 116	． 17300	－ 1 linta
\vdots	117.51	－ 112020	－MEP1：		－101397	－016iti	． 01085	－193：310	－0，\％rior	1－？ 1.1	． 17309	． 17653
\cdots	1：12－ti	－1052 0	－ 144% ？	－ 01505	，0n：${ }^{\text {a }}$（0）	． 11045	－ 10 （2907	W－261	－0．riol	． 124215	17：39	13：93
$!$	11.534	－165ご析	． 11615	． 01601	－00iar	． 101020	． 0 （1）－	． 11.2127		． 1.5	17：10）	12－！
10	111411	（192231	．115－1：3	． 04121		－100938	． 19509	． 01114	，क6：17	． 1.5169	．17：304	17094
11	11.510	－M18－0			． 1 mraty	． 01131	． 1015	010．ご	． 0.0450	，15\％3：	17300	17904
12	（1－11：	－Whan	． 0412	． 0180	． 00304	． 01052	． $1422-21$	－ 0062	． 10.1014	． $1412 ?$	1513：20	－1178－5
1：	（1－3it）		． 02109	． 0116	（1903\％	． $014!4$	101－2：	0120゙n		． 146015	．1－0，	－16ibiti
14	11－1吅	－M1080	．11－．4	－01－13	． 111.50 .5	． 00449	． 1 m 412	． 003906		.14410	，1－9：3？	．11－2， 1
1.7	． 11660		－117\％	． 01115	－ 110	． 114 c	． 180.318	． 111 こ－11		． 162%	19102\％	．16：5\％
15	10：30		． 111 －11	． 00450	（1）ご，	．10142	． 146	． 010119	． 1195006	1：3： $1:$	－196．1	． 16%
17	｜ 12660		－112－17	． $01 \because 11$	－M1470	－nomist	－0102！	． 0116 Br	－10゙リガ	． 1.94%	． $1+140$	．1．on－！
15	［． 11610	－ 186	，11：3号	． 1804	． 011329	．03：314i		． $0111-0$	，03： 0^{1}	－15：50	．1－4， S^{7}	． 17 it 17
19	119－111		． 11.048	． 1183	， 1815	． 0149.9	． 111919	． 111115	． 10.5	． 150	．1－45	． 160
$\because 11$	｜． 1400	． 1168	． 11111%	． $01: 51$	． 1153	，1410019	11142．	． 01171	． 11015	． 11.60	．1－～＂）	．17137
$\because 1$	15010			－1915－3	－以ー4i	（0） $4: 34$	－013：3\％	． 14.0 ， 7	． 13090	14：4？	1－ッi！	13：\％9
\cdots	｜． $14: 210$	－ 13680	，v185	－1078」	－1030，	． 10112	Mn矿：		．1300h：	． $1+19$	－ 3140	． 17151
$2 ;$	－ 1101030	． 191200	，llıatir	． 00468	． 11.50	． 1110313	． 018 －11）	． 07331	．12：	．161：	－2lan	． 17315
9	1unis	－14829	． 1118 s	－ 10412	． 11095	．198：号		． 01.057	． 13.3	．151：4	－9月， 4	． 1612 C
？	（1）2－゚を	－ 117380	． 1111714	． 00424	，11153	． 1111 －11	． $0114+9$	． 0101115	，185\％	． 16291	－Sllã	． 16163
$\because 16$	11－115		． $110-5$	－ 1105	． 1195	． 01518	．13：01			－1630	． 21410	． 1.51 .9
17	－ 12110	－112\％${ }^{1}$	． 118 ma	． 100503	，1165．502	－ 110178	－以：－	－Ux：${ }^{\text {a }}$	．110－1f	． 14142	？	171：3
\because	．1412－	－161290	－ 12.4	． 100.51	－ 10104	． $11111-5$	．10：98	－ 1 ：nc－：	． 10460	． 16000	． 193.57	． 173911
\cdots	113011	，16230	． 1420 C	． 1101814	01117	19．10305	． 01984	． 04970	M以15	．160	109\％0	－ 11190
：10	1100．00	－16：${ }^{\text {a }}$	0．10．4－ti	－ $100-16$	，10：314：		103ticio？	11．0．3！	1 111：	11． $17: 10$	1－tis！	1－1．－1
$\therefore 1$		11． 1123019		0.00697	11．111－91；		$11.10: 190$		$0.111: \%$		1－14ti	1750
Meaus．	（1）． 1093.5	0． 1638	11．10：3016	10.01	0．0090	11． 100806	U． 0117	0． 0.2 ma	0．0s－0，	11． 154.	19，1－819	1）． 17110
Hours．		Mour	rly meat	s of f	ce o	（1）${ }^{\prime \prime}$	serced	at P	is B			
0^{13}	0． 10949	0．013：30	11．0：34．1	0.01624	10． 10884	4．00853	11． 110109	0． 02464	0．1203：－	0.15113	0．1－8．	11．15\％！
1	． 10949	． 165	． 0 ：ans－	． 01433	． 116 －3	1．00913	． 010100	， $10 \cdot 2115$	． 117416	． 1.8170	1－3．3）	．1．n5：
3	． 10949	． 11420	． 11361	． 1111%	（111－13：	． $10 \mathrm{~m} / 29$.01006	． 112311	． $17+0$	． 15054	1－8，	15－9！
3	． 10949	． 1815	． $0: 5051$	． 014.9	－ 010 －${ }^{\text {a }}$	．01011：	． 104113	． 02410	． 1175011	15004	1－70．	． $11: 3$
＋	－Lu919	－19000	，13：3＊＊	． 04490	，110－？ 1	． 00969	． m 1913	－Wと619	． 10 －	． 15366	1－－ 112	
is	－ 110949	． 18270	． 133411	． 01479		． 1048	． 0 mint	－120：37	． $11-198$	． 15504	． 12781	． $1714: \%$
1	． 10949	－ 11650	． 13345	－010\％	． $010-70$	． $11898+16$	． 108176	We－118		－1．5103	－1906\％	． 17153
－	11015 .111941	11720） .11500	（13149 （1：34，	． 01118	$.001-83:$.00919	（111838	． 0101009	－1meter	－0－（63）	． 1.5195	.19149 $.194 \% 6$	17132 .17154 1864
9	－104！	－Mra ${ }^{\text {a }}$	． 13,318	． 01387	，1412－2	．mence	． 01195	－ 133099	． 09143	． 1517	1－4が	． 1710
10	． 119949	． 112031	． $11: 40311$	． 01344	． 10183	． 00917	． 01.315	． $031-2$	． 09249	．15335	． 19995	1 以 ¢ \％
11	－ 11949	．mito	．113：36	． 01346	（11－9 1 \％	． 1116	． 01193	．0atis	． 09414	． 15103	．191－0	． 172
Noon．	.10949	． 06720	－1032，	． 01348	－ 101021	． 100854	． 01223	． $032!14$	． 09368	－1205	． 1×11	．171！
1^{14}	． 10949	． 1178	－0，302	． 01313	－ 110 y	． 11175	．01833	． 03169	． 10.50 \％	． $1.5 \pm$	1－473	．1－115
\because	． 11940	－115720	． 13 BW	． 01304	． 0004	． 1110112	．0114：	． 03166	． 0937	． 1.51	120，14	． 1011 F
\because	． 111×49	－115－9110	． 13	$.01213$	． 00095	－101303	． 01185	． 108014	，12061	． 1018	． $1-945$	． 1×115
4	． 11153	． 11050	． 11312	． 012120	，1132－5	－ 010767	． 01144	－11302	． 11016	． 15054	． $1 \sim-111$	． 11507
\square	－11949		，030\％	．01203	． 00936	． 194011	． 010108	－Werat	－11051	－100	－＜－\％	．17， 17
$1 ;$	11943 -1124	． 1420		.01300 010304		－（10）2，	．01029	－（rexal	－12－2．	－ 1.56	，12libl	． 1768 m
\％	（10\％4：		ans	． 11204	． 1111902	－ 11518	． 010104			－10．69	1－10， 1	． 16040
$!$	－1119419	－16t\％	－uania，	－ 01023	－11934	－190－4	01054		－11－1ご	－1506\％	1－403	． 16331
10	． 1049	，1ti\％${ }^{\text {a }}$	． 1 ：30：	． 01313	．mben	． 00249	． 01619		－（0－011	．1531	1－314	1617：
11	0．106L	10．062：20	0.035 .55	0．01：50	0． 010915	0． 1023	11．11046	（10．12509	0.07576	110．13301	111531	1．1541\％
Means．	0.10955	0.06720	0.03500	0.01377	0.00904	0． 01066	13． 01076	0．02841：	（1，0） 514	0． 1545	11． 1×-16	0.17110

8 н о

ANNUAL FLUOTUATION OF THE FORCE OF VAPOR AT POLARIS BAY.

The following table contains the means of the force of rapor of the actual months, and also the means of the equi-intervals:

Accomlins to the preceding table the force of vapor $i s$ above the annual mon during May, June, July, Angust, and sutember, while it is below the same during the seven remaining months. The maximum force of rapor was observed in July, the minimum in February, the range being 0.1796 inches.

The observed and computid ralues compare as follows:

Months.	Ohserved.	Computed.	$\begin{gathered} \text { Difi-peree, } \\ 0 .-C . \end{gathered}$
	Inches.	Inches.	Indus.
Itmmary	0.11128	1. $100-7$	+ 11.0001
Prbamer	11. 111-6	0.10083	+ 13, 10003
Marmb	0. mencis	0.0100	-0.0002
druil.	0.11こ29	1.122\%	+ 0.110\%
11:13-	0.0865	10. 11-2, ${ }^{\text {a }}$	+ 0.11009
Jane	(1. 15.54	0. 1560	- O. 1110\%
July	1). 1-\%	11. 191\%	- 0. nirer
Alymst	(1).17199	0. 166;	+ 0.01046
Suptembel	(1).1078	1). 1125	- 0.0047
Ortober	(1. 111) ${ }^{\text {a }}$ 3	11. 10:3i.:	+ 0.1030
Nowembrr	0. 11:47	0. 10:4.:	+ 11.100%
December	9. 0137	0. 0151	-0.0014
Spring	0.0414	0.0410	$+0.000 \pm$
Summer	0.1716	11. 1212	+ 11.0001.
Autumn	0. 1780:	0, 15は	- 0.1001
Hinter	0.1110:3	0.1107	-0.1404
Yeirr.	$0.178: 14$	0.0334	± 0.0000
Probable error of year $= \pm 0.0002$.			

The analytical elements and the expression used in obtaining the above values are as follows:

The annual fluctuation of the force of rapor is represented graphicaly on the plate accompanying the diurnal fluctuation during each of the different months given hereafter. In general the computed values agree closely with those observel; the greatest difference being fonnd in September, amounting to 0.0047 inch.

An examination of the diagram mentionerl, or of the above table, demonstrates that the annal curve follows the same law as made ont for lower latitudes. The force of vapor is least in Febrnary, after which time it begins to increase, reaching its maximum in July; then the corre dresemds again in a similar manner to that of the temperature.

DIURNAL FLUUTUATION OF THE FOHCE OF YAPOR AT POLARIS BAY.

The elements of the analytical expression for the diumal fluctuation of the force of vapor wer found as follows :

n	a_{n}	b_{n}	B_{n}	$C^{\prime}{ }_{16}$
				$\bigcirc 11$
1	- 0.110319\%	- 0. 1101008	+ 0.003303	25980
\because	- 0.10011 .95	- 1.0000103	+0.000:3	2472144
3	+ 0.000: $12:$	- 0.000105	f 11. $31010 \cdot \mathrm{~s}$	11617 :

The following table gives the vahues computed by means of the abore expression and also for comparison the observed means:

Time.	Oluserved.	Computed.	Difference, U.-C.	Time.	Observed.	Computed.	Sifferoner, 0.-C.
	Incher.	Inches.	Inches.		Inhes.	Inches.	Inchre.
0^{14}	0.0606	0.0809	-0.0003	0 H	0. प̇5\%	0.0754	-0.01001
1	.0704	. 1781 cos	-. 110104	1	. 15.5	. 11750	+.00101
$\stackrel{1}{8}$. 11711	. 1710	$\pm .0000$	${ }^{2}$. 11550	. 11.010	+. $01010: 3$
: 3	. 117011	. 1215	F.000.s	3	.10-5	. 17 - 20	+. 110 ml ?
4	. 1173	1180ッ	+.11001	4	.1748	. $674!$	-. 10041
5	- 1180	. 117011	-. 11100:	5	. 11541	. 0743	-. 110101%
13	117:3	.118:	-. 11701	18	. 02.35	. 117.3ti	+ 116013
4	. 074.3	. 11849	$\pm .00100$	\%	(15)	-05-3!	- . 17003
r	. 17519	. 11711 i	F.01011	8	11200	, 11:	-. Here4
9	. 11547	.154!	-. 017105	9	- $12 \cdot 0$. $42 \cdot 010$	$\pm .18018$
10	, 105	. 117.01	+ . H (10.\%	10	. 11500	. 117	+. 11010
11	0.074	0.0751	-. 0003	11	0.0509	0.0712	-0.0003

The abore valnes thrown into a curve result in the anmexed diagram.

It will be noticed that the curve passes throngh the maximma at about $12_{2}^{1 \mathrm{~h}} \mathrm{p}$. m ., and throngh the minimum at about $1^{14} \mathrm{a} . \mathrm{m}$. The computed values agree very closely with the observed ones, the difference being only shown in the fourth decimal, exceeding iu no instance $0^{\prime \prime} .0005$.

If we compare the thermal curve, exhibiting the diamal fluctuation with the one in furstion: we shall see that their maxima and minima coincide tolluably well in regard to time, the computed maximum of temperatnre being reached at abont $11^{\text {h }}$ a. m., while the minimum occurs at abont 1^{h} a. m. It will be remembered that the observed thermal curve passes through the maximm at $\mathbf{1}^{\text {n }}$ p. m., and throngl the minimom at miduight; showing evidently a more matural curve than the theoretical one.

Haring discnssed the dimmal flactuation of the force of vapor during the year, it will be of some interest to trace the march of the curve during the different seasons. As each month was treated amalytically, we thonght ourselves justified in deriving the means for the seasons from the computed bourly means of the respective months without computing the values for each season, which would have involred too moli labor and would hardly have changed the fimal results more than hy four units in the fourth decimal. The curves thus obtained are represented in comection with those illnstrating the march of the relative hamidity given hereafter in the discussion of this latter sulyject.

In spring the curve shows a very regular conse. The maximum, as derived from the computed monthly values, occurs at noon, white the minimm is reached at about $1 \frac{12}{12} \mathrm{a} . \mathrm{m}$. The observed maximm occurs at 11^{11} a. m., and the minimum at midnight. The computed range is 0 ".0087 and that observed $0^{\prime \prime} .0105$. According to the corresponding thermal curve both the observed and computed maxima of temperature occur at noon, the computed minimum at $y^{\prime \prime}$ a. m., and the corresponding value, as observed, an hour earlier.

The summer curve is less regular than that of spring, as it shows two maxima, one of which is evidentally abormal. The absolute maximnm (observed and compoted) occurs at $2^{\text {h }} \mathrm{p}$. m. and the sccondary maximum at $8^{\mathrm{k}} \mathrm{a}$. m. Both observed and computed minima are reached at 1^{11} a. m. The observed and computed ranges are $0^{\prime \prime} .0114$ and $0^{n} .0133$, respectively. Λ comparison of the hygronetrical and the thermal curves shows that the maximnm of temperature occurs two hours before the maximum of the force of vapor is reached, while the minima coincide rery nearly in regard to time.

Daring autumn the computed curve passes through the absolute maximum at $10^{\mathrm{n}} \mathrm{p}$. m., white the absolute minimum is reached betreen 11^{h} a. m. and noon. The differences between the observed and compnted values during this season and the one following are not as great as they appear in the diagrans referred to. Ther actually never exceed seven units in the fourth decimal, anl only appear so great on account of the large scale nsed in projecting the respective curves. The absolnte maxima and minima, as computed, do not coincide in regard to time with those derived from the observed values; the olsserred curve passing the absolnte maximum at 7^{h} a.m., and the absolnte minimm being reached at $11^{11} \mathrm{p}$. m. The considerable difference in time between the occurrence of the actual maximm and the theoretical maximum seems to be due merely to the fart that the difference in the tension of vapor between the absolute computell maximum and the principal relative maximm, which coincides in regard to time with the one obserred, amounts only to one unit in the fourth decimal. The computed thermal curve for this season cahibits tmo maxima, necirring at $4^{\prime \prime}$ a. m. and $4^{11} 1$. m. (the latter being the absolute maximum), the corresponding minima being reached at $10^{1 /} \mathrm{a} . \mathrm{m}$. and $10^{\prime \prime} \mathrm{p}$. m., respectively. In general, the thermal and bygrometrical curres ayre tolerably well. The range of the force of rapor, as observed, is 0 . 001 , while the range derived from the computed values is $0^{i n} .0005$ only.

Owing to the absence of the sun duing the greater portion of winter, we can scarcely expect a regular curve for this season, especially as our observations extend over bat a comparatively short periol of time. It will be seen that neither the time of the absolute maximum nor that of the absolate minimum is well established. The highest comphted tension of rapor occurring during the d_{15} is $0^{m} .0111$, it being reached at 3^{h} and $5^{\mathrm{h}} \mathrm{a}$. m. ; the lowest is $0^{\mathrm{n}} .0100$, to be found during three consecutive hours, riz, at 3^{h}, 4^{h}, and $5^{3 \mathrm{~h}} \mathrm{p} . \mathrm{m}$. The curre, derived from the observed means, passes throngh the absolute maximum of $0^{\prime \prime} .0114$ at midnight, and throngh the absolute minimum of $0^{\prime \prime} .0099$ at $\mathrm{i}^{\prime \prime} \mathrm{p} . \mathrm{m}$. It will be remembered that the thermal curve tor this season is also rather irregular,
but still there exists a certain coincidence between the maxima and minima of the temperature and those of the force of rapor；the thermal corve passing through the absolute maximum at mid－ night and throngh the absolnte minimnm at $6^{1 h} p$ ．m．The range of the tension of rapor as ob－ served is $0^{\prime \prime} .0015$ ，while that derired from the computed means is $0 " .000 \pm$ less．We shall see，here－ after，that the curves of Polaris Honse and of this station show a great resemblance daring the season in question．

The ralues nsed in constructing the curres for the seasons are as follows ：

Time．	Spring．			Sunmer．			Autumn．			Winter．		
	$\begin{aligned} & \ddot{y} \\ & = \\ & \vdots \\ & = \end{aligned}$	－	$\begin{aligned} & \text { E } \\ & =3 \\ & =2 \end{aligned}$	$\begin{aligned} & E \\ & E \\ & E \\ & E \\ & E \end{aligned}$			鸰	恐			空	
0^{4}	0.0 15～	$0 . \text { unit }$	-0.11112	$0.11 ; 4!$	$0.16 .37$	-0.0008	0.0714	0.0707	-0.0003	0.0114	0.0107	-0.0007
1	． 0361	．11：	． 111111	． 1639	． 16443	－．0004	． 0711	． 11506	＋．0005	． 0105	． 0109	＋．0004
\because	． a abia	． 03370	． 111105	． 118.50	． 164%	＋． 11002	． 07111	． 117116	． 0006	． 0111	.0107	－． 0004
3	． $0: 31$	，0334	，（1）！日：	． 1690	．16\％	． $1101{ }^{-}$	． 17117	． 0700	＋． 0001	． 0111	． 0111	$\pm .0000$
4	－ $1: 3-0$	．0： 201	． 0001	.1606	． 1695	． 11101	． 0705	． 11707	－． 0002	． 0109	． 0109	士．0000
5	． $1: 5$	． 113 B	－．0004	． 1716	． 1718	＋． 0001	.0704	． 0706	． 00002	． 0110	． 0111	＋．0001
1	． 11.4019	． 0405	＋．0004	． 17×3	－17ご	－． 010012	． 0805	． 0807	－． 0100%	.0107	． 0108	．00c1
7	． 11414	.1117	－． 116101	． $17: 34$.1749	－． 11010	． 0714	． 10707	+ ．000\％	． 010	． 0109	＋．0001
\therefore	． 1140	． $14: 30$	＋．（1）107\％	． 1.51	.1744	t．0．100：	－ 070.7	． 0706	－． 00001	． 0108	． 0107	－． 0001
9	． 1144	． $044:$.0006	．150	．174	－．0020	． 0 Onf	． 115	＋．0001	． 0107	． 0106	－． 0001
10	． 14.5	． 0449	． 0006	． $175!$.1744	＋．0015	． 17.10	． 0804	－． 0001	． 0104	． 0105	＋．0001
11	． 115.51	． 04.3	． 01710	．17304	.174	－． 11110	． $0_{6} 10$	． 15009	． 0001	． 0103	． 0102	－． 0001
Nion．	． 11.10%	$.14 \%$	． m （1mi	． 1743	． 17 －ir	－． 111107	． V （1）2	． 0510	． 0001	． 0104	． 0103	－． 0001
1	． 114103	． 04.4	． 10104%	． 1713	．17．0\％	＋．1100\％	－U620	． 0704	－． 0005	． 0101	． 0102	＋．0001
2	． 114 Sa	． 1450	． 01111.5	． 17%	． 17.58	． 110115	．リフリr	． 11505	＋．0003	． 0100	． 0103	＋．0003
3	． 114.4	． 0443	． 1101114	． 1761	．17．．n	＋．Onow	． 07110	． 12015	－． 00001	． 0102	.0100	－．000：
4	． 0445	， 14.3 \％	． 0410	． 170.5	．120，1	－． 0015	． 171%	.0706	＋． 0006	． 0101	.0100	． 0001
F	． $04 \div 6$	． 04.2	． c （003：	． $17: 3:$	． 17%	＋．01015	－（0ion	． 1516	－． 00000	． 0101	． 0100	－． 0001
6	． 11.41%	． 0416	$1+.0001$	17：3	.1715	＋．0017	． 0707	． 1207	上．0000	． 0100	． 0103	$+.0003$
7	． 1140 ）	． $0 ¢ 0$ ¢s	－． 00115	． 360	． 1710	－．．0014	． 17.15	． 070	$\pm .0000$	． 0094	． 0101	$+.0002$
－	． $10: 31$	．00： 0	．リ®1）	． 10%	． 168	． 0003	． 0712	． 0706	$1+.0002$	． 0103	． 0101	－． 0002
9	． $0 \cdot 3 \cdot 10$	． 0393	－． 00001	．16isti	． 1601	－． 01615	． 1711	.0707	＋．．0004	． 0101	． 0102	＋．0001
10	（13－！	． $0: 5-7$	＋．0002	115－	． $160{ }^{\circ}$	＋． 0011	． 170	． 0708	士．0000	． 0104	． 0103	－． 00001
11	（0，0：300	$0.0: 3$	－0．0003	0.1616	0.1660	± 0.0000	0.0697	0.0707	－0．0010	0.0100	0.0104	$+0.0004$
M．© D	0.0413	0.0413	± 0.11000	0.1713	0.1713	± 0.0000	0． 1 －10	0.07010	10.0000	0.0105	0.010 .5	土0．0000

Nute．－It may be repeated that the columns headed＂Computed，＂are not actually computed，but are merely the means of the computed ralues of the different mouths constituting the seasons．

Before proceeding to the discussion of the diurnal fluctuation daring the different months，we shall give tle elements and analytical expressions on which the computations are based．

March.

n	a_{n}	b_{n}	I_{n}	C^{\prime}
				- 111
1	- 0.000x?	- 0. mencila	+ 0.10110 m	?SP 5 518
$\stackrel{6}{9}$	+ 11.000738	+ 0.0100059	+ 0.0000511	
\because	+ 0.000091	$+0.000199$	+ $0.000: 19$!1 : 36

April.

n	a_{n}	$b^{\prime \prime}$	I',	${ }^{\prime \prime}{ }^{\prime}$
				- " 1
1	- 11.018 Br	-0.001516	$+0.101-60$:45 5\% 14
\because	+ 0.01065	- 10. 0100398	+ 0.0m018s	115:304
3	+0.000161	+ 0.000\%21	$+0.000304$	$2 \begin{array}{ll}2 . & 37\end{array}$

 $x=15-30^{-2}, \ldots$.

ITay.

n	${ }^{\prime}$	b_{n}	P_{n}	C
				- 1/
1	- 0. 010 mag	-0.003773	+ 0.009616	9405035
$\stackrel{ }{ }$	+ 0.000 mla	- 0. 00063ia	+ 0. Mnnizo	$13: 3$
3	+ 0.00011%	- 0.0064 11	+ 0.00045	16i5 4 50

June.

n	a_{n}	b_{n}	B_{n}	O_{4}
				- 1 "
1	- 0.000600	-0.0010.0.	+ 11.001654	201) 5: 14
2	- 11.11104 c	+ 0. 010002 c	+ 13.00101	$3 \mathrm{~B}=1641$
:	+ 0.000es y_{5}	- 0.001:5	+ 0.001505	$14446: 3$

 $x=1 \pi,:(t)^{\prime}, \ldots$

July.

August．

＊	a_{n}	b_{n}	B_{n}	C_{n}
				－＇＂
1	－ 0.01016	－0．meste	＋0．011084	管 4536
\because		－0．01mone	＋ 0.102024	24×4512
3	＋0．10以思	＋0．	＋ 0.000202	893037

 $x=15,30, \ldots$.

September．

n	a_{n}	b_{b}	B_{u}	C_{a}
				－1 1．
1	＋0．0004\％	＋0．103013！	$+0.000 .433$	99： 57 14
\because	－11，minas	－0．11010169	＋0． $10010: 30$	wry me
3	＋ $1.0010: 54$	＋ 0.1000130	＋ 0.1000336	704543

 $x=15,30-\ldots$

Norember．

n	${ }^{\prime \prime}$	b_{n}	B_{n}	C_{1}
				－1／
1	＋ 0.14 Hanio	－O．cinnomia	$+0.000465$	941710
\because	＋ 0.0 Mon： 1	－ 19.1001014	＋0． 10700 ar	1914091
3	＋0．1000026	＋0．01008	＋0．00002	$404 ? 5!$

December．

The values computed by means of the preceding expressions compare as follows with those actualls obsersed．October was omitted because it had to be interpolated from September and November．

Time．	May．			June．			July．			August．		
		菏	$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		淢			$\stackrel{\text { is }}{\stackrel{\text { in }}{\pi}}$		它		\％
	In	Inches．	Inches．	0	s．	Inches．	s．	Inches．	Inch +0.00	s．	Inches．	s，
1	0.0727 .0742	0.0052 .0747	． 0005	0.1 .11 .1517	O． .1540 .1514	－+ ＋．0003		0.18 .1	＋0．0006	0.1576	0．1500	$\pm{ }_{-0.0106}$
2	． 0748	（1751	－． 0003	． 125	． 1507	． 0018	1－4if	，14．7	$+.0004$	． 1579	． 1579	$\pm .0000$
3	． 0777	． 17867	＋． 0010	． 1550	． 1519	． 00131	1－81	． 1×14	． 0007	． 1648	． 1633	＋．0015
4	． 0707	． 0790	－． 0003	． 1537	． 1535	． 11102	1－8）	，1－9\％	＋． 0002	． 1670	． 1671	－． 0001
5	． 11820	． 0799	＋． 0021	． 1557	． $1.4 \pm$	＋．00199	1－7	．1＊0．3	－． 0016	． 1714	． 1704	$+.0010$
6	． 0848	． 0844	$-.0004$	． 1547	． 1547	$\pm .0000$	． 1906	． 1900	－． 0002	． 1715	． 1720	－． 0005
7	． 0863	． 0867	． 0004	． 1519	． 1.942	－． 0129	． 1915	． 1915	$\pm .0000$	． 17617	． 1763	$+.0004$
8	． 10×9	． 0×41	－． 0008	． 1544	． 1551	． 0007	$1: 144$	． 1918	＋．0026	． 1765	． 1777	－． 0012
9	． 0914	． 0909	$+.0005$	． $1.17 \times$	． 1543	－． 0025	$1{ }^{-19}$	． 1916	－． 0017	． 1768	． 1785	－． 0017
10	． 0925	． 0923	－． 0001	． 1.154	． 1535	土． 0000	． 1109	． 1910	－． 0001	． 1797	． 1788	＋． 0009
11	． 0941	． 0946	． 0005	． 1510	． 1534	－． 01024	1918	． 1901	＋． 0010	． 1773	． 1791	－． 0018
Noon．	． 0937	． 0945	． 0008	．1，5i3	1，53	＋． 0010	．1－94	． 1905	－． 0011	． 1772	． 1793	－． 0021
$1^{\text {h }}$	． 0950	． 0955	． 0005	． 1579	． 1566	． 0013	1×17	． 1905	－． 0008	． 1812	． 1797	＋． 0015
，	． 0933	． 0938	－． 0005	． 15.59	． 1567	． 10.10	． 1930	． 1903	＋．0027	． 180	． 1200	． 0004
3	． 0926	． 0923	＋． 0003	． 1515	． 1571	＋． 11021	．104	． 1×94	－． 0003	． 1806	． 1296	＋． 0010
4	． 0918	－0904	＋． 0014	． 1555	． 1575	－． 0020	． 1×00	． 1889	． 0009	． 1721	． 1785	－． 0014
5	． 11.57	－ 0877	$\pm .0000$	． 1.153	－ 1554	＋． 0019	． 1866	． 1877	－． 0011	． 1776	． 1765	＋． 00012
${ }_{7}^{6}$	． 0889	． 0884	－． 00005	－ 15.15	． 1544	＋．0018	． 14.4	． 1×65	＋．0003	． 17694	． 1737	＋．0029
¢	． 0810	－0\％17	－． 0007	\cdots	． 1529	－mu0	－18t？	109	＋．0010	． 16.17	． 1663	． 0016
9	． 0812	． 0803	＋．0009	． 1557	． 1563	－． 0006	．1030	． 1852	－．0020	． 1637	1699	＋． 0008
10	－ 0.0802	${ }^{.0783}$	． 0019	157	1550	＋．103	． $1 \times \sim 1$	． 15.51	$\pm .0000$	1607	1600	0007
	0．0778	0，0772	＋0．0006	0.1535	0.1548	-0.0013	0.1553	0.1851	＋0．0002	0.1592	0.1582	＋0．0010
M．\＆D．	0.08509	0.08503	± 0.0000	0.15455	0.1545	± 0.0000	0．18819	U． 188	± 0.0000	0.17110	0.1711	± 0.0000

Time.	September.			November.			December.		
	Observed.	Computed.	$\begin{aligned} & \text { Difference, } \\ & \text { O.-C. } \end{aligned}$	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$0^{\text {b }}$	0.1095	0.1092	+0.0003	0.0345	0.0358	-0.0013	0.0168	0.0145	+0.00:
1	. 1095	. 1090	. 0005	. 0367	. 0357	$+.0010$. 0143	. 0148	$-.0005$
2	. 1095	. 1090	. 0005	. 03365	. 0356	. 0009	. 014 -	. 0144	+.0004
3	. 1095	. 1092	. 0003	. $0: 354$. 0353	+.0001	. 0146	. 0151	. 01000
4	. 1095	. 1094	+.0001	. 0349	. 0351	-. 0000	. 0149	. 0146	+.0003
5	. 1095	. 1098	-. 0003	. 0344	. 03448	-.0004	. 014 s	. 0149	-. 0001
6	. 1095	. 1103	-.001188	. 0348	. 0347	$+.0001$. 0151	. 0141	+. 00010
7	. 1122	. 1105	+.0017	. 0347	. 0345	. 0002	. 0147	. 0145	+.0002
8	. 1095	-. 1103	-. 0008	. 0346	. 0343	. 00003	. 0140	. $014{ }^{\circ}$	-. 0000
?	. 1095	. 1100	-.0005	. 0351	. 0343	$\pm .0008$. 0138	. 0140	. 00002
10	. 1095	. 1096	-. 0001	. 0343	. 0343	$\pm .0000$. 0134	.0133	-. 0004
11	. 1095	. 1094	$+.0001$	- 1335	-0343	-. 0005	.0135	. 0135	$\pm .0000$
Noun.	. 1095	. 1094	+.0001	. 0339	- 0: 42	. 00003	. 0135	. 0134	+. 0001
$1^{\text {b }}$	1095	. 1096	-. 0001	. 0330	. 0343	-. 0013	. $01: 3$. 0132	+.0002
$\stackrel{2}{2}$. 1095	. 1100	. 00005	. $0: 35$. 0344	$+.0014$. 0130	. 0138	-. 0000 c
3	. 1095	. 1103	-.000x	. 0351	. 0345	. 0006	. 0126	. 0130	-. 0004
4	. 1115	. 1102	+.0013	. $0: 344 \times$. 0345	$+.0003$. 0130	. 0130	$\pm .0000$
5	. 1095	. 1100	-. 0005	. 03303	. 03445	-. 00012	. 0167	. $01 \% 9$	二. 00002
6	. 1095	. 1097	-. 0002	. 0354	. 0353	+.0001	.01:30	. 0137	-. 0007
7	. 1095	. 1094	+.0001	. 0354	. 0354	$\pm .0000$. 0130	.0132	+.000\%
"	. 1095	. 1091	. 0004	- 03: ${ }^{\text {a }}$. 0356	+ . Onf	. 0132	. $010 \times$	+.0014
9	. 1095	. 1089	. 0006	-01367	. 0359	+.00102	. 0128	. 0131	-. 0005
10	. 1095	. 1092	+.0003	. 0357	. 0359	-.0002	. 0131	. 0134	. 0003
11	0.1062	0.1079	-0.0017	0.0.356	0.0370	-0.0014	0.0120	0.0139	-0.0013
M. \& D.	0.10955	0.10955	± 0.0000	0.0350	0.0380	± 0.0000	0.01:37	0.01377	± 0.0000

In January both the observed and computed absolnte maxima occur at $\delta^{\mathrm{h}} \mathrm{p}$. m., while the computed absolute minimum is reached at 2^{h} a. m .; the corresponding obser ved valne occurring one honr earlier. The computed maximnm and minimam of temperature occor at 5^{11} a. m., and at midnight, respectively; the observed maximum coinciding in regard to time with the one computed and the time of the observed minimum being 2^{h} p. m. Besides the absolute maximum and minimum the hygrometrical curve shows three other relative maxima and as many relative minima similarly to the thermal curve. The range as derived from the compnterl valnes is $0^{\text {in }} .0011$, while the one deduced from the observed values is $0^{\mathrm{m}} .0029$.

In February both the observed and computed maxima of $0^{\text {m }} .0100$ and $0^{\text {in }} .0097$ occur at $3^{\text {h }}$ a. m., while the absolute computed and observed minima of $0^{\text {in }} .0078$ and $0^{\text {in }} .0073$ are reached at $6^{\mathrm{L}} \mathrm{p}$. m. The minimum of the force of vapor coincides in regard to time with that of the thermal curve, while the maximum of the latter occurs three hours earlier. The observed and computed ranges are $0^{\text {in }} .0027$ and $0^{\text {in }} .0019$ respectively.

In March the computed maximum of $0^{\text {in }} .0122$ is reached at 11^{h} a. m., while the corresponding observed value of $0^{\text {in }} .0123$ occurs 2 hours later. The computed and observed minima of $0^{\mathrm{in}} .0091$ and $0^{\mathrm{i}} .0089$, respectively, are both reached at $5^{\mathrm{h}} \mathrm{a}$. m . The computed range is $0^{\text {in }} .0031$, being $0^{\text {in }} .0007$ greater than the observed value. There is a reasonable coincidence between the maximum and minimum of force of vapor and the maximum and minimum of temperature. Evidently the thermal minimum is influenced by the minimum of the force of vapor, which latter occurs one honr before the former.

In April the curve assumes a more regular character, being similar in form to the one representing the diurnal fluctuation during spring. The observed maximum occurs at noon, while the one computed is reached two hours earlier. The observed and computed minima oceur at 2^{h} and 3^{h} a. m., respectively, and the observed and computed ranges are $0^{\mathrm{in}} .0090$ and $0^{\mathrm{in}} .0045$, respectively. The observed minima of temperature and force of vapor correspond in regard to time, the same being the case with the maxima.

In May both the observed and computed masima are reached at 1^{h} p. w.; the computed minimum occurs at 1^{b} a. m., and the one observed an hour earlier. Both the observed and computed maxima of temperature are reached at $1^{\mathrm{b}} \mathrm{p} . \mathrm{m}$., and the minima at midnight. The range, as derived from the computed values, is $0^{\mathrm{i}} .0208$, while that derived from the observed values is $0^{\text {in }} .0123 \mathrm{ouly}$.

The curve of June is less regular than we might expect. The absolute computed maximum occurs at 4^{h} p. m., while the corresponding observed value is reached an hour earlier. The absolute 9 н
computed minimum occurs at 2^{h} a．m．，and the corresponding observed valne at $11^{\mathrm{h}} \mathrm{a}$ ．m．，which is eridently abormat．The compnted thermal curve for this month passes the absolute maximum at 11^{h} a．m．，and the absolate minimum at $1^{\mathrm{h}} \mathrm{a}, \mathrm{m}$ ．，while the observed maximam is reached an hour sonnr and the minimum an hour later thau the computed ralues．

In July both the observed and computed absolute maxima occur at．$\delta^{\text {b }}$ a．m．，the computed abso－ lute minimmon at $1^{\text {ha }} \mathrm{a} . \mathrm{m}$ ，while the corresponding observed value is reached four hours earlier． At first sinht it might seem that the analytical expression for the month in question was not well chosen，but further examimation proves that a secoudary observed miomum coincides with the absolute one computerl．The computed and observed ranges are $0^{\mathrm{in}} .0075$ and $0^{\mathrm{m} .0112}$ respectively． The correspouding thermal curve passes through the maximum at $11^{\mathrm{h}} \mathrm{a}$ ．m．，and through the mini－ mum at 1^{h} a．m．

In Augnst both the observed and compated maxima occur at $2^{\mathrm{h}} \mathrm{p}$ ．m．，while the minima are reached at $1^{14} \mathrm{a} . \mathrm{m}$ ．The ranges as computed and observed are $0^{\mathrm{in}} .0229$ and $0^{\mathrm{in}} .0243$ ，respectively． The unammm force of vapor is reached one hour before the occurrence of the maximum of tempera－ ture，while the thermal minimom，as computed，precedes the minimum of force of rapor by two hours，coinciding，however，with the corresponding observed value．

In September the observed and computed maxima are reached at $7^{\mathrm{h}} \mathrm{a}$ ．m．，while the minima oc－ cur at $11^{\mathrm{h}} \mathrm{p}$ ． m ．The computed and observed ranges are $0^{\mathrm{in}} .0026$ and $0^{\mathrm{in}} .0060$ ，respectively．The thermal curve for this month passes through the maximum at $4^{\mathrm{h}} \mathrm{p}, \mathrm{m}$ ，and seven hours later through the minimam．

As meutioned before，October was omitted in the analytical treatment because a great number of the observations bad to be interpolatet？

In November the computed and observed minima occur at 11^{b} a．m．，and noon respectively， while the computed maximum is reached at $11^{\mathrm{h}} \mathrm{p} . \mathrm{m}$ ，and the corresponding observed value two honrs later．The corresponding therat curve passes the maximum at $1 \overline{1^{\mathrm{h}}} \mathrm{p} . \mathrm{m}$ ．，and the minimum at 7^{4} a．m．，the computed minimum occurring two hours earlier．

In December the computed and observed maxima occur at 3^{h} a．m．，and midnight，respectively， aud the corresponding winima at 7^{h} and $9^{\mathrm{h}} \mathrm{p}$ ．m．，respectively．The maximnm temperature，as computed，is reached at milnight，and the corresponding observed value five hours later．Both the obsered and computed minima occur at noon．

The following table，dericed directly from the table headed＂Monthly means，＂contains the cor－ rection to be applied to any hourly observation taken at or near Polaris Bay to obtain the mean force of vapor of the day．
Corrections to be applied to any hourly observation taken at Polaris Bay to obtain the mean force of vapor of the day．

Time．	November．	Enermber．	Jannary．	Febinary．	March．	April．	May．	June．	July．	Angust．
0^{14}	$\begin{gathered} \text { Imehes. } \\ +01.00014! \end{gathered}$	$\begin{array}{r} \text { Inchus } \\ -0.14 r: 10 \end{array}$	$\begin{array}{r} \text { Inrlus. } \\ +0.116050 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +0.1 \text { n111:) } \end{array}$	$\begin{gathered} \text { Imches. } \\ +0.10047 \end{gathered}$	Inches． $+0.003: 39$	$\begin{array}{r} \text { Inches. } \\ +0.01244 \end{array}$	Inches． $+0,00134:$	$\begin{gathered} \text { Inches: } \\ +0.00249 \end{gathered}$	$\begin{gathered} \text { Inches. } \\ +0.01311 \end{gathered}$
1	－．0018x	． 00015	． 000 ¢1	－． 011148	． 00067	． 00308	． 01093	＋002－5	． 00469	． 01457
2	． 111151	． 00101	． 06041	． 0001 1；	． 00070	． 100410	． $11108!$	＋．010201	． 1105	． 01319
3	1 －． 010411	． 10	． 1010 \％	． 0012 m	． 00113	． $110 \cdot 3027$	． 00739	－． 00049	． 00114	． 00663
4	$1+.00011$	－11911：	－ $11110-3$	． 100110%	． $0016{ }^{3}$	． 1101×4	． 110644	＋．Mn6－！	． 00017	＋． 00410
5	（0100，0	．00111）	． $00012=$	． 12012 a	－0thes 4	＋．0114463	． 00311	－． $0011!$	＋．0004	－． 00033
6	（1）02 24	． 0012	． 000334	． 1 M1120	． 00100	$\pm .00000$	＋．1002 6	－． 00017	－． 0154	． 00043
7	． 0103031	－Douction	$+.00041$	．リous：	＋．0006t	－．10010．：9	． 10102	＋．1112030	． 00.3330	．00．7iz
8	＋．00041	－．mosa	－． 10015	． 00066	－． 010105	－1102－1）	． $00 \cdot 30$	． 00019	． 001517	． 00544
9	－． 001008	$\pm .00000$	－．110018	． 00052	－ 110119	． 00296	． 00663	． 012 La	． 00170	． 00567
10	＋．00070	＋．0003：3	＋．100\％31	－． 1000.1	． 00139	－1175as	． 1117841	． 00120	． $000: 76$	． 01227
11	． 00121	． 1000102	$+.10011$	$+.00029$	． 04112		． 00905	$+.0035$	．00：361	． 00617
Noon．	． .0010 z	． 0 uc：	－． 10017	F．0001：	． 000118	－11049\％	－ 100508	－． 00170	． 000122	． 00609
${ }^{11}$	＋．0015	． 0 unis？	－． 110104	． 010090	． 00158	－muarij	． 00994	． 003334	． 000153	． 01005
2 3	－． 01016005	． 110017	$\pm .00036$	． 10066		－ 110.568	． 00×22	． 003332	． 00485	． 00968
3	－． $00000{ }^{\text {a }}$	．0011：i	－． 0011446	． 0 00ers	－10ヶた！	． 00191	． 1048.2	． 00463	－． 00126	． 00945
4	＋．0001	． 000101	． 000021	－11） 4 ¢\％	－Unhtiz	－ 1025	． 00569	． 00039	＋．00018	． 00597
5	－． 10173	． 00010	． 0010 siz	． 010015	－． 000017		－110262	． 00273	．0016\％	． 00656
6	－． 00013	． 010077	－． 000183	．001：5，	＋． 90047	－． 00090	－．．0006t	－．00163	． 00143	－． 00548
8	$.000: 3$ $.000-3$	． 100103	t－100102	． $00000 \cdot 3$	． 00017	＋ 00139	＋．00125	$+.00186$	． 000155	＋．00170
9	． 00165	． 00014		． 014	＋．000	． 0001712	． 100831	＋．00213	． 000149	． 000644
10	－ 0.00073	． 000064	． 00046	． 1160017	－． 010020	． 0124	． 00493	－．．00316	． 00305	． 01038
11	－0． $00015{ }^{5}$	＋．000\％1	－0．00011	＋0．010932	－0．00019	＋0．010	＋0．00733	＋0．00104	$+0.00285$	＋0．01195

RELATIVE HUMIDITY．

The following two tables contain the daily and hourly means of relative humidity extracted from the preceding geueral record．

Daily means of relative humintity observed at Polaris Bay．

Day of month．					范	$\underset{E}{E}$	淢	而	突	$\stackrel{\oplus}{\Xi}$	E	年
		p．c．	p．${ }^{\text {c }}$	p, c	p．c．	$p . c$.	$p . c$	p． 0.	1．c ．	p．c．	P．c．	p．c．
1	83． 56	76． 20	75.91	71．	41.90	50.65	52． 18	2－0． 18	76.84	83． 44	：1． 01	72．0．4
2	－ 3.36	76． 20	7\％． 91	60.20	13．39	4．\％． 09	42.21	79.89	－4． 30	F2． 11	56.90	73．
3	－4．43	76.20	75． 91	64.39	45.43	30.57	41.21	F－． 91	8\％． 39	66． 2.5	$62.11{ }^{\text {a }}$	－1．92
4	－7．91	76.20	75.91	75．78	S2． 94	$4 \because 2$	41）． 0.2	7－9， 9	7． 7.99	59.1%	（ii1． 1	67.137
5	－9．08	76．${ }^{0}$	75.91	75． 81	43． 19	49.82	59.8	79．0：	7\％．78	60． 16	60．1－	6：3
6	86． 95	76． 20	86.46	67.12	39.48	45． 12	53.01	73． 6.7	83.85	（616．	60.18	（a）． 11
7	76.55	76，20	87.95	54.86	32.50	515	40.40	77.77	84.61	7f． 2	（ii）． 18	75． 51
8	79.53	76.20	82.22	51.19	：36．05	46.77	45.44	－0． 88	813．39	74．80	$6 \mathrm{CH}^{1-}$	71.415
9	76． 13	76． 20	85.93	57.31	26.76	52.10	44.79	81.59	8r． 97	72．	60． 18	65.
10	73．12	76． 20	¢4． 36	81．53	44． 40	（i3． 60	32.55	41．58	K6． 71	15.74	60.18	69． 118
11	81.81	76． 0	80.16	5－9．91	$3 \times .74$	64.64	4．3．04	－0．04	83.57	20． 139	60．1－	75． 16
12	66.73	76． 20	79.06	59．先	31.49	55.17	30.62	71.09	83.33	7\％．31	\％ロ，ぶ	73.41
13	73． 11	76． 20	6ix． 39	5\％． 44	36.26	6i： 67	46． 10	7\％．61	セ2． 49	7is．til	83.17	－5．93
14	77.43	76． 20	63.73	69．\because	12． 30	45．02	50.50	［12．79	Si． 4 ： 2	70． 1.5	87． 45	－1）． 64
15	83． 40	7i． 20	62.16	56.04	43． 50	41． $4: 3$	55.63	71， 31	82．70	Tx． 91	「4，㫛	84.8
16	76．4	719．20	61.66	50.00	52.12	43.53	59.71	75． 11	846.36	515.94	A－3． 06	86，：3：
17	71．32	76． 31	72.11	43.56	40.54	49． 11	63， 34	75． 10		713．$\times 13$	F6， 3	－1． 5 m
18	－2． 49	76．20	76． 49	$4 i i .81$	33.47	711.73	60．－9	12． 612	$\cdots 88$	81． $0 ; 3$	－	74.30
19	T－37	76． 20	67.07	67.45	4.93	（12．${ }^{\text {a }}$	66.84	72.13	－0． 92	70，13	75． $5:$	－s． 61
20	1－3． 3	76.31	51． 5 ¢	50， 0	62． 10	43， 51	60.50	711．4！	811.92	112，5：	77.56	－4． 16.
21	30， 30	76． 20	47． 40	48.79	77． 38	51.54	55.36	81.84	71.8	74． 106	1．1． 70	－
22	4．3．30	76．911	47.40	45.60	72． 64	49.14	515． 04	91． 111	29． 31	69.75	7\％． 54	く－5
23	27． 25	76． 20	47.40	39.15	67． 26	46.18	tarili	90， 05	84． 41	74．44	92．26	5i，5\％
24	44． 44	76． 20	49.11	33.17	59． 24	43.85	62． 99	Sm． 64	－6． 61	（11． 17	80． 7.	64． 52
25	80.33	76.90	51.15	3x． 85	50.10	$6 \times .61$	（i．）． 60	5， 5.5	87．05	64．30	Ali． is $^{\text {d }}$	－6． 5.7
26	－5． 17	76.20	47.53	41.70	56.40	71．6il	73.14	$x \cdot 2 \cdot \underline{1}$	8．3． 17	1：3． 215	E．i． 96	－7．8．
27	K8． 13	76． 21	45．92	42．46	45．73	5×2	84.90	N－3．4		7．仿	－2． 66	－13．23
28	8－17	$76 . \% 1$	74． 51	3×18	43.81	610． 24	－is． 11.	$7 \times .17$	－11． 11	72.4	71.10 .1	－9． 17
29	86.13	76.20	74． 36	46． 111	52.17	59．$\because 2$	$\cdots 4$	84.05	72．	7．．．	70.78	－6． 17
30	71.25	76.90	7．3． 31	44.43	67，78		E13． 21	Q3．	－0， 3		511．9	86.36
31		76．$\because 0$		45． 8	69.56		61． 68		－3．3．-3		411．$\because 1$	－9．10：
dreans．	81． 37	$76 . \because 1$	68.11	55.04	4＊． 21	53． $2 \sim$	56.36	78．6i	82．	21．6）	73． 35	29．6
Howrly means of relative humidity obserced at I＇olaris Bay．												
		11．${ }^{6}$	p．e．${ }^{\text {c }}$		$l_{1} c^{c}$	p．c．	p．c．	$1 \cdot{ }^{\circ}$	$p . c$	$1 \cdot \%$	1 1．	1＇，es
$0^{\text {b }}$	－11） 9.2	76.9	fis． 10	5×65	17．31	49． 64	56． 26	71.79	81． 46	$7 \because 3$	78.8	－3．10
1	$\checkmark 1.92$	76.20	69.00	5．3． 91	42.38	46． 91	55．31	213．91	81.55	7．8．il	73．90：	－1．10
$\stackrel{2}{2}$	＊0．92	76． 20	80.07	55． 0 ：	45．：34	51.78	54． 91		－®．08	78.41	74.31	＊4．（if）
3	－0．12）	76． 21	68.07	54．1：	46.91	56．1\％	52.13	77.80	－2，1．	71.93	7． 40	－4． 3
4	－0．13	21． 21	（ii．） 83	5：3． 57	H15．020	5． 18	$\therefore 1.25$	80.610	－－90	71．－	75．019	F4． 110
5		714． 20	60.13	53． 411	42.017	53.81	3：500	－1．91	－－－	71.99	71.91	8． 12
6	（1）．92	76.20	（i\％．－ 3	－in． 4	ti． 17	56.71	54． 1 im	－ 319	5.21	72． 10	74． $2 \times$	ぐっ． 21
7	$\rightarrow 0.12$	76.20	66.93	50，	4×3	54， 4.5	57．45	－ 2.01	－4． 31	$7 \cdots$	74．0．	－1）． 12
$\stackrel{\text { K }}{ }$	®1．54	76．30	616.96	52． 4.2	49， 2	56． 01	59.54	81.48	－4．26	71． 3	74.35	2r． 38
9	$\checkmark 1.54$	7i． 20	67．	51.26	47.99	56． N^{4}	59.98	80． 01	84.35	21）． 11	7：1．33	78.01
10	$\checkmark 1.54$	74．90	（iic． 80	51.98	4i． 31	56． 0^{11}	14．49	74.94	－4．＊＊	（10） 10	73.7	75.17
11	$\cdots 1.54$	76． 20	17 1i， 81	5．） 00	17．17	－4． 11	63．31	－0． 01	－4．99	（2）．12	71.91	74.12
Noon．	$\checkmark 1.54$	76.20	（ix． 62	5 SH .73	49．42	54． 711	（i2． 10	－2． 10	E－3． 34	60.63	71.39	7：\％ 214
$1^{\text {b }}$	81． 54	71． 20	6－51	56，9\％	42.5	5，吅	60． 10	$\therefore \because 1$	F4．ど：	50． 51	$7 \because 41$	$73 \times \sim$
2	$\bigcirc 1.54$	71． 20	130．4．3	5is．	47.67	$\therefore 1.94$	57.30	62． 4%	－3．0	71． 17	73． 12	71.59
3	81． 54	76． 20	（is． 10	55．31	47.80	51.71	516.79	$\times 1.11 \%$	－3． 8	71.51	$7 \because 19$	76． 01
4	82，24	76.20	67.68	55． 4	47．28	51.61	55.83	75．4；	crs	71． 5 \％	71． 81	71． 27
5	81.61	76． 20	67.93	55.99	48．31	5．0．， 36	53． 55	73．45	82． 91	71．89	71．43	73． 2 \％
6	81.61	75.20	12．06	50，9\％	49．29	4！． 69	51． is	76．4＊	E1．ES	79.72	71.74	72． 6
7	81.61	76.20	16． 21	57．6）	49.91	50.47	52.3	75．31	－1． 31	7？ 211	72.71	20， 010
8	81.61	76． 20	70.35	二小，	5．0． 2 m	51．：3	\％1． 81	72． 10	81.29	72． 17	73.74	81． 04
9	81.61	76．20	64． 54	5\％$\quad \cdots$	40.99	\％1．	56.01	7：3．12	－1．－7	72.13	73.71	－1．01
10	81.61	715.20	64．53：	513，	4×6	5×2	57.56	75． 51	80． 07	73.34	7 20	－2．3．
11	81.61	76． 20	6－5．41	56.71	4×81	59.98	57.63	75.61	－ 2.13	73.45	74.21	世
Means．	81.41	76． 20	68．11	55.04	48.21	53.28	56.66	7＊． 66	83．	71.69	73.35	79.68

HYGROMETRICAL OBSERVATIONS

annual fludtuation of Relative humidity at Polaris bay.

The following table contains the means of the relative humidity of the actual months, and also the means of the equi-intervals:

Montbs.	Mean relative humidity of actual months.	Meau relative humidity of equi-intervals.	Months.	Mean relative humidity of actual months.	Mean relative humidity of equi-intervals.
	p. c.	p.e.		p. c.	p.e.
January	48.21	47.59	July	73.35	74.16
February	53.	53.35	Angust	79.68	80.06
March...	56.66	56. 20	September	81.41	81.39
April.	78.66	77.68	October .	76. 20	76.18
May	83.25	8.3 .66	November	68.11	68.29
June	71.69	70.78	December	55.04	54.67

The analytical elements and expression for the annual fluctuation of relative humidity are as follows:

$$
\begin{aligned}
& \begin{array}{c}
H=+68.666+14.150 \sin \left(x+231^{\circ} 40^{\prime} 00^{\prime \prime}\right)+7.974 \sin \left(2 x+203^{\circ} 40^{\prime} 45^{\prime \prime}\right)+3.075 \sin \left(3 x+37^{\circ} 7^{\prime} 14^{\prime \prime}\right) \\
\\
+3.230 \sin \left(4 x+243^{\circ} 57^{\prime} 00^{\prime \prime}\right)
\end{array} \\
& x=30^{\circ}, 60^{\circ}, \ldots
\end{aligned}
$$

The following table contains the observed values and those computed according to the above formula :

$\begin{aligned} & \text { Months, } \\ & \text { (equi-intervals.) } \end{aligned}$	Observed.	Computed.	Difference.
January.	p. 47. 4. 2	$p . c$. 47.914	$p . c$. $-0.3-9$
Febraary	53.351	53.341	+ 0.010
March...	56.204	56.950	-0.046
April.	77.686	77.471	+0.215
May-...........	$\bigcirc 3.666$	83.761	-0.095
June .	70.783	70.931	-0.148
July .	74. 164	74.013	+ 0.151
August ..-	80.066	79.903	+ 0.163
Sertember	81.397	81.682	-0.285
October .	76.180	76.155	+ 0.025
Noveuber .-.......	tiv. 299	68.375	-0.076
Dtcember-.	54.673	54.193	$+0.480$
Spring	72.519	72.494	+ 0.025
Sumuier	75.004	74.949	+ 0.055
Autumn	75.292	75. 404	-0.112
Wiuter	51.849	51.816	$+0.033$
Year	68.666	68.666	± 0.000
Probable error of year $=0.06$			

The preceding values thrown into a curve resalt in the following diagram :

* According to the above curve, the minimum relative hamidity occurs in Jannary and the maximum in May. There is, howerer, a second relative maximnm in September and a second relatire minimum in June. The computed and observed anuual ranges are 35.547 and 33.872 , respectively. If we compare the annual march of the force of vapor with that of the relative humidity we shall arrive at a somewhat unusual result. We might expect the periodic changes in the force of vapor to follow those of the temperature ; in other words, a maximum of temperature ought to correspond to a maximum of force of vapor and to a minimum of relative humidity, while the warch of the relative hnmidity onght to show the contrary relation. The amnual curres of temperature, force of rapor, and relative bumidity represented on one diagram, would show the two former to run nearly parallel with each other, while the other would show the same course only from Jannary until May, and from October till December, so that a relative minimum of the relative humidity corresponds to the absolute maxima of both the force of vapor and temperature.

To find out how far the maxima of force of rapor correspond in general to the minimat of relative bumidity re investigated the Toronto Observations,* as well the whole period from 1841 to 1871, as also, some of the jears separately. The curves representing a period of 29 years demonstrate that the absolute minimnm of force of vapor coincides with the absolute maximum of relatire humidity, while, as in our case, ouly a relative minimun of the relative bamidity corresponds to the absolute maximum of the force of ripor. In 1850 the curve representing the march of the force of vapor reaches its maximum in July, the absolute minimum in December, and a second relative minimum in February, while the absolute maximum of relative humidity occurs iu November and two relative maxima in Jannary and (middle of) Angnst, respectively. The absolute minimum is reached in May, and the two relative minima in October and December, respectively.

In 1860 the annonal curve of the force of rapor passes through the maximmm in August and through the minimum in January, while the absolnte maximum of relative humidity is reached in December and the minimum in March ; there being, however, a second relative minimam of almost the same ralue in June. Besides the absolute maximum, the relatice hnmidity exhibits four other relative maxima, occurring in October, August (where a minimum should take place), May, and in the middle of January, respectively, thas showing greater irregularities than the curre of Polaris Bay. In 1870 there is only a relative minimum of relative bumidity coinciding with the abso. lute maximum of force of vapor, while the absolute maximum of relatice bumidity corresponds almost with the absolute minimum of force of rapor, so that it appears that the curres of Polaris

[^16]Bay are not as irregular as might seem at first. We shall see, hereafter, in the course of the discus. sion of the seasons, that the general law can be recoguized beyoud doubt in summer, and also, to a certain extent, in autumn, while the curves of winter and spring are less in agreement with the law, although the latter exhibits a very regular course.

DIURNAL FLUCTUATION OF RELATIVE HUMIDITY AT POLARIS BAY.

The diurnal changes in the relative hamidity during the year were only computed from alternate hours. The andytical elements and expression used in the compatation are as follows:

By means of the above expression the following values were obtained:

Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$	Time.	Dhememed.	Computed.	Diffrrence, O. -C.
$0{ }^{\text {b }}$	1. ${ }_{\text {ce }}$	p, ${ }_{\text {c }}$	$p . c$ +0.101	Noon.	fica	p. ${ }^{\text {c }}$ c 69.378	p. $c^{\text {c }}$ +0.110
2	(ix.	隹, 1:\%	+. $\mathrm{Br} \mathrm{m}^{+}$	\#'	68.644	69.148	-. 504
4	68. 625	6ix. bis!	-. 10.0	4	9*. $2 \times$ \%	6-2. 445	-. 218
6	619644	6i. 127	+ .517	6	137.976	68, 289	-. 313
\checkmark	63.233	19, 011	+. 173	8	(i2. 6102		-. 206
10	(im. CH	(ii). 102	-. 20	10	69.060	69.926	+.134
He:at $=68.8$ ss; differeuce $二 \pm 0.000$.							

The above values thrown into a curve result in the following diagram :

The compated curve passes through the absolute maximam at noon and through the absolute minimum at 2^{h} a. m. There are, in addition to the absolute maximum, two relative maxima, occurriug at $6^{\text {b }}$ a. m. and 10^{h} p. m., respectively, the former corresponding in regard to time with the absolute maximum observed. The two relative minima are reached between 8^{b} and 9^{b} a. m., and at 6^{h} p. m., respectively.

A comparison of the curre in question with that illustrating the diurnal march of the tension of vapor shows that the absolute maxima coincide within 12^{h} in time, the maximum of tension of vapor occurring later than that of the relative humidity. The Toronto observations, comprisiug the period from 1842 to 1848 , show that the maximum of force of vapor has its correspouding minimum of relative humidity, and rice versa. This, however, is not the case if we examine the curve of January during the same period, for we shall fiud that a relative maximum of relative humidity corresponds to the absolute maximum of the force of vapor, while the July curves for the same period are more in accordance with the general law deduced for lower latitndes.

In order to discuss the dimrnal variation of the relative humidity duriug the differeut seasons, the computed means of the respective months constitutiug the respective seasons were used, instead of computing each season separatel 5 .

The following values were obtained for spring :

	$0^{\text {b }}$	2	- 4	6	8	10	Noon.	$\mathrm{g}^{\text {h }}$	4	6	8	10	Mean.
Observed	71.50	70.99	71.59	74,36	74.75	76.35	76. 65	74.54	72. $\because 1$	70.85	69.40	71.71	7-8.86
Computed	71.46	71. 28	72.03	73.69	75. 26	76. 3	76. 40	74.76	71.85	69.89	T0. 10	71.20	7.2. 86

$\Delta 0 .-$ C. $-0.04-0.29-0.44+0.65-051+0.02+0.25-0.2 y+0.35+0.38-0.70+0.51 \pm 0.00$ resulting in the following curve represented simultaneously with that illustratiug the diurnal march of the force of vapor duiug the same period.

Diurnal fluctuation of relative huminity and force of vapor durin! spring, 187..

In the above diagram the curve exhibiting the march of the force of vapor is represented in full, the fluctuation of the relative humidity being indicated by dotted lines.

It will be noticed that during the afternoon the curves run nearly parallel, while this is less the case during the rest of the day. The maximum of relative humidity is reached at noon and coincides with both the maxima of force of vapor and of temperature. The observed aud computed ranges are 7.25 and 6.51 , respectively.

The following values were obtained for summer :

	$0^{\text {b }}$	2	4	6	8	10	Noon.	$2^{\text {h }}$	4	6	8	10	Mean.
Ohserved	76. 58	77.1:3	76. 99	76.53	74. 86	72.52	71.54	73.06	73. 65	74.38	75.42	76.33	74.92
Computed	77.59	77.16	76.85	7 ii .3 fi	74. ${ }^{0}$	72.71	71.64	71.5	72.86	74.03	75. 71	77. 21	74.92

Thiurnal fluctuation of relative hamidity and fowe of rapor during summer, 1872.

The computed curve passes through the maximum at midnight and throngh the minimum about halt an hour after noon. The observed maximam and minimum orrur at 2^{h} ar. m. and noon, respectively. The computed and observed ranges are 5.95 and 5.59 , respectively.

It will be seen that the two hygrometrical curves, represented simultaneonsly on the above diagram, have the same relation to each other as at the majority of the other stations situated in lower latitudes.

The diurual fluetuation during antum is represented by the following values:

| | 0^{h} | 2 | 4 | 6 | 8 | 10 | Noon. | 2 h | 4 | 6 | 8 | 10 | Mean. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed | 75.07 | $\mathbf{7 5 . 7 3}$ | 74.32 | 74.98 | 74.90 | 74.84 | 75.45 | 75.39 | 75.37 | 75.99 | 76.05 | 75.45 | 75.24 |
| Computed | 75.27 | 75.14 | 74.94 | 74.67 | 74.81 | 75.08 | 75.35 | 75.30 | 75.46 | 75.45 | 75.70 | 75.68 | 75.24 |

Δ O.-C. $-0.20+0.59-0.62+0.31+0.09-0.23+0.10+0.09-0.09-0.16+0.35-0.23 \pm 0.00$
The above values thrown into a curve result in the following diagram :

Diurnal fluctuation of relative humidity and force of rapor during autum, 1871.

The computed curve passes through the maximum at $9^{h} p$. m., the correspouding observed value occurring one hour earlier, while the computed minimam is reached at $6^{\mathrm{h}} \mathrm{a}$. m., and the obserred minimum at 4^{h} a. m. The ranges, as derived from the computed and observed values, are $0.5 \overline{5}$ and $1 \% 0$, respecticely. Besides the absolute maximum, the curve shows two relatire maxima at about nalf an hour after noon and $5^{\mathrm{h}} \mathrm{p} . \mathrm{m}$., respectively. It will be seen that the absolute minimum of relative humidity coincides with a relative maximum of force of rapor, while the two relative maxima correspond to the absolute minimum and a relative minimum, respectively. The absolute maximum of relative humidity lies between the absolute maximum of force of vapor and a relative minimum, and the two relative minima coincide with two relative maxima of force of vapor.

The following values were obtained for winter:

	0^{b}	2	4	6	8	10	Noon.	2 L	4	6	8	10	Mean.
Observed	49.56	51.36	51.61	52.70	52.42	51.86	54.30	51.59	51.74	51.99	53.54	52.76	52.15
Conoputed	50.19	50.40	51.50	51.86	51.25	52.55	53.64	53.93	5197	52.91	54.00	52.54	52.15

$\Delta 0 .-$ C. $-0.33+0.96+0.11+0.84+1.17-0.69+0.66-1.34-0.19-0.92-0.46+0.19 \pm 0.00$ resulting in the anuexed diagram.

Diurnal fluctuation of relative humidity and force of vapor during winter, 1871-72.

The computed curve passes through the maximum at $8^{\mathrm{h}} \mathrm{p}$. m. and through the minimum at about $1 \frac{1}{2}$ a. m . Besides the absolute maximum and minimum there are two relatire maxima occurring at $4 \frac{1}{2}^{\mathrm{h}}$ a. m. and noon, respectirely, and two relative minima which are reached at $7^{\mathrm{h}} \mathrm{a} . \mathrm{m}$. and about $3 \frac{1}{2}^{\mathrm{h}}$ p. m., respectively. The computed absolute maximum does not coincide in regard to time with its observed value, althongh it corresponds to a relative maximum, while the absolute minima as observed and computed coincide within half an hour. The computed and observed ranges are 3.81 and 4.44 , respectively.

A comparison of the two hygrometrical curves shows that the absolute minimum of relative humidity coincides with a relative maximum of force of rapor, and the absolute maximum, as computed, with a relative miuimum occurring about $\frac{1}{2}$ hours after the absolnte minimum is reached. The relative minimum of relative bumidity at $7^{\mathrm{h}} \mathrm{a}$. m . corresponds to a relative maximum of force of vapor, and the relative minimnm taking place between 3^{h} and $4^{\mathrm{h}} \mathrm{p}$. m. corresponds to the absolute minimum of force of rapor. The two relative maxima of relative humidity at $4^{\frac{1}{3}}$ a. m. and noon, respectively, correspoud to a relative minimum of force of vapor and to a relative maximum, respectively.

For want of time the diurnal range of the relative humidity during the different months was only computed for every other hour. The analytical elements and expressions made use of are as follows:

January.

n	a_{n}	b_{n}	B_{n}	C_{n}
				"
	+ 0.427	-0.808	+ 0.914	152857
2	+0.617	-0.861	+1.061	1442230
3	+ 0.266	-0.373	+0.457	1443237

$\boldsymbol{H}=+48.206+0.914 \sin \left(x+152^{\circ} 8^{\prime} 57^{\prime \prime}\right)+\underset{x=30^{\circ}, 60^{\circ}, \ldots}{1.061 \sin \left(2 x+144^{\circ} 22^{\prime} 30^{\prime \prime}\right)+0.457 \sin \left(3 x+144^{\prime} 32^{\prime} 37^{\prime \prime}\right)}$
February.

n	a_{n}	b_{n}	B_{n}	C_{n}
				- ' "
	-2.771	-0.423	+2.803	2611930
2	+0.637	-0.835	+1.050	14240
3	+ 0.433	-0.666	+ 0.795	1465724

$H=+53.197+2.803 \sin \left(x+261^{\circ} 19^{\prime} 30^{\prime \prime}\right)+1.050 \sin \left(2 x+142^{\circ} 40^{\prime} 22^{\prime \prime}\right)+0.795 \sin \left(3 x+146^{\circ} .6^{\prime} 24^{\prime \prime}\right)$
March.

n	a_{n}	b_{n}	B_{n}	C_{n}
				\circ \prime 257 5
$\stackrel{1}{2}$	+ 3.168	+ 1.464	+3.943	681214
	-0.177	+ 0.580	+ 0.606	343008

$H=+56.665+3.206 \sin \left(x+257^{\circ} 5^{\prime} 14^{\prime \prime}\right)+\underset{x 30^{\circ}, 60^{\circ}, \ldots}{3.943 \sin \left(2 x+68^{\circ} 12^{\prime} 14^{\prime \prime}\right)+0.606 \sin }\left(3 x+343^{\circ} 0^{\prime} 8^{\prime \prime}\right)$
April.

n	a_{n}	b_{n}	B_{n}	C_{n}	
1	-3.721	+0.670	+3.781	080	12
2	-1.066	+0.589	+1.218	298	53
3	+1.292	-0.025	+1.292	91	6

$H=+78.662+3.781 \sin \left(x+280^{\circ} 12^{\prime} 24^{\prime \prime}\right)+1.218 \sin \left(2 x+298^{\circ} 53^{\prime} 33^{\prime \prime}\right)+1.292 \sin \left(3 x+91^{\circ} 6^{\prime} 32^{\prime \prime}\right)$
$x=30^{\circ}, 60^{\circ}, \ldots \ldots$
May.

n	a_{n}	b_{n}	B_{n}	C_{n}
				- 11
1	-1.933	+ 0.034	+ 1.933	2795248
2	+ 0.078	+ 0.073	+0.147	464821
3	+ 0.392	-0.140	+ 0.393	1093635

June.

n	a_{n}	b_{n}	B_{n}	C_{n}	
				0	1
1	+1.486	+0.210	+1.501	35	14
	45				
2	+0.384	$+0.3 \times 7$	+0.545	294	47
3	+0.459	+0.168	+0.488	69	5.5

$H=+71.693+1.501 \sin \left(x+3 x^{\prime \prime} 14^{\prime} 45^{\prime \prime}\right)+0.545 \sin \left(2 x+22447^{\prime} 28^{\prime \prime}\right)+0.488 \sin \left(3 x+69^{\circ} 55^{\prime} 14^{\prime \prime}\right)$
$x=30^{\circ}, 60^{\circ}, \ldots$
July.

n	a_{n}	b_{n}	B_{n}	C_{n}
1	+ 0.191	+ 1.399	+1.367	74659
2	-0.209	- 0.122	+ 0.241	2394656
3	+ 0.370	-0.026	+ 0.240	935932

$H=+73.391+1.367 \sin \left(x+7^{\circ} 46^{\prime} 59^{\prime \prime}\right)+0.241 \sin \left(2 x+239^{\circ} 46^{\prime} 56^{\prime \prime}\right)+0.240 \sin \left(3 x+93^{\circ} 59^{\prime} 32^{\prime \prime}\right)$
$x=30^{\circ}, 60^{\circ}, \ldots$.
August.

n	a_{n}	b_{n}	B_{n}	C_{n}
				- ' 1
1	+ 4.877	$+3.937$	+6.268	$51 \quad 531$
2	+ 0.743	-0.591	+ 0.909	1283132
3	+ 0.119	+ 0.375	+ 0.394	173654

$H=+79.682+6.268 \sin \left(x+51^{\circ} 5^{\prime} 31^{\prime \prime}\right)+0.909 \sin \left(2 x+125^{\circ} 31^{\prime} 32^{\prime \prime}\right)+0.394 \sin \left(3 x+17^{\circ} 36^{\prime} 54^{\prime \prime}\right)$
November.

n	a_{n}	b_{n}	B_{n}	C_{n}		
		+0.858	-0.440	+0.964	117	
2	+0.274	+0.293	12			
3	-0.025	-0.343	+0.401	43	6	

$$
\begin{gathered}
\boldsymbol{H}=+68.106+0.964 \sin \left(r+117^{\circ} 9^{\prime} 12^{\prime \prime}\right)+0.401 \sin \left(2 x+43^{\circ} 6^{\prime} 6^{\prime \prime}\right)+0.344 \sin \left(3 x+144^{\circ} 8^{\prime} 33^{\prime \prime}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots \ldots
\end{gathered}
$$

December.

n	a_{n}	b_{n}	B_{n}	C_{n}	
1	+1.341	-1.994	+2.603	146	4

$H=+55.040+2.603 \sin \left(x+146^{\circ} 4^{\prime} 19^{\prime \prime}\right)+0.172 \sin \left(2 x+352^{\circ} 48^{\prime} 10^{\prime \prime}\right)+1.676 \sin \left(3 x+172^{\circ} 24^{\prime} 33^{\prime \prime}\right)$ $x=30^{\circ}, 60^{\circ} \ldots$

The computed and observed values compare as follows :

In Januars both the obserred and computed absolute maxima are reached at $8^{h} \mathrm{p} . \mathrm{m}$. The computed minimum occurs at g^{g} a. m. and the corresponding obstrved value an hour later. The computed and observed ranges are 4.0 and 4.9 , respectively. The absolute minimum of relative humidity coincides in regard to time with the absolute minimum of the tension of vapor, the same being the case with the respective maxima.

In February both observed and computed maxima occur at $10^{\mathrm{b}} \mathrm{a}$. m., the computed minimum at midnight, and the correspouding observed ralue two Lours earlier. The observed and computed rauges are 5.8 and 4.6 , respecticely. The maximum and minimum of the force of vapor being reached at 3^{h} a. m. and 6^{h} p. m., respectively.

In March both the observed and computed absolnte maxima occur at 10^{11} a. m. and the minima at $4^{\mathrm{h}} \mathrm{a} . \mathrm{m}$. The observed and computed ranges are 13.17 and 11.93 , respectively. The maxima aud minima of the force of vapor coincide very nearly in regard to time with those of the relative humidity.

In April both the obsersed and computed absolute maxima are reached at $6^{\mathrm{h}} \mathrm{a} . \mathrm{m}$. and the minima at $8^{\mathrm{h}} \mathrm{p}$. m., while the tensiou of vapor reaches its maximum at noon and its minimum at 3^{h} a. m . The observed and computed ranges are 11.1 and 8.3 , respectively.

In May both the observed and computed maxima occur at noon, almost coinciding in regard to time with the maximum force of rapor. The computed minimum is reached at $6^{\mathrm{h}} \mathrm{p} . \mathrm{m}$., one hour before the corresponding observed value, while the teusion of vapor is at its minimum at $1^{\text {h }}$ a. m. The observed and computed ranges are 4.5 and 3.6 , respectivel 5 . -

In June the observed maximum is reachet at $11^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. , the one computed occurring at midnight. The theoretical carve passes through the minimum at noon, while the actual minimum is reached an hour earlier. The observed and computed ranges are 4.3 and 3.0, respectively. According to the computed curse the maximum of the force of rapor occurs at $4^{\mathrm{h}} \mathrm{p}$. m. and the minimum at 2^{h} a. m . Considering the march of the relative bumidity by itself, independent of the force of vapor, we see the curve to follow the same general law as made ont for more southern stations.

In July both the observed and computed maxima take place at 4^{h} a. m., while the computed minimam ocenrs at $4^{\mathrm{h}} \mathrm{p}$. in. and the corresponding observed valne one hour later. The observed and computed ranges are 3.3 and 2.7 , respectively. The force of vapor reaches its maximum at $8^{\text {h }}$ a. m. aud its minimum at $1^{\text {k }}$ a. m.

In Angust the observed and computed maxima and minima occur at ${ }^{2 h}$ a. n. and noon, respectively. The computed range is 11.6 and that derived trom the observed ralues is 0.5 less. The maximum of the force of rapor is reached at $2^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. and the minimum at $1^{\mathrm{h}} \mathrm{a} . \mathrm{m}$.

In November both the computed and observed maxima occur at $s^{h} p$. m., the obserred minimum at 4^{h} a. m., and the corresponding computed minimum four hours later. There is, howerer, a computed relative miuimum, correspouding in time to the absolute minimum as observed. The computed and observed rauges are 2.3 and 4.5 , respectively. The maximum of force of vapor is reached at $11^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. aud the minimum at $11^{\mathrm{h}} \mathrm{a}$. m .

In December the absolute computed maximum occurs at $8^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. , corresponding to a relative observed maximum, but the absolute observed maximmm is reached at noon, the difference between the absolute and relative maxima being 0.4 only. The computed minimum is reached at $8^{\mathrm{b}} \mathrm{a} . \mathrm{m}$. and the corresponding observed value one hour later. The computed and observed ranges are 7.9 and 6.7 , respectively. The computed curve of the force of vapor passes the maximum at $3^{\mathrm{h}} \mathrm{a} . \mathrm{m}$ and the minimum at $7^{\mathrm{h}} \mathrm{p}$. m.

ATMIC WIND-ROSE OF POLARIS BAY.

In order to investigate the inflnence of the different winds on the relative bumidity of the air, we proceeded in a similar way to that described in the discussion of the thermic wind-rose.

The ralues obtained in this maner are as follows:

Months.	N.	N.E.	E.	S. E.	\therefore	S. W.	W.	N. W.	Calm.
November	$\begin{gathered} p \cdot c . \\ -\quad \because .5 \end{gathered}$	$\begin{gathered} p . c . \\ -\quad \underset{4}{ } \end{gathered}$	$\begin{gathered} p . c_{0} \\ -4.5 \end{gathered}$	$p \cdot c$.	p.c.	$\begin{gathered} p \cdot c \\ +9 . \end{gathered}$	$p . c$	p.c.	$p . c$.
Decrmber	-1.7	3.4	+ 0.5			5.4			-4.3
Jannary		2.3	-0.5	- 4.0		14.3			$\because .7$
Febriary		4.4	+ 3			$6 .:$	+ 17.7	+4.3	- 8.0
Mareh		- $\because 0$	$\because 10$	+1.3		4.11		- $\because 3$	$+1.0$
April.		+ 1.0	$+2.0$	0.5		$\because .0$		+2.0	
May		- $\because 3$	- 1.0	+1.0		3	$+1.0$		
June	-1.5	2.4	-0.5		$+3.2$	5. ${ }^{\text {a }}$	-2.0	-1. 8	- 1.0
Jnls .-	-1.0	-4.3	$+\because 0$		1.0	5. 3		$+3.3$	
Augrist	+ 20	+ 4.1		+4.0	+2.3	+ $1 .: 3$			- 3.5
Teu months	-1.9	- 3.6	-11.2	$+0.4$	+1. $=$	+ $\therefore 1$	- $11 .:$	$+0.3$	-1.9
Winter	-0.6	- 3.4	+ 0.-	- 1.3		$+6.9$	+11. 2	+ 1.4	-3.0
Spring		1.1	1.11	$+0.9$		\cdots	+ 11.3	- 0.1	+ $0 .: 3$
Sunmme	+0.2	-0.9	$+0 . i$	+ 1.3	$+\because \cdot \because$	$+3.3$	-0.5	$+1.7$	- $0 .: 3$

If it is found difficult to deduce someshat reliable results from the influence of the wind on the temperature from a short serifs of observations, it will be found more diffult still to trace the counection between the direction of the wind and atmospheric moistme, as the latter is more or less dependent on the vicinity of opeu water. Takiug into consideration the fact that Hams Basin and Roheson Stmat mere hard?s ever entirely frozen orel, and that the lanes of open water were constantly shiftins. We hare to expect that the same wind way prodnce contray effects: that, for iustance a wind blowing from northeast may increase the amonnt of moisture contained in the air during one day while it diminishes the same doring another. The analytical expression for the abore wind-rose is as follows :

$$
H=+0.33+2.66 \sin (x+295)+0.45 \sin (2 x+920-)
$$

A comparison of the following ralues computed by means of this formula with those alove giren will show that the differences are rather considerable, as can scarcely be expected otherrwise :

$$
\begin{array}{cccccccc}
\text { N. } & \text { N.E. } & \text { E. } & \text { S.E. } & \text { S. } & \text { S. W. } & \text { W. } & \text { N.W. W. } \\
-1.9 \text { p.c. } & -1.5 & -1.1 & +0.6 & +2 . & +3.3 & +1.6 & -0.8
\end{array}
$$

To show how little dependence can be placed on the values above given we add the following table, in the coustruction of which ouls the more prevailing winds and the calms were taken into acconnt. We content ourselyes with giving merely the effect of the wind, whether increasing (+) or decreasing (-), irrespective of the ratio of increase or decrease. If 0 be noted in any of the columus, it siguifies that the winds were either entirely wanting during the period under cousideration or of too short duration to give any result. Each mouth is dirided into three equal puts, and the influence of the direction of the wind on the relatire hnmidity during each of these periods is indicated either by a positire or negatire sign or by zero:

Months．	Winds．			
	N．E．	E．	S．W．	Calin．
$1871 .$ Novemiser．	\pm－－	\pm－－	$\pm \pm \pm$	二 $+ \pm$
Dectuber ．				
rẽo． Jamary				
February．	- －＋	-+ ＋	$+++$	＋－＋
Marel	$\pm+ \pm$	$\cdots+=$	$++ \pm$	$\pm+$
April．	$\pm \overline{-}$	$\pm \pm$－	$\pm+\overline{+}$	\pm－+
June ．	－－＋	－－－	＋＋＋	－－＋
Juls．	$-++$	$\pm-+$	$+\frac{+}{+}$	$-+$
August	＋＋＋	＋＋	$-++$	$-+$

The following table contains the correction to be applied to any hourly observation taken at Polaris Bay to ontain the mean relative humidity of the day：

Correction to be applied to any hourly observation taken at Polaris Bay to obtain the mean relative humidity of the rlay．

Time．				\％	忘	\dot{E}	$\stackrel{\dot{y y}}{\underset{z}{z}}$	$\underset{\Xi}{\underline{Z}}$	$\stackrel{\ddots}{\square}$	$\stackrel{\text { 者 }}{\text { Er }}$
$0^{\text {b }}$	$+0.01$	＋2．39	$+0.90$	＋ 3.64	$+0.40$	＋1．－7	$+1.79$	－ 11.56	－ 0.52	－：3．94
1	-0.59	1.13	0.89	3．：37	1．35	2.45	1.70	0.62	0.57	4.34
2	－0．89	0.01	0.07	1.56	1．72	$\because .51$	1.17	0.72	0.96	4.96
3	$+0.05$	0.91	1． 30	$+0.16$	I． 53	＋0．3	0．${ }^{-10}$	0.84	1． 05	4．（i．）
4	2．25	1.47	2．13	-1.90	5.09	－1．44	＋ 0.35	0.19	1． 74	4.32
5	1.98	1.64	1．16	2.53	3.66	3.25	－0．57	0.30	1.56	3.44
6	0.28	1.80	$+0.04$	3.42	$+1.98$	4.53	1.96	0.36	1.37	3.12
7	1.18	\cdots	-0.02	3.17	－ 0.79	3.35	1． 06	-0.31	0.74	－0．44
8	1． 15	3.02	-1.01	$\because 73$	2.91	1.77	1.01	$+0.43$	-1.00	$+0.70$
9	0.19	3.05	$+0.29$	$\therefore .61$	3．32	1． 35	1． 10	1.58	＋ 0.0 .0	2.67
10	1.31	3.06	1．82	3.92	7.63	1.28	1.58	2.57	0.58	4.01
11	＋ 0.30	$+0.04$	$+1.04$	0.83	6.65	1． 35	1.74	2.57	1． 44	5.56
Noon．	－ 0.51	－3．69	－1．27	-1.42	5.44	3.44	1． 49	2.00	1.96	6.12
$1^{\text {b }}$	0.40	1.69	-0.36	＋ 0.30	3.44	3.55	1.58	1.18	0.94	5.86
2	－0．32	0.23	＋0．64	1.34	0.64	3.77	0．6）	0.22	0.23	5.09
3	+0.01 +0.13	0.97	＋0．51	1.57	-0.13	－ 2.37	0.63	＋0．18	1． 16	3.67
4	0.43 0.18	0.89	+0.43 +0.10	1． 67	＋0．83	$+1.23$	-0.13	$+0.16$	1.49	2.43
5 .6	0.18 +0.05	0.95 1.94	1 -0.10 1.08	2.92 8.59	3.11	1.21 1.18	＋0．34	－0．20	1.52	1.76 +
7	＋ 1.10	2.58	1.70	2． 81	5． 4.53	1．18	1.37	1.03	1.61	+0.99 $+\quad 0.38$
8	1． 24	3.22	2.75	＋ 1.90	1．85	6.56	1.96	． 78	0.39	0.32 0.36
9	1.43	2.18	1．76	－ 2.01	$+0.65$	5.54	1． 38	0.44	-0.36	1．33
10	0.12	1.78	0.65	$+0.31$	-0.90	3.15	1.18	1.78	＋ 0.15	2.65
11	－0．30	－ 1.67	$\bigcirc 0.60$	$+0.29$	－0．97	$+3.05$	$+1.12$	－1．76	$+0.14$	-2.67

DEW－POINT．

The following two tables contain the daily and hourly means of the dew－point，extracted from the preceding general record ：

Daily means of der－point olserved at Polaris Bay．

Date．	Jan．	Feb．	Mar．	April．	May．	June．	Juls．	Aug．	Sept．	Oct．	Nov．	Dec．
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
1	－3．9 9	－32．5	43． 1	$\bigcirc .1$	－6．6	＋ 34.7	＋33．7	＋32．8	＋21．5	-1.0	＋11．3	－14．8
\because	35.6	37.4	46.1	$\because 11.0$	＋ 0.7	$\because \sim 4$	31.9	：4．3	21.2	1.0	11．：3	19．3
3	30.5	41．：	46.1	？4．${ }^{\prime}$	\％．${ }^{\text {c／}}$	2！：	\therefore	33.3	为：	1.0	11.3	19．5
4	37.9	： 3.9	410.9	：111．4	i． 5	：10． 1	－ 34.2	33．5	$\because 4.7$	1.11	11．：3	-10.3
5	：27．9	36.7	26．ti	1：3．2	－i． i .1	2－5	：42	：3．8	20.5	1.11	11．：	＋ 0.2
6	41.1	：3， 3	34.2	19.4	＋ 1.1	31.4	：31． 2	31.8	9（1）． 2	1.0	10． 3	－ 16.7
7	42.6	35.4	45.4	14.9	3． 2	33.4	：14．\because	：2．${ }^{\text {a }}$	2！－	1.0	7．8	810.9
＇	42． 1	33， 7	45.5	2． 4	5.3	：31．9	：34．	： $2 \times$	$\because 1.9$	1.0	\because	$\therefore 4.1$
9	$43 . \mathrm{x}$	35． 4	44.9	10.1	\％． 6	3 Cr .7	：34：	33.1	21.4	1． 0	7．5	23．0
11	37.5	23.9	43.2	－r． 9	7．－	2－\％	34.2	32.0	16.6	1． 0	＋6i．3	1.5
11	40.2	－ 1.9	43.3	31.5	5， 0	$\because-0$	：14．\because	：	11.5	1.11	－$\because 2$	14.5
1：	43． 1	$\because-4$	13.6	3ti． 4	16． 2	8	34.3	30.9	14．3	1.11	1．2	25． 1
$1: 3$	41.7	$2 \cdot 4$	3iv． 2	：30． 6	10.1	21． 7	： 12	：311． 5	1：3．9	1.0	15.0	$\because 6$
14	3－3．3	39.7	33.6	34.3	15． 4	\because	W．3．2	29．8	14．	1.0	17.3	21.8
15	：34． 5	44.0	37． 1	$\because 7.6$	17.9	：11． 1	33.6	－9．9	21.0	1.0	9\％．${ }^{18}$	\because ¢f． 1
16	34.6	319.9	36.7	次． 0	\cdots	$\because-0$	34.5	31． 5	1－！	1．0	18.9	8！． 6
17	30.2	35， 1	SN．S	37.5	15.9	2－9	33.4	24． 1	12．3	1.0	9.4	St． 4
$1{ }^{2}$	$4 \because .5$	7.3	31.5	26.7	16.7	$\because \sim 0$	：	29.4	$\because 1.5$	1．0	5.5	34.2
19	37.9	3	99.8	\cdots	$1 \cdots$	$\because-9$	没：	29.5	17.9	1．0	16.1	13． s
20	22．2	350	20．3	111：	21.1	2－6	33． 5	81.5	Sis 4	1.0	$\because 7.3$	23．3
21	s． 4	33.9	3．3． 5	－3．8	25.5	26.8	34.6	32.0	28.6	1.0	311.2	33.0
2：	4． 11	44，3	35． 1	＋13．0	2－3	27.3	37.0	：31． 4	26.1	1.0	：in．	33． 3
\because	21． 2	43.2	3：1．：3	11.4	2．3 3	03.3	：3．	31.3	21.9	1.0	－3，	39.5
24	\bigcirc	43.9	$\because 7.9$	＋ 5.9	24.7	：10．0	3．5． 6	20.7	19.8	1.0	31.1	410.5
25	32．0	$2: 5$	31.5	－ 52	25.1	：31．4	35.4	24.7	18.6	1.0	34.5	40.2
21	30.6	20．4	14.7	4.7	23． 1	31.6	3is． 9	2 ± 3	1：2．9	1.0	31.3	361.3
$\because 7$	40.5	33.5	2.6	10.1	20.1	$\because-3$	湤 1	311.8	20.9	1.0	34.6	33.7
2	36．5	29.6	2.1	－ 4.2	20.0	30.3	P． 6	30.5	25.9	1.0	13.4	37.4
49	せx．0	－31． 2	31.4	＋$\quad 21$	17.8	30.9	35.1	23．2	16.8	1.0	0.8	？ 8
30	15.5		4.0	－3．1	19.6	$+33.7$	33.6	23． 1	＋ 9.9	1.0	－ 11.4	：3． 1
31	-17.4		－ 14.5		＋20．7		＋ 33.0	＋24． 1		-1.0		－：34．5
Means．	－33．19	－32．99	－32．24	－ 15.86	$+12.64$	＋29．15	＋34．35	$+30.37$	$+19.56$	-1.00	－9．77	－ 26.45

Hourly means of dew point observed at Polaris Bay．

Time．	Jan．	Feb．	Mar．	April．	Mas．	June．	July．	Aug．	Stept．	Det．	Nor．	Dec．	Mean．
	\bigcirc	\bigcirc	\bigcirc	\bigcirc								－	
$0^{\text {b }}$	33.	33.		21.	9.	2－		2 s			8，R3	$\because 6,84$	3.08
1	34． 20	32． 42	32． 25	20．32	6． $2 \times$	$\therefore 12$	：3．3． 61	28．5	1！\％	1.00	$\cdots .46$	＂＇s， 6	$\therefore 3.15$
2	33.76	32． 22	35． 07	17.50	6．7！	2x． 31	33， 94	29.10	19.56	1． 00	－ 6.	2－5． 30	． 97
3	32.87	33． 41	35． 52	－4． 58	10． 81	2！00	34.10 .1	景！ 5	19， 5 ¢	1.00	！ 9 9\％	U8．9	2． 78
4	33． 00	31.85	34， 13	17． 38	7． 7.1	ご，ーが	：34． 21	30.19	19.56	1． 00	10．44	26.13	2.71
5	33． 30	32． 46	33． 42	16．88	12， $0: 3$	9！ 9	：14． 0	34）． 17	19.56	1． 00	10.64	25． 9	\because
6	33． 21	31.87	32． 67	15.01	15． 92	29． 26	34． 62	31．	19.56	1． 00	10． 10	26． 14	1.64
7	33． 34	32.55	34.85	24． 04	13． 24		： 4.18	：31．34	19.95	1． 00	10． 13	86.41	2.89
8	32． 43	32． 25	30.92	13． 67	14．1＊	3）． 11	35， 2	31． 31	19.515	1． 00	10． 12	？ 21	1． 49
9	34． 79	32.00	31． 96	1：3． 26	14．711	29.16	34．		19.56	1． 00	10.34	27.10	1.75
10	33． $4: 3$	31.52	29.12	$1 \because 2$	15． 19	Q！ 131	34.19	：1． 45	19.51	1． 00	111.03	27.04	1． 12
11	32． x 9	33.31	35． 20	9． 79	15.31	－3． 31	33． 112	：11．0：	19． 51	1.00	10． 25	26．63	1.56
Noon．	32.71	32.91	31.84	8.76	15． 16	30.0 .5	34， 5	：31．：	1！1． 56	1.0	9.7	31.1	1． 05
$1^{\text {b }}$	35.10	33.88	29.09	15．30	15.24	80，9\％	34.58	： 11.711	19.513	1． 00	10．23	26． 21	1． 65
2	32.94	33.43	30.73	1F． 1.2	14.95	29.4	：34．－4	\％1．	119．39	1． 00	9.43	＊（i） 47	1.81
3	32． 77	33.89	30.84	10.92	17．05	29．6	S4． 19	31.21	19．\％；	1． 00	9.8	215．93	1． 13
4	33.07	33.69	31.04	10．76	14． 42	2！ 1	34.41	30.85	19． 10	1． 00	10．12	36． 13	1.41
5	33.07	33． 49	31.69	11．78	13．59	29， 31	34． 34	31.23	19.56	1． 00	10.05	26． 66	1． 64
6	32． 48	34.63	32． 63	14．39	13． 04	29.49	虽，	：11．-3	19.56	1． 00	4.45	？6i． 15	1． 99
7	33.41	33.72	31． 66	16．：36	$1 \because .55$	2－6	34．14	29， 34	19.56	1． 61	！ 1 ： 11	6lime	2．27
8	32． 13	34.19	32.15	14． 69	12．12	28．72	34． 12	29． 114	19.56	1．${ }^{\text {a }}$	1， $3:$	24． 97	2． 07
9	33.06	33． 46	32.23	15． 23	11．79	6！ 11	3：2， S_{1}	29． 31	19.56	1． 00	8.11	2H． 64	1.72
10	32.40	32． 79	31.96	19.43	11．72	20.3	34．1：2	2－24．4	19.56	1． 00	9.15	26.00	2． 38
11	－33．04	33.03	31.50	－17．92	10.67	＋ 39.15	：3．11）	2－8．73	$1 \times .71$	1.00	9.	曻．07	\because
M	33． 19	32.99	32.24	15.86	is．	29.15	34， 3	30.37	19.56	1.00	9．85		2.05

11 H 0

AN工LAL FLUCTUATION OF THE TEMPERATURE OF THE DEW-POINT AT POLARIS BAY.

The following table contains the observed and computed temperatures of the dew-point, and also the differences between the observed and computed ralnes:

Months.	Ohiserved.	Cumputer.	Ditintence, 1.-C.
	\bigcirc	0	c
. Jamuary	- 33.46	- NAS	- 0. 5
Fumbars	iin. 02	31. 413	+ 1.3n
Mitrels.	:31.4!	$\therefore 110$	-11. - 1
Alril	- 1\%. di-	- 16. 2.3	+11.-1
Miay	+ 1330	+ 1\% ${ }^{\text {a }}$	+ 11.417
June	$\because 1.3$	30.631	- 1. 3 ?
July	$\because 4 .: 4$	ifti. 191	- 1.
Athictat	:11. $\therefore=$	3! 114	+ 1.:11
	+ $14 . \because 1$	+ 19.	-0.111
(Wroble	- 1.1\%	- 1.03	+11.111
November	9. $9:$	10.60	+ 13.16
December	- $\because 6.3$	- 2li. 4i	- 11.13
Suturs	- 11. 2 !	- 11. 110	+0.17
suminer	+ $\because 1.3:$	+ 31.11%	-0.0.2
Antullu	+ $\because 36$	+ 234	+ 0.32
Winter	- $\because 1.10:$	- 31. 31	+ 0.3
N1:011s	- $\because .11$.	- $\because 11.0$	± 0.00

The analytion elements and expression fiom which the above values have been derivel are as follows:

$$
\begin{array}{r}
D=-2.05+31.5 \sin \left(r+2: 517^{\prime} 35^{\prime \prime}\right)+4.2 \sin \left(2 x+60^{\circ} 40^{\prime} 7^{\prime \prime}\right)+1.57 \sin \left(3 x+310^{\circ} 36^{\prime} 5^{\prime \prime}\right) \\
x=\left(60^{\prime}, \ldots\right.
\end{array}
$$

For better comparison the differences between the computed temperature of the air and the computed temperatare of the dew-point are giren in the tollowing table:

From the above table it appears that the difference between the temperature of the air and the temperature of the dew-point is greatest in December and least in October. Daring the different months, the temperature of the dew-point is above the annoal mean in Mas, June, July, September, October, and November; while it is below the same during the six remaining months. Likewise, the mean temperature of the dew-point is below the annoal mean in winter and spring, and abore the same in sumwer and antumn. If the corves representing the annoal fluctuation of the temperature of the air and of the dew-point were represented simnltaneonsly on one diagram, we should perceive them to run nearly parallel from the latter part of March till the middle of September, while they would diverge more or less during the rest of the period.

DIURNAL FLUCTUATION OF THE DEW－POINT AT POLARIS BAY．

The analytical elements and expression representing the diumal fluctuation of the dew－point are as follows：

By means of the above formula，the following ralmes were obtained：

Time．	Otiserved．	Computa d．	Ditirmanco （）．－（！．	＇l＇ime．	（）bsarmal．	Computiol．	
	\bigcirc	\bigcirc	\bigcirc		\bigcirc	r	1
0^{11}	－3． 11.8	－3．03	-0.06	Noun．	－1．11．	－1．1！	＋ 0.41
1	3.15	3． 215	＋ 11.11	$1^{\text {b }}$	1． 5.5	1． 51%	－ 0.103
\because	9.17	3.15	11．1－	\because	1．-1	1．5	－0．3！
3	－ブ	$\because 811$	＋ 1.00 .0	：	1.17	1． 41	＋ 0.23
4	ソ． 77 －	？．17	－ 11.30	4	1． 41	1． 413	0.11%
5	2．${ }^{3}$	$\because 3.31$	－ 11.01	5	1． 61	1．137	＋ 0.010
6	1． id	2．こう	＋ 11.63	1 i	1． 319	1． 1.44	－0．115；
7	2．-7	9.15	－11．74	7	¢．	\％．0゙i	0.15
K	1． $4!$	1． 87	＋11．3．	K	$\because .17$	－ 104	－ 0.01
9	1.75	1．51	－11． 26	！）	1．7\％	\cdots	＋ 0.310
10	1． 1^{6}	1．シ	＋0．113	－111	ソ．：$: 7$	2.15	－ 0.30
11	－ 1.50	－1． 31	－0． 0.3	11	－？（i．）	－ 2.87	－0．112

Aecording to the formnla the temperature of the dew－point reaches its maximom of－ 10.28 at about $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$ ．，and its minimum of -30.26 at about $1^{\mathrm{h}} \mathrm{a} . \mathrm{m}$ ．，thus exhibiting a diurnal range of $1^{0} .98$ ，which is by $0^{\circ} .12$ greater than the diurnal range of the temprature of the air．The cor－ responding thermal curve passes throngh the maximum at $11^{1 \mathrm{l}} 10^{\mathrm{wI}} \mathrm{a}$ ．m．，and throngh the minimum at $0^{\mathrm{h}} 56^{\mathrm{m}}$ a． m ．

The differences between the computed temperature of the dew－point and the computed tempera－ ture of the air are as follows：

$0^{\text {b }}$	6.30	$6^{\text {b }}$	5.97	Noou．	6． 48	$6^{\text {b }}$	（6． 31
1	6． 44	7	6.36	$1{ }^{\text {b }}$	6．$\%$	7	（i． $2:$
2	6.56	8	6.44	2	6． 59	8	（i． 05
3	6． 20	9	6.48	3	6.40	9	5.79
4	5.97	10	6.31	4	6.31	10	5.76
5	5.99	11	6.33	5	6.30	11	1． 05

It will be seen that the greatest difference between the temperature of the air and that of the dew－point during the twenty－four hours exists at $3^{h} \mathrm{p}$ ．m．，being $6^{\circ} .59$ ；while the smallest，of $5^{\circ} .75$ ， occurs at about $10^{\mathrm{h}} \mathrm{p} . \mathrm{m}$ ．

The following table contains the honrly ratiation of the temperature of the dew point daring the four seasons．The seasons were not computed aecording to the formula，but it was thonght sufficient，as the time at on disposal was bather limiter，to combine the compoted hourly means of the respective montbs constituting thr differmt sasoms，and to take the mean of the same．

Time．	Spring．			Simmmer．			Antumin．			Wiuter．		
	$\begin{aligned} & \text { B } \\ & \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & \dot{3} \\ & \underline{y} \\ & \frac{E}{E} \end{aligned}$	茳	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { y } \\ & \text { y } \\ & \text { 出 } \end{aligned}$			
	\bigcirc	\bigcirc		\bigcirc	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {h }}$	－14．92	－14． 13	－11： 3	＋：0．15	＋：31．55	－ 0.07	＋3．24	＋ 3.17	＋ 11.07	－：31． 19	－30． 55	－0．91
1	15． 4 ：3	15． 23	－ 0.20	310．18	：31． 47	0．${ }^{\text {a }}$ ）	3．：37	3.16	11.21	3075	30.197	＋0．22
2	15． 26	15．60	＋11．34	31.45	311.50	－ 11.05	3．31	3． 11	＋ 11.20	30． 43	30.90	＋0．47
3	16.50	15．45	－ 1.0 .5		30，（6i）	＋ 11.23	2． kl	3． 133	－ 11.17	31.74	30.81	－0． 0.4
4	14．8！	14．72	＋ 11.13	31.07	30.89	$0.1 \times$	$\because .71$	\because ¢	－ 11.17	310． 313	30.68	＋0．35
5	1：27；	13． 55	＋0．7！	：31． 34	31.14	0.101	$\because 6.4$	2.51	＋0．13	30． 515	30.10	0.104
6	10.89	12． 17	＋ 1.8	：31．59	31.37	0． $3 \cdot 2$	2． 25	$9.7!$	0.106	313.41	30.60	＋ 0.19
7	15，吅	11． $3=$	－ 3.90	31． 511	31．53	0.10	$\because .94$	\because ¢ 710	10．10	$30.7 \times$	310， 611	－0．14
$\stackrel{8}{8}$	11.14	10．15	＋ 11.46	31． 1%	：11．61	0．35	$\therefore \times 1$	只竕	＋ 11.06	30． 30	310.73	＋ 0.13
9	10． 27	10．1s	－ 1.0 .9	31.25	：1． 615	0.10	$\because 71$	3.18	－11．33	31． 29	30． 83	－0．46
10	K． 82	4． $9: 3$	$+1.11$	39.15	：1． 71	0． 44	2． 4.4	\％ 78	＋ 11.107	30． 616	30． 6	＋ 0.26
11	9.80	10.06	＋11．17	\％ 14	31．Mr	1）． 21 i	？ 37	？ $7: 3$	＋11．04	30． 314	30.18	0.04 $+\quad 10.4$
Noon．	4.51 0.8 .8	9.69	＋1．18	31.97	：11．49	$0.10 \times$ +10.17	¢！9\％	3． 09	＋ 11.17	311.50	31.01	＋ 0.43 0.3
［1］	9．72	11．${ }^{\text {a }}$	－ 0.44	：3．17	32.101	＋0．17	$\because .78$	2.8	－ 0.10 .19	31.75	31.08	－ 11.67
2	11．29	9.21	－$\because .10$	31.17	： 210	－ 0.15	3． 104	$\because . \sim 7$	＋ 11.17	31． 95	31.12	＋ 0.17
3	$\times .24$	9.37	＋1．13	$31 . \times$	： 11.14	0.11	$\because .91$	¢． 93	－ 11.102	31.80	：31．15	－ 0.10 .15
4	9.13	9.74	0．186	31.5	$31 . \sim 1$	－ $0 . .29$	2.94	$\cdots 3$	11.05	30.96	：31．19	＋ $11.2: 3$
5	9．96	10．：37	＋0．41	31．（i，	：1．611	＋0．15	2.1	3． 34	－ 11.50	31． 07	31． 19	＋0．12
6	11．3：3	11． 79	－0．54	31.15	31.38	＋0．04	： 3.04	3． 00	＋0．04	31.193	30． 39	－ 01.10
7	11.82	11．46	－ 0.38	30． 31.17	：31．19	－0． 02	3.108	$2 \cdot 9$	＋0．09	31.04	：31）．${ }^{3}$	-0.18
8	11.56	11．	＋ 0.3	30.1510	31.10	－ 0.45	3.17	\％． 99	$0.10 \times$	311． 40	30．76	＋ 11.36
${ }^{9}$	11.89	12．	＋0．39	30.87	30． 91.91	0.04	3.05	3.102	0．0：3	31.05	30.74	－0．33
10	13． 28	12.84 -13.59	+0.38 +0.68	$\begin{array}{r}30.169 \\ +30.178 \\ \hline\end{array}$	$\begin{array}{r}30.810 \\ +30.59 \\ \hline\end{array}$	-0.11	3.14 $+\quad 8.96$	3.07	＋ 0.08 ± 11.16	31.42 -31.15	31.76 30.45	$\begin{array}{r}10.33 \\ +0.34 \\ \hline 0.20\end{array}$
M．\＆D．	－11．82	－11．	士 0.00	$+31.30$	＋：31．30	± 0.09	＋ 2.9	＋2．95	± 0.00	-30.88	－30．8x	上 0.00

The mean temperature of the dew－point during spring is $-11^{0} .82$ ，or 80.08 lower than the mean temperature of the air．For better comparison the differences between the computed tem－ perature of the air and the computed temperature of the dew－point are given in the annexed table． As the thermal curves for the seasons were only computed for every other hour，our table contains ouly the bihourly values．

Difference between the temperature of the air and the temperature of the dew－point during spring．

$0^{\text {b }}$	2	4	6	8	10	Noou．	$2^{\text {b }}$	4	6	8
$7^{\circ} .58$	$8^{\circ} .36$	$7^{\circ} .86$	$6^{\prime} .73$	$5^{\circ} .45$	$6^{\circ} .94$	$6^{\circ} .91$	$6^{\circ} .39$	$6^{\circ} .31$	$6^{\circ} .77$	$6^{\circ} .83$

On the following diagram the thermal curve and the corresponding curve of the temperature of the dew－point are represented simultaneously．

Diurnal fluctuation of the temperature of the air and temperature of the dew-point during spring, 1872.

It will be seen that the computed temperature of the dew-point reaches its maximum between 1^{h} and $2^{\mathrm{h}} \mathrm{p}$. m., while the minimum occars at 2^{h} a. m. The maximum and minimum, as observed, occur at 3^{h} p. m. and 3^{h} a. m., respectively. The thermal curre, and that representing the luctuation of the dew-point, run almost parallel with each other; they approach each other most closely at 8^{h} a. m., and recede most from each other at 2^{h} a. m. The probable error of any single observation is $0^{\circ} .10$, that of the mean being $0^{\circ} .02$.

The following values represent the difference between the computed temperature of the air and the computed temperature of the dew-point during summer :

$$
\begin{array}{ccccccccccc}
0^{\mathrm{h}} & 2 & 4 & 6 & 8 & 10 & \text { Noon. } & 2^{\mathrm{h}} & 4 & 6 & 8 \\
5^{\circ} .20 & 5^{\circ} .46 & 5^{\circ} .43 & 5^{\circ} .44 & 6^{\circ} .06 & 6^{\circ} .96 & 70.22 & 6^{\circ} .84 & 6^{\circ} .52 & 6^{\circ} .43 & 50.94 \\
50.31
\end{array}
$$

The annexed diagram exhibits the-
Diurnal fluctuation of the temperature of the air and temperature of the dew-point during summer, 1872.

The mean temperature of the dew-point during summer is $19^{\circ} .48$ bigher than during the prceeding season, differing by $6^{\circ} .22$ from that of the air; while during spring the difference was $0^{\circ} .86$ greater. The computed curve reaches its maximum at $2^{h} p$. m. and its minimum at 1^{h} a. m.; the range being 10.75 . The observed curve passes through the maximum at $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$., while the time of its minimum coincides with that of the computed value. The thermal curve and the curve showing the fluctuation of the dew-point approach each other most closely at midnight, while they are farthest apart at noon.

During autumn, the differences between the temperature of the air and the temperature of the dew-point are as follows:

$$
\begin{array}{cccccccccccc}
0^{\mathrm{h}} & 2 & 4 & 6 & 8 & 10 & \text { Noon. } & 2^{\mathrm{b}} & 4 & 6 & 8 & 10 \\
1^{0} .23 & 1^{\mathrm{o}} .29 & 1^{0} .55 & 1^{0} .62 & 1^{\circ} .67 & 10.63 & 1^{\circ} .32 & 1^{0} .57 & 10.48 & 1^{0} .43 & 1^{0} .43 & 10.30
\end{array}
$$

The following diagram represents the-
Diurnal fluctuation of the temperature of the air and temperature of the dew-point during autumn, 1871.

While the curve exhibiting the march of the temperature is but slightly bent, owing to the insignificauce of the thermal wave during the latter part of this season, the temperature of the dewpoint shows a more considerable range. The computed curve passes through the maximmot $0^{\text {h }}$ a. m. and through the minimum at $5^{\text {h }}$ a. m., the latter coinciding in regard to time with its corresponding observed value, while the observed maximum occurs at 1^{h} a. m. Besides the absolute maximum there are four relative maxima, occurring at 6^{h} a. m., 9^{h} a. m., noon, and between 4^{h} and $5^{\mathrm{h}} \mathrm{p} . \mathrm{m}$, respectively, while the relative minima are reached at about $7 \frac{1}{2} \mathrm{~h}$ a. m. $100^{\frac{1}{\mathrm{~h}}}$ a. m., $1 \frac{1}{2}^{\mathrm{h}}$ p. m., and at 7^{h} p. m., respectively. The observed and computed ranges are $0^{\circ} .53$ aud $0^{\circ} .66$, respectively. The thermal curve and the curve representing the diurnal fluctuation of the dew-point approach each other most closely at midnight, as was the case in summer, while their greatest separation occurs at $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$.

It remains now to consider the diurnal fluctuation of the dew-poiut during winter.
The following differences between the temperature of the dew-point and the temperature of the air were found to exist :

$0^{\text {h }}$	2	4	6	8	10	Noon.	$2^{\text {h }}$	4	6	8
$10^{\circ} .76$	$10^{\circ} .63$	$10^{\circ} .49$	$10^{\circ} .05$	$10^{\circ} .32$	$10^{\circ} .32$	$10^{\circ} .62$	$10^{\circ} .43$	$10^{\circ} .58$	$10^{\circ} .12$	$10^{\circ} .26$

The following diagram exhibits the curve of the dew-point and the thermal curve during winter:
Diurnal fluctuation of the temperature of the air and temperature of the dew-point during winter, 1871-772.

While, during the last season, the diurnal range of the temperature of the dew-point was greater than that of the air, we now see the contrary to take place. The temperature of the dew-point, according to the computed curve, reaches its maximum at 6^{h} a. m. and its minimum at 4^{b} p.m. Between the absolute maximum and minimum the curve is seeu to oscillate in an irregular manuer, thos exhibiting a number of relative maxima and minima which sometimes correspond to similar maxima and minima of the thermal curve. The difference between the temperature of the air and the temperature of the dew point is greatest at midnight and least at 6^{b} a. m. The compnted and observed ranges of the temperature of the dew point are $0^{\circ} .59$ and 10.35 , while those of the air are $0^{\circ} .78$ and $0^{\circ} .83$, respectively.

In order to discuss the diucual flnctuation of the temperature during each of the different months, each month was treatel analytically. The following analytical elements and expressions were used in this computation :

January.

n	a_{n}	b_{n}	B_{n}	C_{n}	
1	+0.19	-0.21			
2	-0.17	-0.22	+0.27	138	6
		6.28	216	49	44
3	+0.01	-0.17	+0.17	178	21

$D=-33.20+0.27 \sin \left(x+138^{\circ} 6^{\prime} 6^{\prime \prime}\right)+0.28 \sin \left(2 x+216^{\circ} 49^{\prime} 44^{\prime \prime}\right)+0.17 \sin \left(3 x+178^{\circ} 21^{\prime} 28^{\prime \prime}\right)$ $x=15^{\circ}, 30^{\circ}, \ldots$

February.

March.

n	a_{n}	b_{n}	B_{n}	C_{n}	
					0
1	-0.67	-0.93	+1.15	215	46

$D=-3.24+1.15 \sin \left(x+215^{\circ} 46^{\prime} 12^{\prime \prime}\right)+0.57 \sin \left(2 x+104^{\circ} 16^{\prime} 52^{\prime \prime}\right)+0.74 \sin \left(3 x+86^{\circ} 59^{\prime} 0^{\prime \prime}\right)$
April.

n	a_{n}	b^{\prime}	B_{n}	' n
				- ' ${ }^{\prime}$
	-3.17	- 2.83	+4.19	2294030
$\stackrel{2}{2}$	$\begin{array}{r}\text { + } \\ \pm 0.20 \\ \hline 1.39\end{array}$	- 0.63 +0.30	+0.67 +0.49	$\begin{array}{cccc}162 & 23 & 1.5 \\ 307 & 34 & 0\end{array}$
	-1.39	+ 0.30	+ 0.4	30734

$D=-15.86+4.19 \sin \left(. x+2.9040^{\prime} 30^{\prime \prime}\right)+\begin{gathered}0.67 \sin \left(2 x+162^{\circ} 0: 3^{\prime} 15^{\prime \prime}\right)+0.49 \sin \left(3 x+307^{\circ} 034^{\prime} 0^{\prime \prime}\right) \\ x=150^{\circ}, 300^{\circ}, \ldots\end{gathered}$
May.

n	a_{n}	b_{n}	B_{n}	C_{n}
				- , "
1	-3.09	-1.51	+ 3.45	244110
2	-0.27	-1.00	+1.102	1951518
3	+ 0.83	-0.0.03	+1.05	12840

$D=+1264+3.45 \sin \left(x+244^{\circ} 11^{\prime} 0^{\prime \prime}\right)+1.02 \sin \left(2 x+195^{\circ} 15^{\prime} 18^{\prime \prime}\right)+1.05 \sin \left(3 x+128^{\circ} 4^{\prime} 0^{\prime \prime}\right)$

Tuиe.

n	a_{n}	b_{n}	B_{n}	C_{n}	
1	-0.40	-0.28	+0.49	235	0
2	+0.04	+0.11	+0.12	19	3
3	+0.07	-0.24	+0.25	163	4

$$
D=+29.15+0.49 \sin \left(x+235-0^{\prime} 30^{\prime \prime}\right)+0.12 \sin \left(2 x+19^{\prime \prime} 3^{\prime} 2 x^{\prime \prime}\right)+0.25 \sin \left(3 x+16.3+55^{\prime \prime}\right)
$$

duly．

n	n_{n}	b_{n}	R_{n}	C_{n}		
					0	0

August．

n	a_{n}	b_{n}	B_{n}	C\％
1	-1.53	－ 0.08	－1． 1.80	（10
2	－0．24	－ 11.16	＋ 0.29	－3i 1 2×30
3	＋0．10	＋ 0.10	＋0．11	433339

Suptember．

n	a_{n}	b_{\sim}	n_{n}	\prime^{\prime}
				－＇＂
1	-0.90	－－0．1：	＋ 0.49	2033157
2	-0.19	－ 11.21	＋ 11.29	以上2 154
3	－11．56	$+0.17$	＋ 0.53	$7: 4: 3$

November．

n	a_{n}	χ_{n}	B_{1}	C_{n}
				－＇ 1
1	＋ 0.21	－ 11.11	$+0.75$	时枵： 0
2	＋10．22	＋0．21	$+0.30$	46 910
3	－0．01	－ 0.00	＋ 11.08	434%

$$
\begin{gathered}
I \prime=-9.77+0.75 \sin \left(r+5827^{\prime} 30^{\prime \prime}\right)+0.30 \sin \left(2 x+46^{2} 20^{\prime} 0^{\prime \prime}\right)+0.08 \sin \left(3 r+434^{\prime} 30^{\prime \prime}\right) \\
x=15^{\circ}, 30^{\circ} \ldots
\end{gathered}
$$

Deccmber．

n	$\Pi_{1 /}$	b_{n}	$j j_{n}$	${ }^{\prime}{ }^{\prime}$
				－＇$/ 1$
1	＋ 11.19	－0． 01	＋ 0.99	$1: 3754$
$\stackrel{2}{2}$	－ 0.08	－ 11.09	＋ 11.10	22.19
3	－U．0．0	－0．20	＋ 0.22	21423818

The following table contains the values computed by means of the preceding aualytical expres． sions；also the observed values and the differences between the observed and compnted means：

DEW－POINT．

＇Time．	January．				Miurch．		
	Observed．	$\begin{aligned} & \text { Compu- } \\ & \text { ted. } \end{aligned}$	Difference， O．－C．		Observed．	$\begin{aligned} & \text { Compu- } \\ & \text { ted. } \end{aligned}$	Difference $\mathrm{O} .-\mathrm{C} .$
	0	\bigcirc	\bigcirc		\bigcirc	2	\bigcirc
11	－33，333	－33．46	$+0.13$	0^{4}	－$\because .40$	－32．17	－0． 3
1	$\because 4.20$	33，59	－ 0.61	1	ir． 95	33.10	f0． 0.8
\because	：3．3． 76	33． 56	－ 0.20	\％	：3．5． 07	34.00	－ 1.07
\because	：3，$=7$	33． 39	＋11．53	：	35.50	34．5\％	-1.00
4	33.00	33.07	＋ 0.15	4	34．1：	34．42	$+0.23$
＂	33． 30	23， 06	－0．24	5	33． 43	：3．7	0.34
6	：3： 31	33.05	0.16	6	： 3.67	32.8	＋ $0 . \because 2$
7	［33． 39	33． 18	－0．21	7	31.5	3.12	－2．73
\checkmark	3：3．4：	33． 37	$+0.94$	＊	30.92	： 11.7	$+0.81$
9	34.79	3 3 ． 5	－1．27	9	：31．91；	：1． 69	－0． 0.5
111	33． 43	3．1． 54	＋0．16	10	2！！1：	$: 31.77$	＋ 2.15
11	：32． 89	：3：3， 55	（1． 66	11	35． 01	32.76	－ 2.44
Noun．	39． 71	：3．3． 36	＋0．65	Nuon．	31．-4	31.49	－0． 3 m
$1^{\text {b }}$	Si． 10	33． 39	－1．71	$1^{\text {h }}$	2！）． 09	$\therefore 1.11=$	$+1.82$
\because	： 3.44	： 3.2	＋ 0.35	2	：30． $3: 3$	30． 76	＋0， $10 ;$
\because	32.87	：3i． 23	0． 46	3	30.84	30． 76	－0．0．08
4	33.07	33， 29	$+0.92$	4	31.04	$: 31.16$	＋ $0.1 \geqslant$
5	3 B .07	：2．： 01	－0．06	5	31.69	31．	＋ 0.13
15	：2． 48	$\therefore 2.8$	$+0.36$	6	32.63	32． 5	－0．11
7	33.41	$\therefore 2.67$	-0.74	7	31．66	$\because 366$	＋1．1111
ris	只13	\％2． 59	$+0.46$	H	3－3． 15	32． 47	＋ 0.10
9	3i． 06	3．）． 66	－0． 0.40	$!$	：2．23	：31，9！	－0．24
10	$\therefore 3.40$	：3－3， 27	$+0.47$	10	$\because 1.96$	31.61	－0．35
11	－33i． 04	－$\because 3.20$	$+0.16$	11	－31．50	－31．6\％	$+0.12$
Mu＇lis．	－33． 20	－33， 20	± 0.00	Meaus．	－ 3.24	－32．$\because 1$	± 0.00
	February．					April．	
Time．	Observed．	Compu－ ted．	Difiernce． （1）－$(1$ ．	1me．	Observed．	$\begin{aligned} & \text { C'orathe } \\ & \text { terl. } \end{aligned}$	$\begin{aligned} & \text { Yiferener } \\ & \text { (1.-C. } \end{aligned}$
	\bigcirc	C	0		\bigcirc	－	－
$0^{1 /}$	－33．119	— 3 2.71	－0，吅	()1	－21． 5	-20.45	－ 1.411
1	：20．4	$\therefore 260$	＋11．15	1	20． $2:$	20.14	$-0.1=$
$\stackrel{4}{2}$		（i）． 52	＋ 0.30	\because	17． 011	20.17	十
：	：3． 41	［3． 60	-0.7	3	$\because 4.57$	$20.01 ;$	－4．51
4	31.8	：2．37	$+0.72$	4	17． 3 m	19．\％	＋2．：3
\therefore	S3． 46	： 3.40	-0.003	5	16． x	19．0．5	2． 17
6	31．Ki	30\％	＋0．：55	¢	15． 01	17．3x	＋2，37
7	次， 5	32， 03	－ 0.5%	7	24.04	16．5．4	－ 7.50
\cdots	：3．3：	31.97	－ 11.2 m	\cdots	13． 17	15．02	＋ 1.3
9	3000	？$\because 2.07$	$+0.107$	9	13，51；	13.49	－0．01
10	31． 82	： 2.8	＋0．8：	10	12，53	$1 \because 15$	－0．0．4
11	3：3． 31	汭． 75	－0．56	11	4.79	$1: 115$	＋2．2x
Noon．	：3\％．91	3i．12	＋ 0.21	Noon．	$\times 315$	13．75	＋3．99
$1{ }^{\text {b }}$	： $3,5 \times$	：3： 4%	－ 1.46	$1^{\text {b }}$	15， 30	1：46	－
\because	3．3．4：3	$\cdots 3.3$	$+0.19$	2	16．1F－	12． 2	－5．34
：	33． 51	33.74	－0．15	：	11.92	1： 10	＋～2．04
4	［3． 18.1	：3．）．S3	$+0.14$	4	10.76	12.97	$\because .21$
5	（3i． 49	［3．）． 31	＋ 0.42	I	11.78	13.06	＋1．02
1	$\because 4.63$	3：\％．96	－0．6\％	$1{ }^{1}$	14．39	1－3	－1． 51
7	3：3． $7:$	：3．3．95	＋ 0.3	7	16． 36	14．26	－こ，120
x	34． 69	：3．8．2	－0．97	H	14．6．4	15，51	$+0.20$
$!$	33． 410	［3：3．$\%$	$+0.11$	9	15．$\because 3$	16.913	＋1．51）
10	3：2， 319	33，55	＋ 0.415	11	14.48	1－25	－1，1
11		－3： 92	－ 0.11	11	－ 17.92	－ 19.9	＋ $1, \cdots$
Means．	－33，00	－3：3，00	± 0.00	Means．	－1\％． 6	－15，80	± 0.110

DEW－POINT－Continued．

Time．	Mire：			＇lime．	Inly．		
	Observal．	Compu－ ted．	$\begin{aligned} & \text { bifterner, } \\ & \text { O.一(} \end{aligned}$		Observed．	$\begin{aligned} & \text { C'ompu- } \\ & \text { ted. } \end{aligned}$	$\begin{gathered} \text { Dittierenee, } \\ \mathbf{O} .-\mathbf{C} . \end{gathered}$
	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0
$1{ }^{11}$	＋9．97	＋－（iois	＋11． 03	$0^{1 /}$	＋31．03	＋31． 01	-11.17
1	6．${ }^{\text {dr }}$	7.56	－ 1.96	1	33． 61	33． 31	－ 0.3 .35
\because	1． 719	7．36	－ 0.58	\because	33.34	：3．3： 7	＋ 0.15
：	10．60	c．${ }^{4}$	＋2． 36	3	34.09	33.71	11.35
4	7.75	10.10	－	4	：4．$\because 1$	33．75	11， 41
5	$1 \because 03$	12． 11 i	－11．1：3	5	34.84	：3．K：	11． 41 i
$1 ;$	15． $1:$	13．76	＋ 3.16	13	34.63	：$: 3$ \％ 9	11． 127
7	13． 3.4	14.71	-1.47	7	34． 13.1	3.14 .05	U． 5.2
－	14．1x	11． NW	-0.70	γ	35． 31	34.05	1.17
9	14． 70	11． 05	$+0.05$	9	：31．	34.11	11． 11
10	15． 19	14.18	－0．20	10	34.69	34． 16	11． 58
11	15．31	11．1i\％	＋0．13i	11	（3） 10	：3．5． 51	1． 4.4
Noon．	15． 117	15． 17	－ 11.11	Noun．	$\because 4.57$	34． 414	＋ 0.13
$1^{\text {h }}$	15．${ }^{4} 4$	1－5． 34	0.50	1^{11}	$\therefore 1.5$	：4．14	－11．15
2	14．915	15．！ 11	－ 1.01	！	34.84	34． 81	0．033
$:$	17．115	15． ij 10	$+1.45$	3	34． 68	：31． $1 \times$	11．$\because 1$
4	14．4\％	14.810	－ 0.31	\pm	34.41	34.91	1． 5.8
5	13．59	13． 216	－ 11.17	\therefore	：34．34	34.4	11．55）
13	15． 04	12． 3 m	＋ 11.116	1	：11．	34．${ }^{3}$	0.58
7	12.5	1－35	± 11.00	7	：1． 14	31.31	11． 6.9
－	12．1＂	12．36	－ 11.01	－	：3．1． 18	34．72	11.619
$!$	11.79	13.118	－ 10.28	$!$	33.81	：31． 11	0． 810
10	11．72	11．33	＋ 0.339	10	34．123	34． 581	11.44
11	$+10.68$	$+10.09$	＋ 0.5 sw	11	＋ 34.08	＋3．3． 14	－0．106
Means．	＋13．61 +12.64		± 0.101	Means．	＋34．35	＋34．35	± 11.00
Time．	J114．			＇lime．	Angist．		
	derved．				1Hasmid．	Compll H．el．	
	\bigcirc	\checkmark	\bigcirc				，
（17）	＋ 24.47	＋3n． 60	－0． 19	0^{4}	＋3x．94	＋9n． 00	＋ 10.14
1	36． 42	成动4	0．1：	1	或保	为！	－ 0.111
2	9－31	日大，n	－ 11.85	\because	99． 10	29． 110	－ 0.1117
3	99．112	－\％	＋ 11.30	3	？9．in	915	＋ 11.12
4		25．903	－11．11	4	：31． 111	90， 95	11． 311
5	29． 95	9！9． 117	＋0．17	\therefore	31）． 178	30.513	＋ 0.11
E	29． 26	9！． 12	＋0．11	1	30， 3 H	31.15	－0．17
7	$\because \mathrm{Na}$	\cdots	－0．36	7	31． 34	31．49	11． 1.1
8	？ 9.01	29． 01	± 11.00	$\stackrel{\star}{*}$	31.610	31.71	－11．14
$!$	\％．9． 10	2！ 011	＋ 0.12	9	31.815	：31， 21	＋ 01010
111	\％！：31	？！！！	＋0．11	10	？ 3.45	31.75	＋ 11.71
11	29）， 36	－1，50	-0.115	11	31． 0 ： 3	31.83	－ 11.81
Nown．	：21． 05	291．83	＋11．929	Numi．	31.311	31.41	－ 11.11
$1^{\text {b }}$	99，9\％	30.100	－ 0.05	$1^{\text {b }}$	：31． 711	31.35	＋ 11.3
$\stackrel{\square}{2}$	69． 4^{4}		11．13	\because	31． $2 \times$	31.30	－ 11.11 H
3	（69． 18	？ 9.74	11． 17	3	31．${ }^{2} 1$	：31． 2 ： 3	11．12：
4		？ 9	－11．13	1	30． 0^{5}	31．06	－ 11.21
5	星：3：	$3!16$	＋0． $2: 3$	5	31． $2: 3$	30.75	＋ $0.4 \times$
6	9！ 9 4！	99．10	＋ 0.47	1	：31． 51.	301． 31	＋ 11.20
7	920 10	O！． 191	－0．SM	7	99．04	29．41	－0．58
$\stackrel{\sim}{\alpha}$	20．72	－9．118	13．35	\％	99． 04	＊9，： 4	－ 11.32
$!$	9！． 10	\％！． 10	－ 0.102	9	－9．71	29．02	＋ 11.80
111	29.33 $+\quad 9017$	99.193 +9.97	＋11．30	111	$\because 2.11$ $+\quad 20$	$\begin{array}{r}38 . \\ +302 \\ \hline\end{array}$	＋ 11.15
11	＋ 99.17	＋ $9 \times .47$	＋ 1.310	11	＋2m． 31	＋ $2 \times .75$	＋11．01
Means．	＋ 99.15	＋ 91.15	± 0.01	Means．	$+30.39$	＋30．35	二 10.00

DEW-POLNT-Continned.

In Jannary the differences between the computed temperatme of the air and the computed temperature of the dew-point are as follows:

	\bigcirc		\bigcirc		\bigcirc		\bigcirc
0^{6}	9.85	6^{61}	10.75	Nount.	11.11.	[il	10. 63
1	10.58	7	10.3	$1^{\text {b }}$	10. $11 \times$	\%	10. 315
\because	10. 66	x	11.0.1	$\stackrel{3}{ }$	10.87	-	10.95
:	10. 15	$!$	11. 1.6	3	11.51	$!$	10.51;
1	11. $5:$	111	11.3!	1	11.19	10	11.07
-	11.55	11	11. 09	i	11.4:3	11	11.14;

The greatest difference ocems at $4^{1 /} \mathrm{p}$. m., white the closest approximation of the two enres toward each other takes place at midnight. The computed curve representing the temperature of
 reached at 10^{h} a. m., thus showing a jange of 19.0 . The thermal curve passes throngh the maximam at 5^{12} a. m. ant throngh the minimmat midnight, while the maximm and minimmon of
 to time with the maximom temperature of the dew-point.

In February the differences between the computed trmperature of the air and the romputed temperature of the dew-point ware fomm an follows:

$0^{\text {h }}$	10. i 1	13^{11}	$\cdots \cdots$	Noon.	S. 61	$1 i^{1 /}$	9. 0.94
1	10.: 51	7		1^{16}	!. 5	7	11. 74
\because	10. 8.5	-	2.1.	\because	10.010	r	11. 19
:	11. 21	$!$	$\therefore 111$:	111. 24	!	111. 41
4	(1). 519	10	-6.7.1	1	10. $3: 1$	111	11. . 11
5	(3) 16	11	9.3	5	11. $\because=$	11	11.4.)

The greatest and least differences between the temperature of the air and the temperature of the dew-point occur at $10^{1,} p$. m. and $8^{11}:$. m., respectively. The computed emrer ilhstating the

 greater than the rage during the last month. The themal cure pasces throngh the maximma at miduight and through the minimmat at $6^{\text {h }} \mathrm{p}$. m. ; the maximum ant minimum of relative hamidity occurring at 10^{14} a. m. and midnight, respectively.

In March the differences between the computed temperatire of the air ant the computed temperature of the dew-point are as follows:

0^{hl}	7.8	131	7.93	Nomel	(1) :13	13	(1). $4: 3$
1	¢, ¢!	7	7. 93	10	+. 113	7	11. 21
\because	10.113	-	7. 115	\cdots	$\therefore \because$	\checkmark	\therefore (id)
3	10.5	!	7. 8	:	$\therefore \because 1$	$!$	¢, in
4	111.43	111	- 7!	1	- 191	111	7. 13i)
5	4.13	11	10.500	5	11. 36	11	-. 26

From the above values it appars that the curve repesenting the fluctuation of the dew-point approaches the thermal carve closest at s^{h} a. m., when the differenco between the temperature of the air and the temperature of the dew point is 70.16 , while the greatest difference of $100 . \mathrm{in}$ exists at $3^{\prime \prime}$ a. m. The maximm temperature of the dew-point ocems at $2^{\prime \prime}: 30^{\prime \prime \prime} \mathrm{p}$. m., anm the mimmum at $3^{\prime \prime}$ a. m., while the maximom and minimmon of relative hmodity are reached at $10^{1 \prime}: \mathrm{a}$. m . and 4^{11} a. m., respectively. The thermal curve passes throngh the maximum at $1^{\mathrm{h}} \mathrm{p}$. m. and throngh the minimum at 6^{14} a. m. The range of the temperature of the dew-point durng this month is 30.76 , thas being by 10.76 greater than during the preceding one.

In April the difterences betwen the romputal temperature of the an :man the computed tomperature of the dew-point are as follows:

	c		\bigcirc		u	\%	\bigcirc
$10^{\text {b }}$!. 11	(i)	9. 3 an	Noun.	Y. 31	$1 i^{1+}$	6. 14
1	!. 3 ;	7	-.i4	$1{ }^{\text {b }}$	$\therefore 14$	7	6. 71
\because	8. 14	-	7.9	\because	7.80	-	7. 5111
:	r. 11.6	$!$	7. 21	:	7.	$!$	
4	*. 31	10	7. il_{6}	4	1., 5	10	9. 41
5	10.75	11	7.6	T	ti, 91	11	- \%

The greatest and least differences between the temperature of the air and the temperature of the dew-point are $10^{\circ} .75$ and $6^{\circ} .14$, respectively, occurring at 5^{11} a. m. and $6^{11} \mathrm{p}$. m., respectively. Tut temperature of the dew-point reaches its maximum of 19.49 at 10^{31} a. m., and its minimum of $\because 0^{\circ} .45$ at miduight, thus showing a range of 59.96 . The maximum and minimum of relatice hnmidity are reached at $6^{\prime \prime}$ a. m. and $S^{n} \mathrm{p} . \mathrm{m}$., respectivels, while the thermal curce passes throngh the maximom at noon and throngh the minimom at $3^{14} \mathrm{a} . \mathrm{m}$.

In May the differences between the two eurves in question are as follows:

0^{12}	4.94%	$6^{\prime \prime}$	4.73	Nooll.	3.40	$1 i^{11}$	4.:31
1	(i.13	7	セ5 5	1^{11}	$\because 96$	7	4. $5:$
2	$6,8)$	\cdots	$\therefore .97$	\because	-. 75	-	3, 4*
\therefore	B.35	$!$	3.	3	2.92	9	B. ! ! $)$
4	$\therefore 19$	10	4.14	4	:1. 74	10	4. 41
.	3.72	11	4. 12	,	4.09	11	-5, 39

The greatest and least differences between the temperature of the air and the temperature of the dew-point are 60.83 and $2^{20} .52$, respectively, occurring at $\underline{2}^{1}$ a. m. and $7^{1 /}$ a. m., respectively. The temperature of the dew-point reaches its maximum of $+15^{\circ} .96$ at $2^{h} \mathrm{p} . \mathrm{m}$. and its minimom of +72.36 at 2^{\prime} a. m., thus shoring a range of 80.50 . The maximum relatire hmidity ocenrs at noon and the minimum at $\mathcal{G}^{11} \mathrm{p}$. m., while the thermal curve passes the maximum and minimam at $1^{1 \mathrm{~L}} \mathrm{p} . \mathrm{m}$. and at midright, respectively.

In June the differences between the two curves in question are as follows:

	\bigcirc		\bigcirc		\bigcirc		\bigcirc
0^{17}	7, \%	8	7.27	Noon.	7.66	6^{17}	5. 21
1	7. $\%$	7	7. 4.3	$1^{\text {h }}$	7. 23	7	6. 91
\because	6.*-4	8	7. 66	2	6. 8.5	σ	6. N^{2}
3	1i.6.5	9	- 98	3	6. 80	9	6.75
4	7.08	10	8.44	4	7.00	10	\%. 2
.	7. ${ }^{2}$	11	$\therefore 13$	5	7.14	11	5.5

The mean temperature of the dew point during this month is 29.15 , being 50.29 lower than the temperature of the air. The greatest and least differences between the temperature of the air and the temperature of the dew-point occur at $10^{1 /}$ a. m. and 9^{1} p. m., respectivel δ, being $8^{\circ} .4 t$ and 60.78 , respectively; thins showing a range of $1^{\circ} .66$. The temperature of the der-poiut reaches its maximum at $1^{11} \mathrm{p} . \mathrm{m}$. and its minimum at 1^{h} a. m., while the maximum and minimum relatice humidity ocenr at miduight and noon, respectivels. The thermal rurre passes through the maximum and minimum at $11^{\mathrm{h}} \mathrm{a} . \mathrm{m}$. and $2^{21} \mathrm{p} . \mathrm{m}$., respectirels.

In Jaly the differences are as follows:

\bigcirc			\bigcirc				
$00^{1 /}$	$\therefore 111$	(i)	$\therefore 23$	Noom.	\% ! !	6^{11}	4.75
1	¢. 01	\%	5.9	$1^{\text {l }}$	- 66	7	4. 5
\because	\%. 14	\cdots	6. 21	\because	5. 39	r	4. 4!
:	5. 2.1	$!$	5.94	:	ᄃ. 23	9	4. 39
4	4.95	10	(i. 11	4	$\therefore 06$	10	4. 34
:	S. 1	11	$\therefore 8$,	4.92	11	5. 00

It will be seen that the greatest and least differences between the temperature of the air and the temperature of the dew-point occur at $\$^{1 /}$ a. m . ant $10^{1 \mathrm{~h}} \mathrm{p} . \mathrm{m}$., respectively. The temperature of the dew.point reaches its maximmm at $4^{\text {hh }} \mathrm{p}$. m., while the minimum occurs at $3^{\text {b }} \mathrm{a} . \mathrm{m}$; the former being $3 t^{\circ} .94$, the latter $33^{\circ} .71$, thus giving a range of 10.23 . The maximum and minimmorelate humidity are reached at $4^{h} \mathrm{a} . \mathrm{m}$. and $4^{\mathrm{h}} \mathrm{p}$. m., while the thermal curre passes throngh the maximim at $11^{1 \mathrm{l}} \mathrm{a} . \mathrm{m}$. and through the minimum at $\mathrm{s}^{1 \mathrm{p}} \mathrm{p} . \mathrm{m}$.

For Angust the differences in question were found as follows:

$0{ }^{11}$	4.3)	6i'	2. ${ }^{11}$	Noon.	8.20	$6^{\text {h }}$	i. 61
1	4.0N	7	3. 49	1^{11}	C. 53	7	5. 519
\because	4.01	r	4. 0^{5}	\because	8. $4: 3$	¢	5. 37
:3	4.0.	!	5. 11:	3	-. 00	$!$	5.12
4	8.31	10	7.1-	1	7. 09	10	4.5!
5	:3. 21	11	\%.71	\therefore	ti.sos	11	4.91

The greatest and least differences between the temperature of the dew-point and the temperature of the air of $8^{0.53}$ and 20.80 , respectively, ocear at $1^{14} \mathrm{p} . \mathrm{m}$. and 6^{11} a. m., respectively. The temperature of the dew point reaches its maximum of 31.80 at 9^{14} a. m., while the minimum of 28.80 occurs at midnight, thus presenting a range of 32.0 . The maximum and minimum relatire humidity are reached at $\underline{2 l}^{\prime \prime}$ a. m. and at noon, respectivels, while the corresponding thermal curve passes the maximum at $1^{1 \mathrm{l}} \mathrm{p}$. m . and the minimum at $11^{1 \mathrm{l}} \mathrm{p}$. m .

In September the differences between the temperature of the air and the temperature of the dew-point were found as follows:

	\bigcirc		-		\bigcirc		\cdots
0^{17}	5.97	13^{6}	5. 76	Noont.	6. 3!	$1 ;{ }^{1}$	5. 51
1	6. 42	7	5. 42	$1^{1 /}$	5. 1 l	7	5. 97
\because	6.86	\cdots	5.4 .7	\because	$\therefore .40$	\cdots	6.05
:	7.06	$!$	5. 71	:	4. 12	$!$	(i. 01
4	6. 87	111	6. 17	4	5. 22	111	-5. $¢ 1$
5	6.38	11	6. 46	5	-1. 29	11	4.:5\%

The greatest and least differences betreen the temperature of the air and the temperature of the dew-point of 70.06 and $4^{\circ} .35$, respectivels, occnr at $;^{\prime \prime}$ a. m. and $11^{1 \mathrm{p}} \mathrm{p} . \mathrm{m}$., respeetively. The temperature of the dew-point is at its maximum of 180.39 at $4^{\text {h }} \mathrm{p}$. m , its minimum of $16^{\circ} .18$ being reached at $3^{\mathrm{h}} \mathrm{a}$. m., thus showing a range of 20.21 . The maximmm and minimm of the temper: ture of the air occur at $4^{h} \mathrm{p} . \mathrm{m}$. and $11^{\mathrm{h}} \mathrm{p}$. m., respectively.

For reasons already stated me shall omit October in this synopsis.
Proceeding to Norember, we get the following differences between the temperature of the air and the temperature of the ders-point :

It will be seen that the greatest and least differences leetween the two curves in question occur at 5^{11} a. m. and 5^{11} p. m., respectirely. The temperature of the der-point reaches its maximum of - 80.72 at midnight, while the minimum of -110.17 occurs at $i^{\prime \prime}$ a. m., thas showing a range of $\because 3.35$. The maximum and minimum relative bumidity are reached at $8^{14} 17$. m . and 8^{ht} a. m ., respec. tively, while the thermal curve passes its maximom at 11^{14} a. m. and its minimom at 5^{11} a. m.

The differences in December are as follows:

			\bigcirc		E		\bigcirc
0^{4}	11.53	6^{17}	11.44	Noon.	10.17	$6{ }^{6}$	9.is
1	11.4!	7	10.61	$1^{\text {1/ }}$	10.15	7	! 1.96
¢	11. 3	-	11. 10	\because	10. $\because 3$	$\dot{\sim}$	(1, K)
3	10.54	!	11.	3	10.61	9	9.9\%
4	10.-7	10	11.17	4	10.44	10	10. 21
5	11.4!	11	11. 30	.	111.	11	10. 71

The greatest and least differences between the temperature of the air and the temperature of the dew-point are $11^{0} .53$ and $9^{\circ} .80$, respectirels, occurring at midnight and 8^{11} p. m., respectively. The temperature of the der-point passes through the maximnm of -25.57 at $8^{11} \mathrm{p}$. m., the minimum of $-26^{\circ} .90$ being reached at 9^{11} a. m., thas showing a range of 10.03 . The maximmo and minimnm relative humidity occur at $S^{h} \mathrm{p} . \mathrm{m}$. and 8^{h} a. m., respectively, and the thermal curre passes throngh the maximum at midnight, reaching its minimum at noon.

The following table of corrections may be found useful：
corrections to be applied to any hourly observation taken at Polaris Bay to obtain the mean temperature of the der－puint of the day．

Time．		$\frac{\stackrel{y y}{*}}{\underset{y y y y}{*}}$		$\begin{aligned} & \underset{~ E ~}{E} \end{aligned}$	$\underset{\sim}{\underset{y y y y}{*}}$	$$	$\ddot{シ}$ $\stackrel{y y}{*}$	$\stackrel{\text { B }}{5}$	$\frac{3}{3}$	－
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	u	\bigcirc	0	0	\bigcirc
$0^{\text {b }}$	-0.14	-0.10	－0．1	－$\quad .99$	－3． 17	－0． 6,	－0．$\because=$	－1．4．	＋0． 3	－ 0.20
1	1． 01	＋ 0.37	U． 27	4．11i	（3． 310	0．73	0.74	1．	1． 2 㫛	＋0．Fi
2	－0． 51	0．7\％	$\because 7.1$	1． 1.4	5．ふ－，	0.24	0.61	1．	$+1.07$	$+1.15$
3	＋0．$\because 2$	$0.5=$	$3 .: 4$	\＆．J1	$\because 14$	0．13	11．26	0.85	－ 0.30	－2．．0，
4	$+0.19$	0.14	1．5	1．5こ	4．－！	－11． $3: 3$	U． 14	－ 11.211	（1．7）	＋11． 3.9
5	-0.11	0． $3:$	1．14	－1．13）	－0．61	＋ 11.10	－ 0.1111	＋0．08	0.9 .8	0． 113
6	0．0．）	1．1：	0． 2.1	＋0．	＋3．$\because 2$	＋19．11	＋0．3is	0． 49	0．$: 31$	11． 29
7	-0.31	0． 44	－\％．\％	－ Cl 18	0.60	$1-0.47$	11． 21	0． 11.5	0.44	＋0．05
s	$+0.71$	0.74	＋ $1.33 i$	＋$\because 19$	1．54	-0.11	$+0.11$	1．$\because 1$	0．13	－0．1in
9	－ 1.60	U．（4）	0． 3.	\％．30	$\because .06$	$1+0.01$	－0．13	1．17	11． 6.1	0．（i）
10	-0.94	$+1.47$	＋ $3.11 i$	3． $3:$	$\because 5$	（1． 16	＋．0． $2: 4$	$\because 117$	0， $3 \cdot 1$	0．$i 0$
11	$+0 .: 30$	－0．隠	－？！－	6.115	$\because 15$	0． 21	0． 13	U． 64	0．．11i	－0．12
Noon．	＋ 0.48	＋0．0．10	＋ 0.44	7． 110	$\because 4$.	0.90	0，\％	0． 91	0.10	＋ 0.02
$1^{\text {b }}$	－1．91	－0．m	$\therefore 8.19$	＋0． 310	$\because 60$	（0．－1）	11．$\because=$	1．：31	－ 11.54	$+0.19$
\cdots	＋0．	0． 41	1.55	－2，－3	$\because .31$	0． 130	0． 14	0．－；	＋ 11.015	－0．0．）
3	0.4%	0.90	1． 44	＋4．114	1.41	0． S^{3}	0． $3: 3$	（1．-2	－ 11.14	－ $0.4=$
4	$0.1 \cdot$	0.70	1． 34	5.10	1．\％	0.14	＋11．16i	11． 415	11． $1: 3$	＋0． $3:=$
5	0.12	0.50	$1+0.59$	4．（15	11．3．）	0． 24	－0．01	11．－ 1	－0．：35	－0． 01
6	＋0．71	1． 1.4	－0．35	$+1.47$	＋ 0.40	＋0． 31	0.10	$+0.14$	＋ 11.31	＋ 0.30
7	－0． $3:$	0.73	$+0.10$	－0．00	－ 0.09	－0．$\overline{\text { I }}$ ，	0． 21	，－1．15	11． 3	0.45
8	＋1．14i	1.10	0.13	$+1.17$	0．5）	$0,4: 3$	0． $3 \cdot$	1． 3	1）．$: 17$	＋1．7
9	0.13	-0.47	0.15 .5	＋ $0.13 ;$	0．-7	－ 0.118	11． 511	O．6is	1．3！	－ 11.19
10	0.39	＋0． 31	0． $3 \cdot$	－3．35	0.02	$+0.1-$	11． $3: 3$	1．\therefore.	11． 51	＋0．3：1
11	$+0.15$	－0．04	$+0.7$	－？．06	-1.97	$+0.02$	－ 0.31	-1.63	$+0.0 \cdot 3$	－0．0．）

13 н 0

HYGROMETRICAL OBSERVATIONS AT POLARIS HOUSE.

The following pages contain the record of the hygrometrical observations made at Polaris House. It need hardly be stated that the mode of observation in this instance is the same as mentioned before in the general introduction to this part.

Date．	NOVEMBER， 1872.															
	1.					2.					3.					
Time．	D．	W．	R．H．	F．T．	D．P．	D．	W．	R． 11.	F．V．	D，P．	D．	W．	R．H．	F．V．	D．P．	
$0^{\text {b }}$	－4．4	0 $p . c$ -4.8 c． .5 .1		Thelurs．	\bigcirc	\bigcirc	$\begin{gathered} 0 \\ -0.7 \end{gathered}$	$p_{0} c_{0}$	$\begin{aligned} & \text { Inches, } \\ & 0 . \text { un: } \end{aligned}$	$\begin{gathered} 0 \\ -4,6 \end{gathered}$	$\begin{gathered} 0 \\ +16.9 \end{gathered}$	$\begin{gathered} \circ \\ +16.6 \end{gathered}$	$\begin{aligned} & p \cdot c_{0} \\ & 94,9 \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & 0.115 \pi z \end{aligned}$	$\begin{gathered} 0 \\ +15.8 \end{gathered}$	
				－7．k	$\begin{array}{r}\text { O．} \\ \hline\end{array}$											
1	4.6	4.9	－1．0			． $0: 310$	7．1		81.4	． $13: 38$	$\begin{array}{r} -4.6 \\ 4.2 \end{array}$	$\begin{array}{r} -16.9 \\ 16.6 \end{array}$	$+16.6$	$\begin{array}{r} 94.9 \\ 84.8 \end{array}$	0． 11804	14．4
2	4.7	5.1	84.8	． 1295	$\bigcirc 8.1$	1.11.2	-0.4 +0.5	8． 11	． $11: 31$		17． 1	16.4	8.8 8.3		14．4	
	4.5	4.9	85.0	． $10.20 x$	7.9		+0.3 0.15	－\％． 1	． $13: 26$	$\therefore 11$	17.0	16.4		0×13	14.6	
4	4.4	4.8	85.1	． 18.100	7.8	1.2 1.1	0.7	8－ 1$8 \times 1$		1.6	17．${ }^{2}$	16．5	24.8 ~-3	$\begin{aligned} & .0543 \\ & .0-3.3 \end{aligned}$	14．5	
5	4.6	4． 9	80.0	． $112: 30$	7.1	1.1	0.6		$\begin{gathered} 119191 \\ .0 .517 \end{gathered}$	1.8	1－1	17．3	80.9	$\begin{gathered} 0-37 \\ 1<-29 \end{gathered}$	15， 1	
6	4.0		－4．3		11． 1	$\begin{array}{r} 1.1 \\ \because .4 \end{array}$	$\begin{aligned} & 10.7 \\ & 2.7 \end{aligned}$	8． 0	$\begin{aligned} & 11314 \\ & 0412 \end{aligned}$	$\therefore 1$	17．8	16.9	\cdots	$.0 \geq 20$	14．3	
7	3.1	8.7	79.3		ㅍ．3			S1．0		－ 1.3	13.1	16.917.5	－0．5	020	13.3	
8	2.6	3.4	$7 \because 6$	－ 0258	$\begin{aligned} & 9.4 \\ & 9.3 \end{aligned}$	11.7	$11 . \because$	（10． 1	$\begin{aligned} & .0412 \\ & .015 t i z \end{aligned}$	＋6．6	12.7		80.8	0×2	14.0	
9	2.5	3， 3	7\％． 7			$\begin{aligned} & 1 \because 1 ; \\ & 10.1 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11 .: \end{aligned}$	ci－．	$\begin{aligned} & .0676 \\ & .0660 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.8 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 19.1 \\ & 1 \times .3 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 1 \times .0 \end{aligned}$	－11．7		14．：	
10	1.9		（6）． 19	$\begin{array}{r} 020 \\ 0.1029 \end{array}$	9.4			स2．				17.7			16.115.0	
11	2．5	4.9	7．37	．1985	9．：	11．：	10.5		$.010: 7$	$\xrightarrow{\square} 1$	19.9	18.1	！11．3 $\times 3.8$			
Noon． $1{ }^{\text {b }}$	4.4		81．1	－ $0 \because=2$	8.7	11.4	10.9	90.11	．11924	1．7 7	19.1	18.1	4.2	． $0-71$	（15． 4	
	3.6	4.4	71．1i	．0：60	10.7	15．3：	14.9	里！	． 11×16	1：3	18.7	18.0	88.3	． 0902	16.1	
2	4.4	5． 1	7：3	－10313	10.6	11.	11）．：	6）． 7	． $16: 39$	13.9	1\％．2	17.6	90.2	． 0×596	16.0	
3	5.6	6．${ }^{\text {c }}$	76． 2	，\％2\％	11．\because	14.5	13.9	K2． 0	． 1178	11.9	18.3	17．${ }^{\text {a }}$	41.9	． 0916	16．5	
4	4．5，	5.1	76.9	－103－3	！ 19	1i． 1	1－． 4	－7．9	． 1185	13，3	12．5	17.8	－2． 7	． 0×5	15， 2	
5	4．3	4.9	78． 1	－い2：3	9.6	1ii． 10	1．．．3	－1． 8	． 112 cos	13．3	1×7	18.1	90.4	． 0918	16.5	
6	$4 . \because$	1.7	81．3	－1231	8.5	15．${ }^{15}$	15． 1	80.4	． 0791	1：3	19．3	18．7	90.7	． 0946	17，\because	
7	3.5	4． 1	72．9	－（1）2－9 ${ }^{\text {a }}$	$\because 6$	15.7	15.0	-6.7	． 11206	18	19， 3	$1 \times$	12． 3	－ 19064	17．15	
8	3.19	3.5	7－3	－ $12 \cdot 3-4$	$\cdots 9$	1\％！	15.2	－7， 2	． 11284	1：3． 1	19．3	$1 \times .8$	123	－1934	17．15	
9	$\because .7$	3.5	71． 5	．11：23	9.5	16，：		$\because \therefore 1$	． 12×4	11.7	19．1	12.0	82.7	，11－5	14．！	
10	0.9	1． 7	7．． 1	． 19.319	7.	11.5	16.0	91.4		14.5	1×9	1×0	85	． $010 \mathrm{~T} \times$	15，	
11		-1.0	＋1． 0	0．0．0．7	－4．2	$+16.7$	＋－16．0		0.0816	＋13．9	$+19.0$	＋18．2	87.3	0.0900	$+16.0$	
Means．			B－x	0．000	－ 4.50			87． $2: 2$	0.0623	＋6．79			87.73	0.0877	＋15．4	
							NOV	MBEF	1872.							
			4.					5.					6.			
Time．	D．	W．	R．II．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．	
	\bigcirc	${ }^{\circ}$	1．r．	Inches．		\bigcirc	\bigcirc		Tu．hes．	\bigcirc	\bigcirc	\bigcirc		Inches．	\bigcirc	
0^{0}	＋19：	＋196	80.0	0． 0929	$+16.9$	$1+3.1$	＋2．7	－9．0	0.0445	＋ 0.6	＋0．1	-0.7	P\％ 71.7	0.0334	-5.6	
1		19.0	－ L ． s	． $11-10$	1，\times	13，4	－2．9	Bii． 4	．0483	＋ 0.3	-0.8	1.4	80.6	． 03.36	5． 4	
$\underset{3}{2}$	20.	19.0	$\cdots 1.5$	． 11230	$1 \therefore 8$	4.5	3.9	－4． 3	． 04.50	＋ 0.8 +0.8	－ 0.5	1．：3	75.5	． 0316	6． 6	
3	21．20	18．！	－1）． 4	． $0 \rightarrow 71$	15． 5	4.0	3.3	－1． 4	－01\％	＋ 0.5	0.3	1.0	－\％．0	－033：4	5． 6	
4	20.3	19.5	－5．9	． 11010	17.4	（i． 1	5.6	－7． 7	－0，04	－ 0.5	0.3 0.6	1.5	71.5	－ 0,30	7.8	
5	20．0	19.1	－61．2	． 1103011	11.9	7.3	6.9	90.6	－ 12.5011	$\begin{array}{r}-\quad 3.8 \\ \hline 5.1\end{array}$	－ 0.7	1.7	68.3	－ $122-4$	8.9	
6	$19 .:$	18.1	－5， 9	－1－9\％	11i． 1	$1 \because 1$	11．2	94.2	． 11707	10.8	＋ 0.4	-0.6	93.7	，10， 31	1．\times	
7	19.3 19.2	1.6 120	23．11	－1930	13.9	10.15	111.1	－1． 6	． 11027	5.6	1．6	＋0．9	79.6	． 10.5	3.3	
8	19.2 14.4	12.0 17.6	M1． 1 80	－11－1：3	14． 11	31． 19	4198	13：8	． 11345	－ 7	2.0	1.1	74， 1	．0833	4.4	
10	12.1	17\％	48.1	．114： 110	14.1 17.1	9.7		－ 2.2	． 01004	5.11	2.6	1． 8	71．	． 0379	2.9	
11	17．4	$1+5$	91.7	． 1×3	17.11	9.7	9.0	M． 0 91.2		6． 1	2.4 3.9	1．6	77.3 -11.5	．0334	3.1 1.9	
Noon．	17.6	16．9	－2， 4	－バ吅	14.9	$\therefore 4$	7.9	8s．	－11：\％	5.8	3.2	2.3	75.3	． 0374	3.0	
$1^{\text {b }}$	1＊． 1	13.4	2－5 5	，linit	15．4	8.	7.7	N． 7	－ 11.510	5.6	3.3	3		， $0: 3 \rightarrow 1$	2.9	
2	17.1	16.5	54． 9	－いいく 17	14.7	7.4	7.0	90.6	－10．20	5.2	3.3	2.7	\cdots	． $04 \div 2$	0.6	
3	17.5 17.7	17.11	91． 7	－ 11×2	1：6	7.10	7.1	Ris． 4	， 010.24	5.0	3.1	1．3	77.0	． $11: 36$	3.5	
4	17.7 17.1	17.1	－2．4	－ $0-.8$	$1 \therefore 0$	7.9	6.4	－\％\％	． 0.0 .10	3.6	1.8	1． 0	76.8	． 03310	3.8	
6	13.0	16．4	－9，	． 0 － 113	14．6	7.3	6． 8	8.2	，10：30	4． 6	1．：3	0.6	$5!13$	． 10365	3.7	
7	11.9	11.2	43.1	－17．3	$\begin{array}{r}1 \\ 1 \\ \because .1 \\ \hdashline .1\end{array}$	7.1	13．4	F－ 5	－0．00：	3.3 $+\quad 3$	1．4	＋0．7	79.4	－03sia	3.6	
$\stackrel{8}{4}$	13．1	15． 5	－-1.3	－ 019696	2.1 9.61 2.6	5． 1.9	$\begin{array}{r}50 \\ +1.3 \\ \hline\end{array}$	-8.6 -2.5	－0467	a +2.9 -2.2	a +0.4 -0.3	－0．3	78.4 78.0	.010 .47 .0334	4.6 5.6	
！ 10	1．3 3	5．：	W0． 6	－ 11416	｜ $1.7 \mid$	0.3	＋110	8.6	， 03.12	－ 3.3	－ 0.3	0.7	81．：	－032． 01	4.6	
10	6.4 +6.4	5.7 +5.3	－ 3	0．04～：	＋$\because 4$	0.3	－ 11.8	－4．6	5038	3.3 3.3	1． 0	1.7	76.6	． $0 \cdot 121$	6.5	
11	$+6.4$	$+5.3$	73.4	$0.144 \% 2$	-0.4	＋0．9	± 0.0	$\therefore \therefore .9$	0.0330	－5．8	－2．1	－2．7	79.3	0.0313	－ 7.0	
Means．			Silis	0.00110	＋12．80			87.02	$0.051: 3$	＋3．09			76.07	0.0354	－4．45	

Date．	NOVEMBER， 1872.														
	7					8.					9.				
＇Time．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
$0^{\text {b }}$	-1.7	－9．6	$\begin{aligned} & p . c . \\ & 69.8 \end{aligned}$	Inches，$0.102<0$	$\begin{gathered} \circ \\ -9.3 \end{gathered}$	$\begin{gathered} { }^{\circ} \\ 5.5 \end{gathered}$	$\begin{gathered} 0 \\ -0.2 \end{gathered}$	${ }^{p} \mathrm{P} 1.8 .8$	Inches． $0.10: 24$	${ }^{\circ} \mathrm{O}$	$\left\lvert\, \begin{gathered} \circ \\ -1.7 \end{gathered}\right.$	$\begin{gathered} \circ \\ -9.9 \end{gathered}$	${ }^{p}=1.10$	Inches． $0.11: 3$	－ $5 . \%$
1	$\because 3$	3.0	75． 0	． 0296	8.1	4.7	5.3	2ii． 7	． 0280	10.1	1.4	$\because 10$	－11． 11	． $113: 20$	6.1
9	1.7	$\therefore .1$	－6． 6	． 01347	4.7	5.4	5.8	81.3	． 0324	S，${ }_{\text {c }}$	1.4	1．8	83． 7	（1）：3，	$4 .: 3$
3	1.1	1.6	－	． 0.346	4．${ }^{\text {a }}$	6.5	7.0	79.0		11． 2	1．1）	1．：	－-5	－10：32	4.7
4	－ 0.3	-1.2	83.	． 11353	4.4	5.4	5.9	80， 1	－022	9.9	0.7	1．： 3	－1． 7	． 11320	5.3
5	＋1．2	＋ 0.5	7！．	． 0.363	3.8	6.5	7.0	73． 0	030，	11．\because	1． 2	1.7	8．3	． $0: 344$	4.9
6	1.9	1.1	76.9	． 113234	3.7	6.0	6.5	$7!1.5$	（（6）3：3）	10.5	1．5	2.0	-3.0	． 10.3 S	5．：3
7	2.6	1.9	－10．	．1：193	2．8	5.5	6.1	\％－5． 9	． 6	11.0	1.5	1.3	－$=1.6$	． 10.51	4.5
8	3.3	2.5	7－1	． $0: 305$	2.0	1.7	2.2	8：3．0	． $0: 3: \%$	5.5	2.6	3.1	5－6	． $10: 104$	7．5
9	$\because .1$	1．3）	\％i． 0	．0：48	3.5	$\because:$	2．s	－ 2,1	． 0 2e：	6． 2	3.6	4． 1	－1．9	－0： 110	\％
10	$\because .1$	1.4	7！1，区	－10：－3	2.7	5.3	5.2	66.6	． $0: 178$	12.7	4.0	4．：	－1．$\%$	，0：320	6． 4
11	2.3	1.7	2088	． $0: 304$	1.7	1． 2	1.3		． $0: 3113$	3.0	3.1	3.7	7－3	． 112118	8． 2
Nown．	2.3	1.7	－3 3	． 0389	1.7	$\therefore 1$	显；	－ 0	． $0: 303$	5.9	2.4	3.0	79．0	． 13,318	7．3
1^{14}	2．	1.4	37.1	．0：20	3.3	2.5	3.1	78．9	.0306	7.4	$\because 5$	4.0	－8．0	． $0: 311+3$	7.7
2	$\because 3$	1.5	77.2	－10：3？	3.2	2.5	3.0	$\cdots 0$	． 03113	6.5	1.7	2.9	23．0	－10：3，	5.5
3	$\because 1$	1.4	79.8	．102－3	2.7	$\stackrel{3}{7} 1$	$\because 6$	83.0	－10：32	5.9	2.2	2.6	7！！	． $10: 31$	\％． 1
4	2，3	1.6	$7!.9$	－0．2eti	2．	3.11	3.7	24．3	． $0: 2 \mathrm{~m}$	8.9	$\because 5$	3.11	N－： 0	－12：39	13．5
5	2.4	＋1．7	－ 0.10	． $110: 8$	2.4	3.5	$4 .:$	70.7	－1123－3	10.5	$\because 3$	9	$\cdots 3$	－0323	16．
is	＋0．3	－0．31	21．4	－1338	4． 1	3.0	3.7	24．3	－12－3	－．！	$\because 3$	3.15	23．11	10319 .10319 103	1.5 -3.3
7	-1.4	2.1	75．9	． $0: 313$	6.9 8.9	3.1	3.7	5x． 3	－ $0 \cdot 3 \cdot 20$	芯：3	\square	3 B	75.4 -11	－11）	－ 8.3
8	3.0	3.7	24．3	． 12×3	8.9	3.2	$\therefore 8$	78．	． 10.91	8.3	3.9	4． 7	21． 3	－02\％	11.0
9	3.3	4.1	70，9	． 023 B	10.3	3.1	$\because 7$	呺3	－02083	$\times 1.2$	4．$: 3$	4.4	－1． 1	－W\％ay	9．6
10	4.5	5.2	72.8	． 11.2 .89	10.8	3.3	3.7	88	． 0.306	7．：3	4.4	5． 1	－ 29 69.4	0．1024	10.7 -11.9
	－5．2	-5.9	72.1	0.1245	－11．7	2.1	-2.7	79， 3	0．10：1：	-7.0	-4.5	$-5 .:$	69.4	0．112dt	-11.9
Means．			78．24	0.0356	－4．39			79.14	0．0．29：	-8.51			－0， 53	0.0314	－7．0．0
Date．	NOVEMBER， 1872.														
	10.					11.					1 ＠．				
Time．	D．	W．	R．H．	F．V．	D． \mathbf{P} ，	D．	W．	R．IL．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．
$0^{\text {h }}$	\bigcirc	\bigcirc		Inches．	\bigcirc	\bigcirc	\bigcirc	P．\quad ．	Tuches．	\bigcirc	－	－	$p_{0}{ }^{\text {c }}$ ．	Inches．	－
	4.9	-5.6	7 T .4	0．1以？	－11．4	-7.5	－8．0	7－0	11． 02411	-12.	-12.5	－13．：	58． 1	0.0137	－Si． 0
1	S， 0	5.7	\bigcirc	． 0.51	11.5	9.6	10．	71．s	． 0199	16， 19	12.5	1：3． 1	1i\％． 9	． 0113	$\bigcirc 10.0$
2	5.0	5.6	26.4	．1324	10．$\%$	10.15	11.2	70.8	． $191 \sim 8$	17.4	12.8	13.6	515，	． $101: 31$	23.5
3	6．3	6，\％	79.3	． 1020	10．${ }^{2}$	$\therefore 2$	＊．	73．3	． $11: 17$	14．$: 3$	1：1．9	14.3	54.10	． 1118	2－2
4	4.7	5.4	729	． 118.017	11． 1	9.3	111.0	137.0	． 0150	17.11	14.5	15，0	$7 \because .0$	－191\％	$\therefore 111$
5	4． 1	4.6	－1．4	－ 1285	8.4	9.5	111.4	1iti． 6	．018，	17． 13	14.7	12.3	16.7	． 0140	$\because 3.7$
6	34	3.9	－2． 1	．113：3：3	7.6	10.0	111.7	13163	． 11181	$1 \therefore .1$	14.5	15.1	15．！	． 11148	为
7	4.0	4.7	73．3	． $1120=$	10.1	9.8	10.4	71．13	．1119，	16．3	14.5	15． 3	iit． 7	． 01110	\％
¢	5.4	6.11	71． 0	． 12×2	10.9	11，5	12．0	S事1	． 01×2	17．${ }^{3}$	J． 5	11． 2	59.15	． 0119	25.5
9	5.8	6.1	1i\％．${ }^{\text {c }}$	－1324	13．8	11.5	11.6	tio． 4	． 01.5	$\because 0.5$	1．\％． 0	15．9	41.3	． 0093	ご，${ }^{\prime}$
10	5.4	や． 2	17.8	．193：3	12．9	12.4	12.9	7． 1	． 0175	$1 \sim 3$	14.3	15.4	64.4	．01：5	ご只
11	\％ 2	3.8	722	，11294	$\checkmark .3$	11．！	$1 \because 4$	74． 6	． 111×2	17.6	15．$:$	1.50	tio． 0	． 1103	－3，
Kownt．	2.8	$3 . \therefore$	74.8	战标年	8.6	11．：	11. 家	7．5． 2	． 11110	11：${ }^{2}$	12.	1：3， 13	52． 21	－ 019	－ 11
1^{14}	3.7	4.5	711.5	－103s	10．	11， 11	11.7	lis， 3	． 1110 in	19，${ }^{12}$	11． 2	11．${ }^{\text {\％}}$	50，	． 11179	13．
	3.6	4.1	70.6	－1230）	10.7	10，5	11．	（ii），\％	． 0174	127	12． 1	12.8	10， 19	． 01118	19．5
3	4.6	5． 3	72.7	． 12307	11.11	11．${ }^{\text {a }}$	$1 \because 3$	1i4．1）	． 01113	19.9	$1 \because \cdot 15$	13． 1	\％1，	． 117.15	景
4	5	1．：3	15.7	，15：	13.5	1\％，	$1 \because 3$	1－2	． 01515		1：3，11	13.3		． 0145	20． 2
6	4．${ }^{2}$	6.9	71.1	－ 158.6	13.9	112．11	12.7	$1 i 3$ $i 3$ $i 3$	． 0156	30.8 $3: 36$	13.1	13．${ }^{10}$	$118 . .1$	． 1116 Co	19.1
	${ }_{6} 6$	7.0	70.8	－12 2 2	13．3 13.1	11．${ }^{\text {11，}} 9$	12.6	\cdots	． 0144	－	13：	14．3，	5－5， 4	． 11127	24.6
7	6.3	7.0	71.0	． 03.3	13.1	11，9	12.7	－ 68 iii 8	． 0174	21．4	1：3\％	14.0	56.1	． 0130	24.1
8	8.6	9.3	67.7	． 11.20	16．\because	1，\％	14.1	mid 8	－0147	－1．9	1	1%	$0 \cdot 6$	． 11168	19， 10
	7.3	－ 0	70.0	． $10: 17$	14.4	$1 \because$	13.5	103\％	． 0147	21．9	12.8	12.0	（i．） 11	－いい而	19．7
10	13.9 7.3	7.7 -8.1	66.8 65.8	．10：10 0.10 .204	15.11 15.6	－1\％	13.9 -13.5	4－2	11．014is	$\begin{array}{r}19.8 \\ -21.9 \\ \hline\end{array}$	－11．3	12.0	（1）． 3	$0.11 \sim 1$	－1－
Means．			72.40	0．02：4！	－11．7			1i3．7：3	0.0171	－1－69			62.87	$0.014!$	－$\because 3$

14 Н 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Date．} \& \& \& \& \& \& \& DECE \& MBER \& ， 1872. \& \& \& \& \& \& \\
\hline \& \multicolumn{5}{|c|}{19.} \& \multicolumn{5}{|c|}{20.} \& \multicolumn{5}{|c|}{21.} \\
\hline Time． \& D． \& W． \& R．H． \& F．V． \& D．P． \& D． \& W． \& R．II． \& F．V． \& D． P ． \& D． \& W． \& R．H． \& F．V． \& D．P． \\
\hline \multirow[b]{2}{*}{\(0^{\text {b }}\)} \& \(\bigcirc\) \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Inches． \\
（1． 0174
\end{tabular}} \& \multicolumn{2}{|l|}{○ 0} \& \(\bigcirc\) \& fr．e． \& Inches， \& \(\bigcirc\) \& \(\bigcirc\) \& － \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Inches． \\
\(0.11: 1-\)
\end{tabular}} \& \(\bigcirc\) \\
\hline \& －8．5 \& \& \& \& \multicolumn{2}{|l|}{－1，\({ }^{\text {a }}\)－ 3.7} \& － 4.4 \& 73：19 \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(0.027:\) \\
（1）2
\end{tabular}} \& －9．8 \& －6． 1 \& － 7.2 \& \& \& \multirow[t]{2}{*}{－14．： 12} \\
\hline 1 \& － 4.8 \& －9．8 \& กテ・＊ \& ． \(0: 115\) \& 14． 4 \& ： 3.6 \& 4.4 \& 20.6 \& \& 10.7 \& \％． 4 \& 7.9 \& \[
\begin{aligned}
\& 66.8 \\
\& 7 \times .1
\end{aligned}
\] \& \[
\begin{array}{r}
0.11: 12 \\
.11: 11
\end{array}
\] \& \\
\hline 2 \& 7.6 \& 8． 2 \& 73．is \& ． 0302 \& 13．6 \& 3.4 \& 4.7 \& 65．：3 \& \[
\begin{aligned}
\& \text { (1235) } \\
\& 0 \leq 15
\end{aligned}
\] \& \(1 \because .1\) \& 7． 3 \& －． 0 \& 78.1
71.0 \& \& 14.4 \\
\hline 3 \& 6． 61 \& 5．2 \& 74.8 \& ． 11390 \& 12：3 \& 4.11 \& 4.6 \& 83.4 \& － \(02 \times 1\) \& \& 7．5 \& s． 2 \& \& \[
\begin{aligned}
\& 11: 11 \\
\& .10: 1
\end{aligned}
\] \& 14．\({ }^{\text {i }}\) \\
\hline 4 \& 7． \& 8.4 \& 73.8 \& －H2： \& 13． \& 4.4 \& 4.8 \& －i． 1 \& \multirow[t]{2}{*}{－10：601} \& 7．2 \& W． 3 \& 8.8 \& \[
\begin{aligned}
\& 6.6 \\
\& \therefore \div .0
\end{aligned}
\] \& －16239 \& 13.3 \\
\hline 5 \& 7.0 \& \multirow[t]{2}{*}{7．6} \& 74.4 \& ． 08.34 \& 12．\(\%\) \& 4.11 \& 4.7 \& 53， 3 \& \& 10.1 \& 8.4 \& 9.0 \& 73．0 \& －1021\％ \& 14.6 \\
\hline 6 \& 6.3 \& \& \(71 . \geq\) \& ． 10.5 \& \multirow[t]{2}{*}{10.8
9.9} \& 4.4 \& 4.8 \& －5． 1 \& ．0：20 \& 17.8 \& 7.7 \& 8.6 \& 61.4 \& － 01018 \& 17.5 \\
\hline 7 \& 13.4 \& 6． B \& ¢3． 6 \& －（120） \& \& 3.5 \& 4.11 \& －\(\times 1\) \& ，12308 \& 7.7 \& 7.5 \& －． 1 \& 7．3．9 \& \[
\begin{aligned}
\& .01-1 ; \\
\& .013: 27
\end{aligned}
\] \& 13．\％ \\
\hline 8 \& 7.3 \& \％．8 \& 7－ \& ，1024： \& \[
\begin{array}{r}
9.9 \\
19.9
\end{array}
\] \& 3.5 \& \multirow[t]{2}{*}{4.11
4.3

4.} \& －20 \& －15：03 \& 7.7 \& 3.6 \& 8．3 \& 69．4 \& $$
0: 1:
$$ \& 14.7

\hline 9 \& 7.6 \& 8.5 \& （i1． 5 \& ． 01 － \& 17.4 \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 3.1 i \\
& 4.11
\end{aligned}
$$

\]} \& \& 73.7 \& \multirow[t]{2}{*}{| 102.5 |
| :--- |
| Wど事 |} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
3.8 \\
111.1
\end{array}
$$

\]} \& 7.3 \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 5.8 \\
& 7.8
\end{aligned}
$$
\]} \& 75． \& －104： \& 120

\hline 10 \& \multirow[t]{2}{*}{7.7} \& R． 6 \& 61.4 \& ． 01×0 \& 17.5 \& \& $$
\begin{aligned}
& 4.3 \\
& 4.7
\end{aligned}
$$ \& 78.3 \& \& \& 7.3 \& \& $3 \mathrm{7r} 2$ \& ，似 4 ： \& $1 \because .0$

\hline 11 \& \& \％．8 \& －2． 9 \& \multirow[t]{2}{*}{$$
\begin{array}{r}
0254 \\
0.020 \\
0
\end{array}
$$} \& 11．${ }^{2}$ \& S． K \& 4.6 \& 50.4 \& －153\％ \& 10.9 \& （i． 4 \& 6.9 \& 79． 1 \& －0258 \& 11.0

\hline \multirow[t]{2}{*}{Noon.} \& 6.4 \& 5． 6 \& ¢4．： \& \& S，M \& 4.5 \& 4.9 \& \cdots \& ．11809 \& 7.9 \& （i．） \& 7.3 \& 70.7 \& －0298 \& $1: 14$

\hline \& 4.6 \& 5.0 \& －4．9 \& －（1） \& 8.0 \& 4.7 \& 5 \& 19， 0 \& ． 1124 \& 1： 1 \& 6.8 \& 7.11 \& 6ii． 4 \& －11819 \& 14.8

\hline 2 \& 4.6 \& 5.6 \& 6－． 8 \& ．11240 \& 13 \& 4， 2 \& 5.6 \& 188 \& ．1134： \& 12． 2 \& 5.4 \& 6.11 \& 76.0 \& －いらった \& 11.9

\hline 3 \& 4.15 \& 5.0 \& 84.9 \& ． 1393 \& － 0 \& 5.3 \& 5.8 \& 80.8 \& ． 11.5% \& 9.8 \& 2．9 \& 3.7 \& 71.3 \& －02すこ \& 9.9

\hline 4 \& 4.3 \& 4.7 \& －5． \& －01：3以 \& 7.7 \& 5.5 \& 6.9 \& 71， \& －1194 \& 13.1 \& 2． 5 \& 3.4 \& 6－． 6 \& ． 0 23\％ \& 10．3

\hline 5 \& 4.3 \& 4.9 \& 77.1 \& ． 1185 \& 9.6 \& 5.6 \& 6.4 \& 67.6 \& ，11：30 \& 1；\％ 2 \& 3 ， \& 4． 2 \& 73． H \& \& 9.5

\hline 1 \& 3.9 \& 4.5 \& 72．5 \& －12－3 \& 9.1 \& 6.5 \& 7.4 \& 64．13 \& ． $11: 11 \times$ \& 14．3 \& 5． 4 \& 6.1 \& 71.9 \& －11346 \& 13.0

\hline 7 \& 4.5 \& 5.2 \& 7．2x \& ． 12.89 \& 10．8 \& 7.1 \& 7.7 \& 74．3 \& ． 10.3 \& 13.0 \& 5.5 \& （i． 3 \& 1i7． 7 \& －03： \& 13．1

\hline 8 \& 4.3 \& 4.9 \& \％\％． 1 \& －1228 \& ！1． 19 \& 7.4 \& 8.0 \& 74．13 \& －12以 \& 1：3，4 \& 6.5 \& 7．${ }^{\text {2 }}$ \& 711， 8 \& ．02P㫛 \& 13．：3

\hline 9 \& 4.7 \& 5.5 \& 61． 0 \& ． $0: 44$ \& 12． 1 \& 7． 1 \& 7.7 \& 74．3 \& ． $12: 3$ \& 13． 0 \& 5.1 \& 5.7 \& 71， 3 \& ． 1336 \& 10.6

\hline 10 \& 4.3 \& 4， \& 81， 2 \& ．0889 \& 8.6 \& $7 .: 1$ \& \％．${ }^{\text {\％}}$ \& 78 \& ． 0243 \& 12.0 \& 4.4 \& 5.0 \& 75． 0 \& －0．29 \& 9，${ }^{\text {a }}$

\hline 11 \& -3.6 \& -4.2 \& TS． 5 \& 0．10： \& $\therefore .7$ \& -6.9 \& 7.5 \& 74． 5 \& 0，10：36 \& -12.7 \& － 4.1 \& -4.7 \& 7：3．3 \& 0．0248 \& －10．1

\hline Means． \& \& \& 71.77 \& $0.17: 47$ \& －11．58 \& \& \& 74， 21 \& 0.0261 \& -10.81 \& \& \& 7－4 \& 0．03： \& －12．0\％

\hline \& \& \& \& \& \& \& DEC \& MBER \& ， 1872. \& \& \& \& \& \&

\hline \& \& \& 22. \& \& \& \& \& 23. \& \& \& \& \& 24. \& \&

\hline Time． \& D． \& W． \& R．H． \& F．V． \& D．P． \& D． \& W． \& R．H． \& F．V． \& D．Γ ： \& D． \& W． \& R．H． \& F．V． \& D．P．

\hline \& － \& － \& \& Inches． \& \bigcirc \& \bigcirc \& \bigcirc \& p．c． \& Imbler． \& \bigcirc \& \bigcirc \& \bigcirc \& \& Inches． \& \bigcirc

\hline $0^{\text {b }}$ \& -1.8 \& － 1.8 \& 83． 2 \& 0．11： 4 \& －5． 0 \& ＋2．3 \& ＋1．4 \& 74.4 \& 0．11．3is \& － 4.0 \& ＋8．2 \& 17.4 \& M1． $\mathrm{H}^{\text {c }}$ \& 10． 0.017 \& $+2.8$

\hline 1 \& ± 0.0 \& -0.7 \& 比碞 \& ．11：40 \& － 4 \& $\because 1$ \& 1． \& 74．2 \& ． 113 \& 4.9 \& $\therefore 3$ \& 7.5 \& 81.9 \& ． 0,500 \& 4．0

\hline $\ddot{\sim}$ \& ＋1．： \& $+0.5$ \& 76． 3 \& ． $13: 51$ \& 4.4 \& 1.3 \& 0.7 \& 象？ \& －11： \& 2.9 \& 11． 2 \& \％．0 \& 73.7 \& ． 14403 \& －1

\hline 3 \& 1．5 \& 0.7 \& 66． \& ． 10.3 .96 \& 4.1 \& － \& 1.9 \& 74.9 \& ．13： 511 \& 3.6 \& $\therefore 8$ \& 7.3 \& 79.6 \& ． 0504 \& 3.3

\hline 4 \& 6.2 \& 5.1 \& 73．： \& ，11820 \& －0．5 \& 1.5 \& 0，R \& 21.5 \& ． 03310 \& 3.4 \& 12.4 \& 11.4 \& －1． 5 \& ，015 \& 7.5

\hline 5 \& 5.3 \& 4.6 \& 以3：3 \& ． 14.4 \& ＋ 1.1 \& 1.3 \& 0.5 \& 76．3 \& ． 03.11 \& 4.4 \& 5.8 \& 5.0 \& －11． 2 \& ． 14.4 \& ＋ 1.0

\hline 6 \& 5.1 \& 4．：3 \& \％\％．0 \& ． 0423 \& -0.6 \& 1． 3 \& 0.4 \& 73.3 \& ． $0.3 .3-$ \& 5． 3 \& 5.3 \& 4.4 \& 77.2 \& ． 14.23 \& － 0.3

\hline 7 \& 5.0 \& 4． 1 \& 76.9 \& ． 11401 \& 0.7 \& 1.7 \& 0.9 \& 76.7 \& －unitio \& 3.9 \& 4.4 \& 3.0 \& $5 \cdots 4$ \& ． 0203 \& 15.7

\hline 8 \& 5.9 \& 4.3 \& 7\％．1 \& ． 11426 \& －0．5 \& 1．${ }^{\text {a }}$ \& 0.9 \& 73.9 \& ． $11: 314$ \& 4.6 \& 4.3 \& 3.5 \& 70.0 \& ． 0417 \& 0．7

\hline 9
10 \& 5.8 \& 5.0 \& 80.2 \& ． 114.54 \& ＋1．0 \& 3 \& 1.9 \& 71.4 \& ． $10: 4.4$ \& 5.11 \& 5.1 \& 4.1 \& 74.5 \& ． 1409 \& 1.3

\hline 10 \& $6 .: 3$ \& 5.1 \& 73．3 \& ． 14.42 \& － 0.5 \& 1.7 \& 1.0 \& 71.6 \& ． 1035.4 \& 3.2 \& 4．$:$ \& 3.1 \& 81．6 \& ． 0402 \& 0.8

\hline 11 \& 6. \& 5.1 \& 73．3 \& ． 11403 \& －0．5 \& 2． 2 \& 1.1 \& （iii． 6 \& ． 112.5 \& －E．9 \& $\because: 3$ \& $\because .8$ \& 1i3． 8 \& ． 0203 \& 10.5

\hline Noon． \& 1． 7 \& 5.9 \& －9．8 \& ． 0477 \& ＋2．1 \& 5．19 \& 5.11 \& 84.9 \& ． 0472 \& ＋ 2.1 \& 3.7 \& 2.9 \& T－． 5 \& ． 0414 \& 1.5

\hline $1^{\text {b }}$ \& 5.4 \& 4.8 \& 84.8 \& ． 1420 \& ＋1．9 \& 5.2 \& 4．\because \& 74.6 \& ． 0411 \& －1．1 \& 0.7 \& ＋ 0.8 \& －4．9 \& ．00， 0 \& $\stackrel{9}{2.9}$

\hline 2 \& 5.3 \& 4． 1 \& 69.6 \& ，18：－7， \& －2．6i \& 6． 1 \& 6.0 \& 96.1 \& ． 0316 \& － 6.7 \& 0.4 \& －0．6 \& 69.4 \& ． 0306 \& 7.5

\hline 3 \& 4.3 \& 3．6 \& －1．6 \& －14， 123 \& 0.2 \& $1 \because 1$ \& 10． 6 \& 24． 4 \& － 10 \& ＋5．6 \& 11.3 \& －0．1i \& 7－3 \& ． $0: 319$ \& 6.6

\hline 4 \& 4.5 \& 4．${ }^{\text {a }}$ \& －9． \& ． $0: 321$ \& 6． 3 \& 10．5 \& 11.5 \& 3！ 0 \& ． 13.51 \& 5． 4 \& 0.3 \& $+0.1$ \& 81.7 \& ． 113136 \& 3.6

\hline 5 \& 2． 6 \& 1.9 \& 80. \& cise： \& 2． \& 4.3 \& $\cdots 5$ \& 8.8 \& －4， 14 \& 5． 1 \& 1.7 \& 0.6 \& 行， \& ． 00310 \& 6.6

\hline 6 \& 1.7 \& 1.0 \& 79.6 \& －10：2－1 \& 3.2 \& 7.5 \& C． 10 \& 79.1 \& ． 0 ± 24 \& 9.3 \& 1.4 \& 0.6 \& 715.4 \& ． $0: 10,3$ \& 4．

\hline 3 \& 2.1 \& 1．${ }^{\text {a }}$ \& 84．8 \& ． 113.505 \& 4.2 \& 7.6 \& 6． 8 \& 81.4 \& ． 01501 \& $\therefore 1$ \& 1．2 \& 0.4 \& 71， 2 \& ．18：49 \& 4.5

\hline K \& 3.5 \& －$\stackrel{3}{2} \cdot 1$ \& 83.7 \& ． 11.58 \& 0，$: 3$ \& 7.3 \& 6.5 \& －1．2 \& ． 0493 \& P， \& 0.7 \& 0．${ }^{3}$ \& －1．9 \& ．0：300 \& $\because 6$

\hline 10 \& 8.7 \& 3.11
3.1 \& 81.1
84.7 \& ． 11418 \& 11.8 \& 6.9 \& 6.8 \& ®．．． 4 \& ． 11497 \& $\therefore 0$ \& 1，3 \& 0.6 \& 71.3 \& － $0: 30$ \& 3.7

\hline 11 \& ＋328 \& ¢
$+\stackrel{2}{\sim} 5$ \& －0．8 \& 0.0408 \& －1．3 \& ＋ 7.5 \& 6．8 \& 83.7 \& ． $10.51: 3$ \& 3.3 \& ？．： \& 1.6 \& 73.9 \& －0： 0 － 0^{2} \& 85

\hline \& \& －～． \& ＋0．8 \& 0.0404 \& －1．6 \& ＋ 7.1 \& ＋6．3 \& E1．0 \& 0.1428 \& ＋ 2.5 \& ＋4．3 \& ＋3．7 \& \cdots \& 0.0422 \& -0.6

\hline Means． \& \& \& 78.83 \& 0.0404 \& － 1.62 \& \& \& 28．48 \& 0.0419 \& -1.07 \& \& \& 76.71 \& 0.0399 \& －2．24

\hline
\end{tabular}

15 H 0

Date．	JANUARY， 1873.										FEBRUARY， 1873.				
			30.					81.					1.		
Time．	D．	W．	R．H．	F．V．	D． 1^{\prime} ，	D．	IV．	R．I1．	F．V．	D．P．	D．	W．	1．H．	F．V．	D．P．
	\bigcirc	\bigcirc	p．e．	Inehes．	\bigcirc		\bigcirc	11．c．	Tuches．	\bigcirc	\bigcirc	c	P．$¢$	Inches，	\sim
$0^{\text {b }}$	－－31． 1	－31．6	31.6	0．cter	－4？ 4	－19．	－${ }^{2} 11$	4－6	11．100－？	－31．0	－39．7	－ 38.	$\because 4.0$	11． 110311	－45．
1	3.4	湿边	39.8	． 000 ：${ }^{2}$	4.6	188	19.5	81）．	． $0002-$	30.9	34.5	35.0	$\because 30$	0019	16． 1
2	25． 4	碞． 9	4－0	． 10141 i	4n． 11	15.1	18.7	53.1	． 11045	景品	36.4	37.1	\％ 0	0019	40.1
3	：27．0	37.5	4×0	． 110116	$4 \% .11$	1×3	$18!$	59．	． 11114	\cdots	S． 4	36.11	？i，	110179	46.1
4	3.4	38.7	4－11	． $112141{ }^{\text {i }}$	15.4	1s．9	19.5	行，	－ 19048	？ 21.	：3． 1	：3i． 6	$\because 2$	0018	41.4
\％	29.6	41.3	15.11	．（10）1t	11.7	$19 .:$	$1!1.7$	31.3	． $01 \% 0$	乐示	：31．5	$\because 0$	：30	0026	44.1
$1 i$	40.9	41.6	18.11	． 111116	11.7	19.3	19．9	56．：	． 10050	91． 1	31.	31.0	$: 4.0$	0031	428
7	40，3	10.6	48.11	． 111144	41.7	19．	－11． 2	te．i	． 11020	：31． 10	31.8		积：	． $110: 3$	130
－	41.3	42.1	4.0	． 11746	41.3	1！ 19	20．0	$13: 4$	． 1110 Cl	\％27	81.10	31.7	（ii）	（10）：1	420
9	41.6	12.0	1－0	． 111111	11.7	19.6	20． 1	1－4！	． 1105	？\％．！	：11．8	31.5	3i．2	00：34	42.0
10	＇ 11.8	f： 1	$4=0$	． 111116	41.7	19.15	20.1	1，3！	． 11105	？	311．	31.5	：16．	0 OH 54	12，0
11	11.10	12.0	4－0	． 11116	41.7	19．：	19.9	\％1．1	． 11118	号． 7	？ 31	－	：2．t	． 1105	11.3
Noon．	\therefore	$\therefore 1.0$	15.0	． 00.16	11.7	19.5	＇31． 19	13：． 11	． 110101	\cdots	3in． 4	30.7	1.1 .6	． 0055	$\because 7.1$
1 h	－ 3	： 313	1－．11	． 00446	41.7	19，	211.5	4゙． 0	．（117）！	310．	：0．0． 3	甠穴示	34．	． 1008 P	13.6
2	1 24． 4	：3， 01	450	． 111316	41.7	19．！	20.5	行11	． 0090	：30．5	旳 5	9－9 9	5.63	． 1110.4	：3．2
3	3．3． 1	：5．7	＋－11	． 110141	41.7	2193	310.5	1ie．	，111931	2n． 3	※－1	$\because-9$	$4 \therefore 4$	． 0043	－צ
4	：3． 5	34.4	4－0	（t）16 4	41.7	31.5	？1． 3	：1．1	． 111408	2i．7． 7	2\％．9	$\because 6$	$\because 1.0$	． 008 y	1－3
\square	： 3.5	：3， 0	4×11	． 10.418	41.7	2－3	？ 2.1	促，is	． 1101015	： 6.6	2i．5	$\because 7$	：3－6	． $1044 ;$	111.0
¢	准 4	： 2.0	$1 \sim 0$	． 1101416	41.7	＂4．3	＇2．${ }^{2}$	TH． 1	，13106：	： 11.2	36	处．	$\because 7.0$	． 1005	$4 \therefore 1$
7	： 3.7	： 1.0	\cdots	． 0046	417	31.1	96， 9	4！1：	，11780	： 3.1	： 11.	？ 11.	： 1.8	． 110103	d？${ }^{\text {d }}$
σ	81． 5	3：3：	1－0	． 117116	41.7	31.7	亿\％	17.6	， 10150	：3．${ }^{3}$	31.11	$: 31.5$	：2． 11	．0029	1：5 5
\cdots	20． 5	：31，：	1－20	． 016140	11.7	$\because 4.4$	27．9	16．3	． 0010	As．5	\cdots	21． 7	－2．9	． 0033	$4 \because 2$
1）	29.0	91．7	1×0	． 0046	41.7	血5	9！1	：	M0：5	4？1	号品	？	只宗	． 0035	41.8
11	－	－ 97.9	动：兰	0.0060	－36．01	－ 1.1	－ 31	\therefore ： 1	0.11151	－4－3． 1	－36．	－ 26.7	49.9	0． 110.78	－36．8
Mrills．			47．${ }^{\text {a }}$	0.0015	－12．010			$\therefore 20$	110×1	：31． 1			$\because 1.101$	10．100： 1 ；	－42．44
FEBRUARY， 1873.															
	－． 3 ．												4.		
Time．	I．	11.	R．II．	F，V．	D．P．	$1)$.	W．	R．II．	F．V．	D．P．	D．	W．	R．H．	E．V．	D．P．
$0{ }^{1}$	－ 0	\bigcirc		Inches．	\bigcirc	\bigcirc	\bigcirc	P．e．	Inerhes．	\bigcirc	${ }^{\text {c }}$	\bigcirc	$p . c$	Inches．	\bigcirc
	－20．5	－2．：3	4ii．${ }^{\text {a }}$	0． 010.31	－	－－2\％	－	为．11	0． 1010	－－1． 8	－19．：	－20．6	77.4	11． 0123	－\％n 1
1	空， 3	2－2．	4\％，	． 0044	3： 17	21.5	？	44.3	．Onniti	3－5． 0	18．5	19.1	5－7	． 0103	？
2	21．5	29.9	50．3	． 10104	： 5	20． 11	90． 19	Hi．k	． $110 \leq 5$		17.5	180	lia．0	． 1110	\％4．9
3	\because	$\because 8$	36．6	． 0040	410． 7	20．：	？ 0 ．${ }^{2}$	1i3．2	． 00998	02.8	16． 5	17.0	10．0	． 0134	勺3， 6
4	堕， 5	27.9	3if．	． 0046	314， 0	310.5	21.0	（i）． 0	． 00512	－9．1	15.	16.3	69．7	． 0141	32.7
5	97． 0	27.6	： 316	． 1414	40.7	－ 119.7	20.1	69.9	． 0117	26.1	15.1	15.7	64.3	． 0136	23．：3
6	景： 7	34.4	37	． 110.0	3－3	17．${ }^{1}$	1\％．5	53： 5	． 0097	？	14．\ddagger	14.9	䛤 1	． 01750	20.9
7	－ 2	25.5	61.1	． 11127	\％3．0	119.7	B 0^{10}	2R．0	． 119	24．3	13.5	14.2	织 6	． 0174	92．8
＊	98.	$\because 1.8$	28．0	－ 101.50		19．\％	1\％	㕲．	． 11010	24.0	14.7	15.5	53.0	． 0115	96.4
9	2． 2.7	43． 3	57.6	． 10.51	织 1	$1 \cdots 3$	19．$:$	68． 1	． 0101	只． 7	16．5	17． 0	（i．） 0	． 0134	迷 6
10	22.3	？．2． 8	$5 \leq 4$	，1088：	：3． 5	$1-4$	1s． s	72．	． 01010	24.4	17.8	18.5	53.5	． 00978	69． 2
11	$\cdots 3$	Ses	S－4	． 1105	31.5	$1 \sim 2$	194	57．	． 0100	9．1	16.7	17.3	11.7	． 0120	为\％
Noon，	$\cdots 3$	20.7	Gif． 4	． 110105	30.4	1：9．\％	19.9	71． 1	． 0118	08	20.1	40.7	54.6 71.2	． 11088	30．
1^{17}	？1，$: 3$	21.7	6 6 ： 3	． 11104	2－3	19.1	19.8	71.3	． 11119	95．${ }^{1}$	19.4	13.8	71．${ }^{5}$	． 0119	
2	$\because 1.5$	－ 0	60.0	－10990	：31： 3	1－3	19.3	28． 1	． 0101	3	17.8	12.5	53．5	． 0097	边
3	$\because 1.7$	哭3	21．4	． 111718	3：3．11	20． 1	20.7	it． 1		$3{ }^{30.9}$	18.2	19.7	36.9 55.4		30．1
4	211，9	21.4	61．${ }^{2}$	－ 11015	39.4	20．0	30.7	4i，if	－ 0107	30．：	19.7	190．3	55.4 56.3	－1092－	30.1
5	$\because 1.0$	21．${ }^{\text {d }}$	52.8		32.1	21．：	91.8	10.1	． 0091	？ 3	19.	19.9	56． 5	－0095	29.4 30.4
1	211．：	20．8	6．：${ }^{2}$	． 10199	22． 7	？1．：	$\because 1.7$	$1 ;-3$	． 11104	\cdots	18.5	119	51.4	． 0091	30.4
7	211，3	911．8	如：2	，0019	\cdots	？1．11	21.1	\％－	－buse	碞11	17．	1\％． 2	51.4	． 0100	28.7
¢	20.5	$\because 1.1$	5i3．${ }^{2}$	．	23． 4	21.1	31.7	事住	．ดn＜ 1	织：	16：1	16.7	51． 6	． 0114	${ }^{2}+5$
9	$\because 0.5$	21.1	53.8	－M1\％	31.4	21．11	31.7	45.16	． 1112711	34.8	15．：	16.1	63.8	． 0131	${ }^{24.0} 0$
10	－0．6	21.3	41.4	－1013	33， 6	－ 1.18	－9．9	51．1i	－ 1167	－3．3：3	15．	－15．2	13.8 50.0	0．0126	－24．7
11	－91．11	－ 31.5	181.0	0.111984	－	－ 21.11	－21． 7	45， 6	0.117%	－：3． 3	－14．	－1．6．	\cdots	0.0126	－24． 6
Means．			［m． 25	0.0074	－33， 30			59.5	0， 0006	－29．41			60． 22	0.0116	－26．45

MARCH, 1873.

Date.

16 H O

Date．	MARCH， 1873.														
	13.					14.					E．				
Time．	D．	W．	R．H．	F．V．	D．P．	D．	W＇．	R．H，	1.	D．P．	D．	W．	R．H．	F．V．	D．P．
	\bigcirc	\bigcirc	1．c．	Inches．	\bigcirc	\bigcirc	\bigcirc	p．c．	Tuchers．	\bigcirc	\bigcirc	0	p．f＇	Imbles．	0
$0^{\text {L }}$	－30．9	－ 21.4	1i1．${ }^{\text {P }}$	0.11095	－34． 4	－－39．6	－：30． 1	37.1	0． $1103: 36$	－41．${ }^{\text {i }}$	－99．4	－$-3.1 \times$	50.6	0.10049	-38.4
1	19．6	30． 4	41． 2	． 11006	34.1	－4． 4	4．9，	50， 13	－ 11049	：ir． 4	ソr． 7	24.3	2－2	． 11109	$4: 3.5$
3	21．5	ㄹ．0 0	60.0	． 1000	$30 .:$	85	2s， 9	\％i． 3	． 10054	湤 3	$\because 1$	24． 5	！7．！	． 1102	43.8
3	－21．6	？	6 c 60	． 010 L	Or． 3	\％7．4	ゾ，	54.4	． 0061	\％．．）． 3	$\cdots 31$	？ $91.1 i$	26． 6	－ 100519	40.9
4	3：3．4	显 7	2－3	． 0100	\because	$\because 7.4$	勺\％．${ }^{\text {a }}$	510.4	． 0061	35.3	$\because 21$	$\because 2 \mathrm{~d}$	54． 3	－ 1010 ， 10	33.3
－	ソ－7． 7	$\because 6 . \because$	51.4	．1，0601	：3． 1	（9）5	\％1）	63．3． 4	－Hereit	36.1	ソ\％．0	\％1． 6	3， 6	－ 110.410	41.7
i）	勺5， 5	$\because 6.0$	$5 \% .0$	． 1104 il	35.8	28．1；	ごった	77.2	． 1008 －	里r	86.2	\because	？－5	－1023	4：\because
7	$\because 4.7$	25． 4	$\therefore \mathrm{H} .0$	． 0043	：39．8	29.4	$\because 1.7$	63． 6	－［10ヶi］	：3i． 0	$\because \% 11$	\％－3． 4	61．${ }^{2}$	． 0077	
8	46.5	$\because 7.0$	49.0	． 11015	$: 37.2$	$\mathfrak{2}$ ． 3	－1．	5.4 .4	． 110 a， 1	$\because 4.3$	$\because 4.4$	$\because 1.4$	$6 \geq .4$	． 1105	蛣 1
9	27.0	3\％	47.5	． 1105	$\therefore 7.9$	セッ．6	93． 4	31.4	.0046	$3!1$	と2． 7	\because	57.6	． 110181	事 1
10	37.5	97.9	56.2	． 0040	36． 11	90.8	$\because 1.6$	3 c ，	． 0059	：3，：	62． 15	$2{ }^{2} 1$	53，内	－ 110 m 1	$\therefore 1.9$
11	$\because 6.5$	$\because 7.0$	4！． 0	－ 10.54	$\because 7$	$\stackrel{0}{6} .8$	21.8	46.0	． 1107%	$\therefore 8.0$	23．0	？ 3	\％1．0	－ 110189	23． 4
Neon．	26.3	23.7	5x． 10	． 110 ¢\％	34．6	24．	354	43，	． 110.4	$\therefore 37$	\because	$\mathfrak{3}$ 3． 4	5	－101－6	$\cdots 3$
$1{ }^{\text {b }}$	21i． 4	219．6	24.4	． 0091	30.3	$\because 6$	26.7	5 s .6	．Monic	：34．68	？－3． 5	6．	74．4	． 0105	？2．7
$\mathfrak{6}$	23.1	？ 2.7	$\therefore 3$	． 0100	ぞ，ジ	$\because 7.3$	ソ7．1；	56.8	－chllio	1 涫． 7	$\because 3.9$	$\because 4.4$	57．\because	－0080	： 2.3
3	24.6	34.6	61．${ }^{\circ}$	． 0103	ぶ，り	$\because 7.7$	$\because 2$	4.50	． 11047	$\therefore 3.0$	$\because 4.7$	34． 8	7－2	． 00.12	30.1
4	$\because 3$	24.2	5．3． 4	． 11115	36.5	97.5	－200	46．0	． 0010	$\therefore 6$	$\because 4.3$	$\because 1.7$		－ 114 ll	吹 0
5	30.5	： 310.6	61． 4	． 0054	湤．？	$\because 6.11$	，$\because 6.5$	510.5	． 0059	3 in .5	35．	$\because \square$	70.4	． 110 kr	31.1
fi	31.0	31.5	： 311	． 00 ± 9	$4 \because 3$	55． 1	$\because 6.5$	411.5	． 00.47	涼． 0	24． 2	b5． 3	61．6	－ 1017 r	S2． 7
7	$\because 6$	$30 . \therefore$	㕲，足	，U1099	43.4	$\because 6$	27.0	45.0	． 0054	37.2	25． 3	喪， 7	60.13	． 11075	$3: 3$
γ	$: 1.5$	31.8	32， 4	． 11199	43． 4	2ti．［5	136.9	5x． 2	． 0066	34.8	－5． 9	$\because 6$	40.5	． 0047	湤0
$!$	89	：31． 5	［3： 1	． $0(129)$	4：3． 4	96.5	97.2	27.0	． $100: 30$	4.1	95．	25.9	60.9	． 110173	3：3． 4
111	：31．	31． 3	；3，α	chis：	$4 \because 3$	$\because 1$	3010	6．3． 0	． 00.5	36.4	\＆\％．＇6	－6． 0	41.8	． 111047	为，
11	－$: 111.7$	－31．3	：3． 3	0.0030	－$-4: 3$	$\because 0.3$	－：0．7	47.9	0.11044	－39．6i	－ 36.9	－$\because 7.3$	57.4	0.0064	－\％ 5.4
Means．			$\therefore 1.18$	0.0058	－36． 13			50.63	0.0056	3\％．0．3			53.02	0.1016319	$-35: 31$

Date．	MARCH， 1873.									APRIL， 1873.							
			31.			1.					2.						
Time．	D．	W．	1．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．		
	｜－29．3	［\％${ }^{c}$	$\begin{aligned} & p .8 .8 \\ & 14.0 \end{aligned}$	Jurliss．$0.00: 50$	$\begin{gathered} \circ \\ -16: \because \end{gathered}$	－94． 6 － 311.3 － 94.0			Iuches．	$\begin{array}{cc} 0 & 0 \\ -46 . \because & -1.2 \end{array}$		\bigcirc	$\begin{aligned} & p . c \\ & 41.3 \end{aligned}$	$\begin{aligned} & \text { Inchers. } \\ & 0.110 .8 \end{aligned}$	$\begin{gathered} 0 \\ -36.6 \end{gathered}$		
$0^{0} 1$									0.0020 .0050			-3%					
z	$\because 7$	3	寝：			29.3	30.4	57． 1	． 005 5	： 3.	： 11.	S？：3					
3	为吕	29，3				30.3	31.0	57． 1	． 0055	37.2	\because	311.6	－－－		－		
4	2	49．3				29．5	29.8	63.4	． 0060	36.1	：31．3	：3 4					
5	29.8	30.7				为	$\because 2$	43.2	． 1045	39.8	：31． 1	$\because 1 .:$	－				
6	26． 3	29.2				29．0	29． 8	37.1	．00：－	41.1	：30． 1	$: 11 .: 3$					
$\%$	27.2	$\because 2$				2－2	9x8	31.0	－00： 2	$4 \cdots$	走． 6						
4	只．	$\because 9.0$				26．3	$\cdots 3$	29.5	． 0035	$41 . \mathrm{W}$		$\because 4.1$					
9	\bigcirc	号㫛			－．．	25． 4	26.2	90． 2	． 11126	41.2	21.4	21.2					
10	2．11	29．0			．－．．．	$\because 4$	－20		110183 .0029	480	30.0	$\cdots 1.1$	－－－				
${ }_{\text {Nuors．}} 11$.	27.11 26 20	37,4 7.3				25.11	27．	？ 3.0	.0129 .0029	484 484	20.1 $\cdots 3.1$	20，					
1^{11}	120.1	9\％． 0				25.7	26.5	19.0	． 01225	44．$=$	24．	27.1					
$\stackrel{2}{2}$	\because it． 0	次：3				21.7	趿． 6	25．${ }^{\text {c }}$	． 0041	40.4	26．	\％					
3	2， 5	28：				$\because 1.5$	20．4	$\because 314$	． 11194	410． 19	？6．${ }^{\text {c }}$	27.9					
4	27.9	\cdots				20.11	21.5	311．$\%$	．1194	3－3	？－5	\because					
5	2\％．7	$\because 5$				21.7	－3． 5	20．3． 4	． 0053	：17．7	\％7．	？－10					
6	27.0 $2 \% .1$	2－9				$\because 4.7$	？	44.1	． 0055	\％． 1	9！	311． 0					
\cdots	2i．b	－ 4				45.7	06	41.3	． 0057	36， 6	30.5	$31 .:$					
9	2．5	693				－ 26.5	27.0	41．$:$	． 010	36^{\prime} i	30.2	31.0					
10	27． 7	？ 5					－31．9	41.3	． 0165	36．6	：30．0	30.8					
11	－28．5	－						41.3	0． 110.37	－36． 3	－	－ 3.4					
Meaus．			14.00	0.6480	46． 20	\％ $\begin{array}{r}31.5 \\ -31.2\end{array}$		$\overline{35.99}$	0.0044	－ 3 ， 50			41.31	10． 110.5	－：3，60，		
Date．	APRIL， 1873.																
	3.					4.					5.						
Time．	I）．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．V．	D．P．	D．	W．	R．H．	F．T．	1）．P．		
$0{ }^{\text {b }}$	－30．4	－${ }^{0}$	$\begin{aligned} & p . c \\ & 41.3 \end{aligned}$	Inches． 0.1003	－36， 6	$\begin{array}{r} 0 \\ -20 \end{array}$	$\begin{gathered} 0 \\ -9-3 \end{gathered}$	$\begin{aligned} & \text { M. } c_{1} \\ & : \text { in. } \end{aligned}$	Furthes． 0． 1910 ，α	$\begin{gathered} \circ \\ -41.1 \end{gathered}$	$\begin{gathered} 0 \\ -19.0 \end{gathered}$	－19．if					
					－36．6												
2	30.3	：31．3				－27．3 26.3	97.8		－．．．．－		17.5	19.	47.1				
3	31.1	湤0				27． 11	－-9				1－6	19.6	4（i．）	－0）に－4	31．		
4	31．0	：31，				21.0 37.1	$2-1$				12.5	18：3	47.1	－110ヶ\％	$310 . \mathrm{s}$		
5	27.4	－3				26.3	27.0	吅0	0.0031	－42．8	1－3	12.9	－ 3	． 0104	20		
6	22.0	$\because 3$				28	26.0	21.0	． 1003	40.9	$1-5$	11.1	5－7	． 010%	$\because 3$		
7	20.7	$\because 1.5$	38.5	0.0060	－36． 1	23．5	$\because 4.5$	$4 \div 2$	． 0061	： 14.3	17.8	18.6	4ii．	－（1） 0115	：31， 3		
8	19．\because	19.4	31.4	． $01 \because 1$	25.4		21.3	－i．4	－100－4	31.2	17.6	1 $\because:$	（iil． 4	． 0111	26， 3		
9	15.3	15． x	70.4	． 0146	枵． 0		19． 1	4．4．6	． 100×1	3 3.	17， 5	1上゙ツ	51.4	． 01010	1 2． 7		
10	1.2	19.1	：${ }_{6} 7$	． 0070	34.1	1ヶ．： 16.1	17.0	39.0	． 01077	32． 5	17.4	$1 \% 11$	61.4	． 0118	26.6		
11	15.6	16.4	51.2	． 0106	$\because 7.6$	$\begin{aligned} & 16.0 \\ & 15,2 \end{aligned}$	$1{ }^{15.9}$	5x． 2	． 01120	2	17.0	17.7	23．：	． 11110,	9－0		
Noon． $1{ }^{b}$	15.0	15.6	64.4	． 0138	23.1	$\begin{aligned} & 14 . \\ & 12 . \end{aligned}$	15.1	48.7	．11115	27.5	11.9	17.9	5， 1	． 0103	1 26．3		
	17.7	12.0	67.0	． 018 －	24． 9		19.1	汹． 7	． 11015	34.1	16.7	17．3	1i1．	． 0100	\cdots		
$\stackrel{1}{2}$	1N． N	19． ，	（i2． 2	． 0102	2－2． 5	$\begin{aligned} & 21.1 \\ & 23.1 \end{aligned}$	21.6	60.8	． 00093	29.15	16.8	$13 .:$	55.5	． 0107	$\because 7$		
3	2？ 8	2－3	51.4	－vorer	30．		20．6	－ir．0．	－120	3	16.7	17.5	49．0	． 0096	$\because 9.1$		
4	2．96	穴家	49， 4	． 0069	34．31	$\begin{array}{ll} \ddot{3} & 23.1 \\ 3 & 3.25 \\ \hline \end{array}$	2：3． 3	131．${ }^{16}$	． 1014 T	S．9	1：i．6	17.3	68． 4	． 11131	$\because 4.0$		
5	24.6	25．8	41.7	0.0057	－316．	！38．	） 24.1	416.8	． 1016%	\％－ic	17.1	17.7	111．3	． 0116	24.3		
6	91.6	$\because 6$				93． 1	23． 5	47.9		：3．0	17.2	17.7	1i1． 6	． 01.3	24．${ }^{1}$		
7	28.0	2				24.3	34.8	54． 4	． 117835	31． 3	17.4	17．${ }^{\text {c／}}$	2：3． 4	． 0138	23.1		
8	20 ${ }^{2}$	星． 0				26.5	26.9	5r，	． 0066	\％4．${ }^{-}$	17．	180	［i7． 11	．01\％	24．9		
9 10	20．4	㫛：				，24： 5	\％7．1	：19．6	． 00043	40．11	17． 5	1－0	6i． 19	．013：	｜ 34.9		
11	28.2 -28.0	－2\％．8	44.0	0.0046		25.5 -83.7	－3．9	191． 28 20.3	.0073 0.0039	33.4 -11.11	17.3 -1×3	－1\％．5		－ 0.1111%	31.1 -26.1		
Means．			49． 3	0.0077	－：13． 50			43.64	0.0064	－36． 111			5\％．34	0.0106	－37．85		

Date．	APRIL， 1873.														
	－6．					7					8.				
Time．	D．	W．	R．II．	F．V＇．	D．P．	$1)$.	IT．	R．H．	F．V．	D．P．	D．	W．	R．H．	$\mathrm{F} . \mathrm{V}$ ．	1．P．
	\bigcirc	\bigcirc		Tuches．	\bigcirc	－	\bigcirc	p．c.	Imillos．	c	－	\bigcirc	1．＂	Inthers．	\bigcirc
01	－12．1i	－19．8	5． 4	0．1111\％	－	－11．0	-14.7	int． 5	0． 1118	－ 6 \％	$-1.1 .5$	-1.51	134．9	11．014：	－
1	19.11	19.7	$4 \% 9$	． $110-13$	：31．1	1：3，	14．5	13.0	． 0137	23：	11.5	15．0	720	． 1155	－$\because 1111$
\％	19.9	19.6	517.4	． 10012	2！． 1	13.5	14.1	6\％． 2	． 115	$\because 1.4$	$14 . \square$	15．0	720	． 1115	20．9
3	19.11	$1!1.6$	57． 2	． 0 吅枟	$\cdots!1$	13．：	14.1	（i6）\％	． 1150	21.4	14.9	1．5． 5	6.5	113\％	\％ 2.0
4	19.1	$1!.8$	43.4	． 0074	（3）	13.4	14． 3	8， 0.4	． 0111 ；	36	14.5	15：	56	． 0120	24，${ }^{\text {2 }}$
5	19.11	19.7	49.3	． $111-13$	$\therefore 1.1$	13．3	14.0	1i－0 0	． 014.	？	12.6	13．3	6\％．7	． 1114.	121．6
i	12．19	111.5	27． 5	． $1046 ; 1{ }^{\text {a }}$	：3． 7	1：3．3	14.10	102． 0	． 1114	景家	11.0	11.6	711． 4	（110	1®0！
7	$1 \times .11$	$1 \times . \alpha$	45.6	．0n－	：1． 7	12，	$1: 3.6$	ixis：	．01：3	昭 5	9.19	19．6	（iic． 4	－ 11120	17.9
α	17.1	11.8	－s，	． 0104	出． 1	12 i	1：1， 3	12：	． $014!1$	$\because 1.1$	$\times .5$	9.9	1is．	．1120	16．0
9	16.4	17.1	55． 9	． 11111	27． 1	12．4	13.5	425	． 0112	上21	8.7	8.7	58.6	． 11171	18.9
10	15.7	16． 6	44． 2		30．	12.0	13，5	边	． 1902 ci	31i．a	\％．0	7．	711.3	． 18	14.0
11	15．${ }^{2}$	16．6	50.8	． 01114	＊）．！	11.4	12：${ }^{\text {a }}$	64． 6	．01：1	21.4	7.9	$\therefore .7$	61.3	． 01.5	17.7
Noon．	16.1	11，\％	56． 1	． 0113	216	11.5	$1 \because 5$	44.5	－ 01×1	$\because 4.4$	7.15	它	57．	． 013.	1 N .7
$1{ }^{\text {f }}$	14.9	15.7	此 6	． 11113	23．	11.5	12.9	1it． 6	． 1162	21.0	8.4	9.3	6in	． 11×3	12.0
2	15．$: 3$	16．2	45.6	． 10051	？ 3.4	11.3	13.3	101．4	． 1112	19.11	E．－	9.11	1．i． 1	． 11184	17.6
3	15.4	16． 1	27．${ }^{\text {a }}$	． 1119	9．5 6	$1 \therefore 1$	12.6	71.4	．01\％ 1	17．2	9.0	9.7	13，\because	． 0195	16．${ }^{\text {2 }}$
4	$15 . \%$	16.5	$\therefore 1.4$	－1101－3	$\because 6.7$	$1 \because 11$	$1 \therefore 5$	－1． 5	． 01 －	17.7	\cdots	4.7	6：3．：	． 01×3	17．0
5	15.7	16． 5	S1．0	． 010.5	呆．${ }^{\text {a }}$	$1 \because 2$	12.7	71．3	． 111×1	1r．11	9.7	10．5	120 0	． 11717	14.0
1	15.7	16.7	51． 2	． 11010	＊9：	12.5	1：3， 1	（i）． 9	． 1116.3	21）． 1	10.5	11.5	（ill 5	． 11159	20.4
7	15．7	16.7	$\therefore 2.4$	． 0091	30.4	13． 1	1： 12.7	$1 i \% .3$	． 1118	29．9	11.3	12．7	$\therefore-6$	． 0145	2． 2
\％	16.1	16.7	1ie． 13	． 0182	$\because 4.9$	13． 1	13.7	1.6 .3		－30． 9	1：3 3	13.9	6 6\％． 1	． 01.4	21．1
9	15.5	16.4	51.11	． 00924		1：3． 5	14．${ }^{\text {2 }}$	1．1． 15	． 01.111	\％rs	14.8	15.7	11.9	． 0101	こ－1
10	15．5	16．3	51． 4	． 016	27．5	14．：	14．：	78	－ 11.1	20.7	16． 4	16.9	（1）． 1	． 015	23． 5
11	-15.0	-15.6	1；4． 4	11．11：37	－$\because 1$	-14.2	-14.7	FS\％	0．115\％	－20． 19	-16.5	-17.1	61.9	$0.01: 1$	－25．5
Meaus．			$\therefore 3.40$	0． 00051	－－38．78			$\leftrightarrow \% 04$	0．101：0	－ 23.33			63，40	（1）．015，	－20．25

Date．	APRIL， 1873.														
	9.					10.					11.				
Time．	1）．	W．	R． 11.	F．V．	L．P．	D．	W．	R． 11.	F．V．	I．P．	D．	IV．	R．H．	F．V．	D．P．
	\bigcirc	\bigcirc	17.	Indis．	\bigcirc	0	\bigcirc	p．c．	Inchers．	\bigcirc	\bigcirc	c．	17．	Inches．	o
0^{4}	-12.15	－1．．4	41，${ }^{2}$	9． 11005	－30．9	－ 4.10	－ 24.7	36.15	0．614．42	－3．7	－ 5.9	-6.5	71，	（1．1023：9	-12.5
1	17.6	18.3	54． 1	． 01093	$\cdots \cdots$	19．	19．7	13， 59	－リloz	＊i， 3	$\therefore 7$	（i，\because	79，	． 11285	10． 2
$\stackrel{2}{2}$	17.6	1.3	54.1	． 11483	？	－4．${ }^{1}$	$\because 1$.	5is． 11	． 0072	3： 3	5.5	1i． 1	75．9	． 020.7	11.1
3	17.0	17.7	5n，	． 1110	－2．11	？	2：${ }^{\text {c }}$	29，星	． 1105	：3．1	4.2	4.7	－1．3	． $10: 31$	$\bigcirc .5$
4	12.9	16.18	ini．a	． 011.	21．3	311．－	21.6	45.17	． 0150	：4．：3	4.11	4.6	71.4	－W－1	9.2
\％	11.6	12.7	44.6	． 0111	\％\％． 1	15.1	15.7	（i4． 3	．01：30	？	$\because 9$	8.5	－5	－10：10	7.9
6	9.6	10.3	66.7	．114；	17.5	7.9	8． 7	14.6	． 0197	16.4	-6.1	－ 10.6	－4．4	． $113+5$	： 7
7	7.11	7.6	24． 4	－以上迷	12．${ }^{\text {－}}$	\cdots	$\therefore .7$	促，：	，tretil	10， $\mathrm{S}^{\text {d }}$	＋ 0.6	± 0.0	－1．6	．（\％） 4	3.7
8	4.5	$\therefore 3$	69.4	－123\％	11.9	1.5	2.4	71． 2	．0．－－	9.10	2.7	＋ 1.3	77． 1	． $0: 3-1$	Q．
9	11.9	12.6	（3）．	． 1115	14．6	1.5	1．：	73．4	． $03: 30$	5．${ }^{\text {c }}$	$\because 5$	2.9	－-1.7	． 14427	－0．4
10	$12 \cdot$	13.7	51.6	． $111 \% 3$	\％？	0.5	1．\because	77．6	． 03330	5.8	6.5	5.8	－：3． 1	． 10.12%	$+2.5$
11	14.4	1\％． 0	（ii．） 0	． 114.4	8． 4	1.11	$\because 19$	1－\％ 0	． $02-11$	$9 . \because$	－ 6	4.9	－$\quad 1$	． 16411	1.5
Nonni．	15.0	15.3	－ 3.4	． 017.1	12\％	0.8	1.2	71．3	（120！	$\therefore 1$	fi． 1	－． 1	긍	． 1443	$\cdots 1$
1^{15}	14.7	15.5	5\％．0	． 011.	46.4	1．3	$\because 11$	71， 11	． 10315	6．	5.9	5.1	37．－	． 1444.3	（1．）
2	14.5	15.0	7－11	． 1115	21．9	1.7	$\because .7$	tim．	． 036	10．\because	5.1	＋ 4.5	－1． 8	． 11414	$+1.6$
3	14.5	1－0	7：11	． 11.0.	30.9	\because	$\because 3$	71．7	． 0239	9.3	＋ 0.1 .1	± 0.0	！ni！	． $14 \pm$－	-0.6
4	14．\because	14.3	呺：	． 1110	211．6	๕．－	$\therefore 6$	71．4	，02\％	9.7	－4．5	－$\therefore 1$	76．9	，事：	$1 \quad 9.9$
5	14.1	15.0	65.0	． $114 \mathrm{4}: 1$	$\because 4$	3.3	$\therefore 3$	7－1	． $0: 3$	¢． 4	6．6	（i．）3	71．7	，16：43	12.3
6	14.9	15.6	5x．	． 1119	24.9	4.3	4.8	81.2	－ $12 \begin{aligned} & \text { a } \\ & \end{aligned}$	$\therefore 6$	T 4	$\therefore 11$	24．0	，（1）	13.4
7	15.	16.5	－17．0	． 0116	26.2	$4 . \%$	$\therefore 0$	－1．0	－12－13	¢，－	9.5	11.9	78．11	． 1213	14.8
8	17.4	17.9	117.2	． 110	24.6	4.2	4.7	と1．3	． 0291	\cdots	11.5	$1 \because \because$	ri4． 6	． 0162	20.0
9	19.5	90.0	53， 0	． 01610	27.7	4.7	$\bigcirc 1$	$7 \div 6$	． 1025	11.1	12.7	13，	7\％．0	． 0135	23.4
10	21.5	2－2．	51.4	，1115	3 3 ，	5．：	$\therefore 9$	71． 1	－12031）	10.	14.4	14.9	77． 2	． 01618	19.4
11	－2：0	－ 5	82.0	11.81176	－32．4	－ 5.8	$-6 . \therefore$	71.5	O．（best）	$\mid-1 \because 5$	｜ 15.0	-15.7	－i， 1	11.0124	－6．0
Means．			61.46	0．111：	－ 4.12			67．90	0．1220	-15.15			72．05	0.0310	－－8．4

17 H 0

FORCE OF TAPOR．

The tro following tahles contain the daily and homly means of the forec of vapor，extracted from the preceding record：

Inaly means of force of rapor ohservel at Potaris Ilouse．

Howry merns of forec of mon ohserved at Pohoris Inomses．

$0{ }^{1}$	0，11312\％	0．0．3：36	11．010，00：	O． 11135	1），0063：4	1）02：5\％	0． 115112
1	，11：11：	． $113: 319$		，11108\％	，110020	112415	1163
\because	，11：110： 1	－12：121	，（n＋17：	． 010716	． 11112	（1）319 ${ }^{112}$	，11－（0）
：	，（1：3．3．）	－19－2．0	（ 1115	． 11017111	－（1055．9	120に	（1）－3（i）
1	，113： 118	10：30；	．Outit：	－ 1102039	－10156is	－125id	11s，Sm
$\overline{7}$	．11．91：3	． 11.1019	，11116－	． $11117: 1$	（1）17tio	． 02509	
1	． $11: 1112$	．11－4．3：		． 101511	－01303！	，11．948	． 10.15
7	（1：2，16，	－ 1192160	－100に5	． 11151	－Onlias	（12？P！¢	． $11-1.11$
\cdots	－10：5－4		，1）ルこ：	． 11117.36		－10：2＋1	－11， 1.30
$!1$	． $100,0 \leq 1$	．11）1－3	． 1005094	． 010701	． 100654	． $10: 511:$	，11－8ー！
111	，10：17\％	11） $10310 \times$	，100．0．	． 10057	－1007ata	，10：3S：	－12atios
11	，10：5， 01	． 113011	． $100.2+1$	－11103－	－1108がっ	． $10: 303$	－11－602
Nown，	（10：5！	－11： 1115	（17） 113	－11075\％	－ 10001 l	－10：111：	． 11 － 6 （itis
1^{11}	－パロ\％！	，11： 116	－101） 16.4	－ 010711	（111）－21i	． $11: 515$	－0－7 $11: 3$
\because	，0．3－0．3．	． 113045	，11015：	． 1101730		．13：－31：3	，リniow
\because	6：I－113	，1101－2	，111 16：${ }^{\text {a }}$	（167）－	． 11117.56	． $10: 1713$	，11－ら゙っ！
4		，1200：1	．11016i．	． 1113151	． 111126	． $1133: 3$	． $118 \mathrm{si=} \mathrm{l}$
i）		，12－2HET	． 11016	． $11110 \cdot 3$	（（1）\％ふ1	，11： 2×76	
$1:$	－ $10: 41:$	－1F？ 11010	．（1） 4.43	（11178）	－ 000396	． $13: 1173$	，02atis
，	－Ma，	．1119－3	－111以	－いに－：り	－mailli	． $10 \cdot 3117$	
\cdots	，10，$\sim_{5} 19$	，1150，	（11） $1: 3$	， 1101519	，（16） 51	，129\％	
$!$	，0：51：0	－ 113 2ni－	（（H） 114	11118		，1237）	（1）2， 0.5
10		，11．30：${ }^{\text {a }}$	（1）15：1		． 000 c （1）	，12：O以，	． 0 2－1！ 11
11		11． 18.905	（1）（1）「こ！	0．10180	11．015\％边	11．10： 1 ！ 11	11.17517
Mi：alls．	0．11．：11：	11． $1 \times 1 \%$	11.00141	（1． $110512!$	0.1019615	0． $129+41$	0．11） 21.2

AN工TAL FLTOTUATION OF THE FORCE OF TAPOR AT POLARIS HOUSE．

As our observations taken at Polaris Honse estend orer seren months onlr，we submitter sis of the same to analytical treatment to obtain the annal flactuation of the force of rapor duriag the winter－half－year．

The analytical elements and expression insed are as folloms：

n	a_{n}	b_{n}	B_{n}	C_{n}
				－，＂
1	＋0．0202	－0．0029	＋0．020	$95 \quad 6 \quad 5$
\because	－0．0201	－ $10.001-$	＋0．10312	$45 \quad 386$
3	＋0．112：	± 10.0000	＋ 0.018	$90 \quad 000$

Br means of the abore expression the folloring ralues were obtained，giren with their cor－ respouding equi－interrals in the aunesed table：

Months and seasous．	Observed．	Computed．	Differance． $0 .-\mathrm{C}$
December．1－9	$\begin{aligned} & T_{1 \text { oluen }} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Incher } \\ & 0.011- \end{aligned}$	$\begin{array}{r} \text { Thches. } \\ +11.11112 \end{array}$
Januarr，1－：${ }^{\text {a }}$ ．	0.0147	1． 01811	－0．11\％：
Febrnars．．	0．1以に：	0.0110	1）．1110：
March．．－	0.1106	0.01 l	－ 0.111014
April．	0.0312	$0.018: 1$	＋ 0.111%
Mar	$0.11=4$	0.11019	＋ 0.10089
Mean	0． 1 为	0．1901	± 0.0000
Winter	0.0113	0.1183%	－0．0030
$\underbrace{}_{l}$	0.144106	0． $11.10 \% 1$	$+0.11020$
Probable error of mean ．．．．．．．．．．．．．．．．．．$=$（1，（M） 1 ：			

It will be sen that during the winter－balf－sear the force of vapor is above the mean during April and Mar．while it is below the same dnring the four remainins months．The observed mini－ mum ocem in Janaars．while the computed curve bases throng the minimam in Februare．or． rather，abont the ？oth of Jannary．An examination of the thermal cnere during the winter－half． sear shoms that January mas the collest month，althongh the computed curre reaches the mini－ mum in February，n that the thermal and hremetrical curses are in conformity．

The ralnes observed at Polanis Bay and Polaris House duriug the winter－half－rear compare as follors：

Polaris House	December． 戶斤いい	Janulars． 11，1044	Februare． $0.010:$	March． 10.11612	April． 1010：3：	$\begin{aligned} & \text { Mar. } \\ & 0.11-4= \end{aligned}$	$\begin{aligned} & \text { Winter' } \\ & 11,0113 \end{aligned}$	$\begin{aligned} & \text { Fring } \\ & 0.0406 \end{aligned}$	$\begin{gathered} \text { Mean. } \\ 0.0259 \end{gathered}$
Polaris Bay	0．01：7	$0.1710 \times$	$0.010 \% 15$	0．009\％	0.120		11．0110？	1），11414	

During Febrnars，March and May the force of vapor was greater at Polaris Bas than at Polaris House．This mas also the case during spring；while during winter and the three remain－ ing months it was greater at Polaris House than at Polaris Bay．

diurnal flutotation of the forde of vapor at polaris house.

In the analytical treatment of the diurnal flactuation during the winter-half-gear the following elements and expression were used:

n	a_{n}	b_{n}	B_{n}	C_{n}	
1	-0.00170	-1.00040	+0.0015	257	19
2	-0.01030	-11.00010	+0.0003	251	21
3	+11.1100012	-0.00010	+0.0001	169	11

$F=0.0258+0.0015 \sin \left(x+257^{\prime} 19^{\prime} 29^{\prime \prime}\right)+0.0003 \sin \left({ }^{2} x+251 i^{\circ} 21^{\prime} 30^{\prime \prime}\right)+0.0001 \sin \left(3 x+169^{\circ} 11^{\prime} 33^{\prime \prime}\right)$
By means of the above expression the following values were obtained:

Time.	Observed.	Computed.	$\begin{aligned} & \text { Difference, } \\ & \text { O.-C. } \end{aligned}$	Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$
	Inrincs.	Inches.	Inches.		Inches.	Inches.	Inches.
$0^{\text {h }}$	0.0233	0.0239	-0.0006	Noon.	0.0:51	0.0\%71	± 0.0000
1	. $12: 46$. 11941	. 0005	$1^{\text {b }}$. 0272	. 0271	+.0001
2	. $124 \times$.1204	-. 0002	2	. 0157	. 0271	$\pm .0000$
3	-1049	. 0249	$\pm .0000$	3	. $0: 31$. 0269	+.0005
4	. 085	. 0254	+. 0001	4	. $0: 67$. 0266	. 0001
5	. $0: 2.91 \%$	-1559	-. 0003	5	. 0264	. 0263	. 0001
if	. Cz62	, 103\%	0006	1	. $0: 55$. 0254	$+.0003$
7	. 0261	. 104	-. D10\% ${ }^{\text {a }}$	7	-020\%	. 025	--. 0001
8		. 1020	+. 11048	8	. $0: 44$. 0251	-. 0002
9	.10:\%	. 1236	. 00006	9	. 0245	- 12:44	+. 0001
10	-0:5:2	- 030	+.0004	10	. $0 \cdot 545$. 0244	+.0001
11	0.0515	0.120	± 0.0000	11	0.0240	0. 10.35	+0.0001
Mean $=0.095 \%$ difterence $= \pm 0.0000$.							

resulting in the annexed diagram.
Minmal fluctuation of force of copor-cinter-half-year.

In general, the computed and observed valnes agree pretty closely, the greatest difference between the two not exceeding 0.0006 . The computed curre passes the maximum of 0.0271 at about 1^{h} a. m., and the minimum of 0.0239 at about $112^{1 \mathrm{~h}} \mathrm{p}$. m., thus exbibiting a range of 0.0052 . Besides the absolute maximum there are two relative maxima of 0.0268 and 0.0256 , respectively, occurring at 6^{h} a. m. and 7^{h} p.m., respectively. The two correspouding relative minima of 0.0264 and 0.0254 , respectively, being reachel at about $7^{\frac{11}{4}}$ a. m. and $6^{\text {h }}$ p. m. An examination of the corresponding thermal curve shows that the absolute maximum occurs at $2^{\mathrm{h}} \mathrm{p}$. m. and a relative maximum at 8^{h} a. m., which latter, however, is merely accidental ; the minimum temperature during the period in question being reached at miduight.

In order to investigate the diurual fluctuation of the force of vapor during winter the means of the computed values for December, January, and February were taken, given in the following table, with the observed values and the differences between the two:

Dinmal fluctuation of the force of rapor at Polaris House during winter.

Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$	Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$
$0^{\text {b }}$	Inches. 0.0118	Inches. (0.011:	Inehes. $+0.0006$	Noor.	Tuches. 0.0113	Incles. 0.0113	Inches. ± 1.0000
1	. $011 . \%$. 0114	$+.0001$	1^{17}	. 0111	. 0110	+.0001
2	.011	. 011.	- . 000:	\%	. 0109	. 0111	-. 0002
3	. 0115	. 0113	+. 100\%	3	.011:3	. 0109	+.0003
4	011	.0118	$\pm .0000$	4	. 0109	. 0111	-. 0002
:	. 0113	. 0117	二.0004	\%	. 0106	. 0106	$\pm .0000$
i	. 0127	. $01 \% 1$	$+.0006$	6	. 0108	. 0108	士.0600
7	. 0114	. 0119	-. 0005	7	. 0108	. 0109	-. 0001
8	. 0116	. 0119	. 0003	\cdots	. 0104	. 0104	$\pm .10000$
9	0116	.011*	-.000\%	9	. 0109	. 0107	+.11002
10	. 0119	0116	$+.0003$	10	. 0109	. 0109	$\pm .0000$
11	11.011?	0.0115	-0.0003	11	0.0108	1). 0107	+0.0001
Mean $=0.0111 ;$ difference $= \pm 0.0000$.							

The curve resulting from the above values will be found in the discussion of the diumal fluctuation of the relative humidity giveu hereafter, where the two hygrometrical curves are represented simultaneously.

As was found to be the case at Polaris Bay, the curve now in question is rather irregular. It passes through the absolute maximum of 0.0121 at $6^{\mathrm{h}} \mathrm{it} . \mathrm{m}$., while the minimnm of 0.0104 is reachect at S^{h} p. m., the range being 0.0017 only. Both the computed and observed absolute maxima and minima coincide in regard to time. Eesides the absolnte maximum and minimno there, are a number of secondary maxima and minima, as a glance at the above table, or at the curve referred to, will demonstrate. The corresponding thermal curve passes the absolnte maximum at midnight and the absolute minimum at noon, there being, consequently, no coincidence of the maxima and minima of temperature and force of vapor in regard to time.

The following table exhibits the-
Diurmal fluctuation of the force of coupor at Polaris House durin! spring.

Time.	Gbrarred.	Compated.	$\begin{gathered} \text { Diftiorence, } \\ \text { O.-C. } \end{gathered}$	Time,	Observed.	C'omputed.	$\begin{aligned} & \text { Difference, } \\ & 0 .-\mathrm{C} \text {. } \end{aligned}$
	Inclues.	Imrles.	Inches.		Inches.	Incher.	Inches.
0^{4}	0.03558	0.030	-11.0004	Noon.	0.0429	0.10438	-0.11004
1	. $0: 357$. 0:304	-. 0007	$1^{\text {l/ }}$. 0433	. 0436	.0003
'	. $11: 37 \%$	0.:20	$+.0002$	\cdots	.0433	. $114: 12$	-. 0005
:	. $0: 308$	11: 3 !	. 111114	:	. 114:35	. 04:31	+..0004
4	. 0392	0.3.6	+.0008	1	. 11.426	. 11482	-. 11000
5	(1):	03399	$\pm .0000$	\therefore	. 0414	. 0419	. 0000
6	. 03897	0405	-. 0008	1	.0407	. 0419	-. 0005
7	. 1140 Cl	.0410	-. 0002	7	. 0402	. 10402	$\pm .0000$
s	. 0419	1041\%	+.0011	-	. $0: 94$. $13: 104$	-. 0005
$!$	04\%9	. 0419	+. 0.0010	9	. 0384	. 1102	+.0002
10	. 0424	0424	$\pm .0000$	10	. $0: 380$. 0173	- bous
11	0.04:3	0.0420	-11.0003	11	0.0.0:71	0. 0136	+0.0006
Dran = 0.0403; liftrrence $= \pm 0.000$.							

The curve showing the diurnal march of the force of vapor during spring will be found represented simultaneously with the one exhibiting the fluctnation of the relative humidity, in the discussion of this latter subject, given hereafter. It may be seen that the computed curve passes the maximum of 0.0438 at $2^{\mathrm{h}} \mathrm{p}$. m., while the minimum of 0.0362 is reached at midnight, thus showing
a ramge of 0.0076 ．Besides the absolnte maximum there is a relative（accidental）maximum of 0.0410 taking place at abont $7^{\mathrm{h}} \mathrm{a} . \mathrm{m}$ ．The maximum and minimum，as observed，occur at $3^{\mathrm{h}} \mathrm{p} . \mathrm{m}$ ． and $1^{\text {h }}$ a．m．，respectivelr，coinciding in regard to time pretty closely with their corresponding com－ puted values．The corresponding thermal curve passes the maximum abont half an hour past noon aml the minimum at midnight．At Polaris Bay the maxima of temperature and force of Fapor occurred nearly at the same time（noon），while in this instance the maximum of force of vapor suffers a retardation of about $2 t$ hours．

For the hetter understanding of the dinmal fluctuation of the force of rapor during the two stanons in question，and during the winter－half－year，we shall now consider the dinrnal flactuation daring the different mouths on record．

The analytical elements and expressions made use of are as follows：

December．

n	${ }^{\prime \prime}$	b_{n}	B_{n}	C_{n}
		－		－＇ 11
1	－ 19.0008	＋0．0015	＋ 11.0017	$\begin{array}{llll}339 & 5 & 6\end{array}$
\because	－ 10.0001	＋0．0003	＋ 0.610164	：41 2419
$:$	$+0.0095$	＋ 0.0000 \％	$+0.0005$	874897

Janurtry．

February．

n	a_{n}	b_{n}	B_{a}	θ^{\prime}
				－＇ 1
	－0．0004	－0．0001	$+0.0004$	254235
号	-0.0001	-0.0004	＋ 0.0004	10959
3	－0．01003	＋ 10.0001	＋0．0003	时呺3938

$$
\begin{gathered}
F=+0.0074+0.0004 \sin \left(x+2.423^{\prime} 5^{\prime \prime}\right)+0.0004 \sin \left(2 x+189^{\circ} 52^{\prime} 23^{\prime \prime}\right)+0.0003 \sin \left(3 x+278^{\circ} 39^{\prime} 38^{\prime \prime}\right) \\
x=15,30^{\circ}, \ldots .
\end{gathered}
$$

Werch．

n	u_{n}	b_{n}	B_{n}	C_{n}
				－＇ 11
1	－ 13.00110	－ 0.1000 .010	＋ 0.0010	2414533
\because	-0.00010	＋ 0.000 .10	＋ 0.0004	3462022
3	-0.00010		$+0.0001$	2615828

$$
\begin{gathered}
F=+0.0014+0.0010 \sin \left(x+041-55^{\prime \prime} 33^{\prime \prime}\right)+0.0004 \sin \left(2 x+346 \cdot 30^{\prime} 22^{\prime \prime}\right)+0.0001 \sin \left(3 x+261^{\circ} 58^{\prime} 28^{\prime \prime}\right) \\
x=150,300^{\prime \prime} \ldots
\end{gathered}
$$

April．

n	a_{n}	b_{n}	B_{n}	C^{\prime}
				0 1．．1
1	－0．004．	-0.0025	$+0.00081$	9401810
\because	$+0.0001$	-0.0003	＋0．0000；	1715%
3	$+0.0004$	＋ 0.1000	$+0.0004$	$66: 59$

$F=+0.0299+0.0051 \sin \left(x+2401^{\prime \prime} 10^{\prime \prime}\right)+0.000^{\prime \prime} \sin \left(2 x+151^{\circ} 55^{\prime \prime} 57^{\prime \prime}\right)+0.0004 \sin \left(3 x+66^{\prime} 3 y^{\prime} 46^{\prime}\right)$
$x=10^{\prime \prime}, 30^{\circ}, \ldots$.
May．

n	a_{n}	b_{32}	B_{z}	$O^{\prime \prime}$
1	－0．10－11	－－0．0009	$+0.0042$	$\begin{array}{ccc}0 & 1 & \prime \prime \\ \text { 25x } & 23 & 1\end{array}$
2	-0.0017	-0.0002	＋ 0.0001%	90\％ 64
3	－0．0000	－11．0009	＋ 0.0010	317310

$$
\begin{array}{r}
F=+00 x^{2} 41+0.0042 \sin \left(x+25023^{\prime}: 1^{\prime \prime}\right)+0.0017 \sin \left(2 x+36,6^{\prime} 44^{\prime \prime}\right)+0.0010 \sin \left(3 x+30521^{\prime} 0^{\prime \prime}\right) \\
x=15,30^{\circ}, \ldots .
\end{array}
$$

The ralues obtained by means of the above expressions are as follows：
FORCE OF TAPOR．

Time．	Decembre．			Time．	Januars．		
	Observeil．	$\begin{gathered} \text { Compu- } \\ \text { ted. } \end{gathered}$	bitiereuce． O.-C.		Obsrrved．	$\begin{gathered} \text { Compr- } \\ \text { ted. } \end{gathered}$	$\begin{gathered} \text { Difierenct } \\ 1 .-\left(\begin{array}{c} \text { C } \end{array}\right. \end{gathered}$
$0^{\text {h }}$	Inches． （1）1）：	Inches． 0．1゚が！	$\begin{aligned} & \text { Imrfres. } \\ & +0.1011 \end{aligned}$	0^{11}	Jur－lus． 11． 10050	$\begin{aligned} & \text { Luchus. } \\ & 0.10148 \end{aligned}$	$\begin{aligned} & \text { hurhrs } \\ & +0.00109 \end{aligned}$
1	． 1703	－0295	＋．1010	1	． 11045	． 11444	－． 00001
\because	－1918	，10203	－． 11009	\because	$.004 \%$	． 0049	． 01010
3	－10202	， 0236	＋．0008	：${ }^{\text {a }}$	． 11048	． 0049	－． 0001
4	－11－20	． $0 \cdot \underline{3}$	－．010－3	4	． 11049	． 0049	$\pm .0000$
\％	－1 $\because 19$	－03	－1000	5	． 11114	． 11049	－，11111
6	－以1．3）	119411	＋．010\％	6	． 104415	． $1104!1$	，01013：
7	． 0216	－（0）2：3？	－． 11016	7	． 110448	． 11049	－． 0101
5	－0以ご？	， 0239	． 0006	8	，0053：	－ 10445	＋．0004
9	－10－ 19	，02．2． 4	－． 111005	9	． 00.51	． 010.51	$\pm .0000^{\prime}$
10	，10．05	． $0 \cdot 19$	＋．0008	10	－ 0054	.0049	＋． 0100%
11	． $11-20)$	． $0: 214$	－．11012	11	．00．30	． 100151	－． 0001
Noon，	． $1 \cdot \underline{2} 15$	，10， $1: 3$	＋．0602	Noon．	． 1014	．Outs	－． 0001
$1^{\text {b }}$	（19） $1:$	－030	＋．0004	$1^{1 /}$.0047	－ 10045	$\pm .0000$
2	． 1209	． 0217	－．1100x	\cdots	． 164.4	． 1004.5	I．0700
3	－1．2 19	．0：2］：	$+.0007$	\because	． 10046	－1104．3	＋．0001
4	－1095）	－021	－．001：3	4	． 0046	，mind	． 0003
5	，10： 111	．013	＋．0003	5	.0045	，004：	． 000%
6	，112011	（1020）	－． 0001	6	． 11145	． 1044	＋．0001
7	11199	． 020.5	． 0006	7	.0043	． 0048	$\pm .10000$
－	0196	． 0190	－． 0006	8	． 110.4 .4	． 014.5	二． 0001
9	01307	． 020.3	$t .0004$	9	，（11） 41	0045	． 0004
10	0214	.0 .211	＋． 11000.3	10	．00－46	． 11148	－． 11001
11	0.1030	0.1200	± 0.0000	11	$0.111) 45$	0.1114 .5	$\pm 0.12 \mathrm{~mm}$
Neans，	0.12212	0.0212	± 0.0000	Means．	0.10047	$0.004 \hat{7}$	10．0000

FORCE OF VAPOR－Continued．

Time．	Feloruary．			Time．	March．		
	Observed．	Compu－ ted．	Difference， $\mathrm{O},-\mathrm{C},$		Observed．	Compu－ ted．	Differenc:
	Inches．	Inmiex．	Inches．		Inches．s．	Inches．	Inthes．
$0^{\text {b }}$	0.1070	0． 00065	＋0．0005	0^{4}	1）．0003：	11． 100.5	＋1．1905
1	． 0006	． 10156	－． 0001	1	． 0063	． 10061	＋．0003
2	． 0072	（101：）	＋．0003	吕	． 0062	． 0064	－． 10012
3	． 0070	0071	－． 0001	3	． 0055	． 01163	－． 00018
4	． 0074	． 1017	＋．0002	4	－ 116 hrif	． 10001	＋．010：
5	，1917：	0074	－． 0001	5	． 000 niz	． 90014	＋． 01003
6	． 0074	0075	－． 0001	\checkmark	． 0061	－ 10065	－． 0004
7	． 10075	0076	＋．．0001	7	． 0065	． 010154	＋． 0001
8	－ 1015	． 11088	－． 0004	\cdots	． 00069	． 006175	＋．0003
9	． 0079	（111）0	． 0001	！	． 0067	． 0070	－． 00003
111	． 0078	． $110 \sim 1$	－． 00003	10	． 0072	． 0078	－． 0001
11	，Mres：	． 11080	＋．0003	11	． 1010 ar	． 0077	＋．0001
Noon，	． 10076	01017	－． 0001	Nool．	． 0081	．110－0	． 0001
$1{ }^{\text {b }}$	． 0074	． 0074	$\pm .0000$	$1^{1 /}$	． 11.85	．1021	＋．0n42
2	． 1107 ：	． 0071	＋． 10010	\because	－ 01021	116に1	上． 0000
\therefore	0073	． 11071	． 00002	\because	． 1085	0079	
4	．107\％	． 1108	＋．0004	4	0077	Mrat	＋． 0001
！	0072	． 0076	－． 11004	5	． 0025	． 0074	． 11001
6	． 1107 K	． 11075	－． 1100 Cl	6	． 0070	． 0069	＋． y 001
7	，M124	（11）	＋． 116014	7	－（1）6，	． 0066	－． 0001
8	， 11015	． 1005	－． 0006	\checkmark	－015：	． 0062	$\pm .0000$
！	－10\％9	． 11014	． 10005	9	， 0101	． 0060	＋．0001
10	－0069	． 11012	－． 1000	10	OH1，5；	． 110.5	＋．101018
11	0.0121	0． 119 mit	＋0．000\％	11	0． 11655	0.1005%	－11．0005
Me：als．	0． 0074	0.0074	± 0.0000	Means．	11． 0068	1）． 01018	± 0.0000
Time．	April．			Time．	11：uy．		
	Observed．	$\begin{aligned} & \text { Compu- } \\ & \text { ted. } \end{aligned}$	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$		Observed．	Compr－ ted．	Difference 0．－C．
0^{4}	Inches． 	Inches． 1）． 1055	Inches． -0.16116	0^{13}	Inches． II． 11847	Inches． 0.1185	$\begin{aligned} & \text { Inches. } \\ & -0.0028 \end{aligned}$
1	．1021	． 1048	－． .10002	，	． 0766	． 9780	－． 0015
－	． 01249	． 0246	＋．0003	2	． 0806	．ne01	$+.0005$
＂	－1923	． 0249	＋．0018	3	－11－3	－120．29	＋．0001
4	－120．9	－195）	－．0002	4	，12－\％	バッ：	－． 119111
5		， 10.93	． 100 以	，	． 12313	． 12×59	$+.1001$
6	1以心	い以\％	． 10014	is	，10－4i	－0xa	－． 00016
7	－ 0300	－12：30	－．muta		，110．5！	，1140	＋．1100\％
8	－113：4	． 0319		8	． 11364	．11835	． 110
9	． 0331	． 0332	＋．0011	9	． 1585	． 18.8	． 0021
10	－un：	－03：	－． 0005	10	． 1186	． 11861	－mone
11	，11：$: 1$ \％	． 0340	． 100010	11	． 18.93	－M\％0	$+.0007$
Noob．	118：30	． $0: 43$	． 00003	Noou．	．UEit	． 10.75	－． mogr
$1^{\text {b }}$	11： 115	． 03847	． 04002	$1{ }^{10}$	． 11870	－（1）T！	． 10005
2	． $13: 31$	－Unis	$-.0006$	？	－llecim	． 10×17	－． 0009
3	． 0348	－ 03.44	＋．0004	3	． 1102	． 1070	＋．0012
4	11：5	． 03336	． 00002	4	－11203	．リーが，	－． 00011
5	－1130	． 1385	$+.0003$	5	． 1860	． 02.7	＋． 10003
$\underline{6}$	． 0307	． 0314	－． 000%	15	． 0843	－0－\％	． 0009
\％	． 0295	． 0297	－． 10010	γ	． 18246	－1104 4	＋．1003
9	－1280	． 11.284	$\pm .0004$	－	． 16.1	． 0×50	－． 0019
10	－W2\％	－020	－． 0004	9 10	－ 0×01	－0）12	＋．0009
11	0.0269	0.0259	+.0008 +0.0010	11	9． 0792	．0．0793	.0016 +10.0014
Means．	0.0299	0.0299	± 0.0000	Means．	0.0841	11.0841	± 0.0000

From the above table it appears that in December the computed curve passes through the maximnm at 6^{h} a.m. and through the minimum at $8^{\mathrm{h}} \mathrm{p}$. m., the corresponding observed maximnm and minimum occurring at the same hours. The ranges, as derived from the computed and observed values, are 0.0050 and 0.0067 , respectively. The maximom of temperature is reached at midnight, while the minimnm occurs at $2^{\mathrm{h}} \mathrm{p}$. wn.

In Janaary the curve is rather irregular, showing two maxima of 0.0051 each, occurring at 9^{4} and 11^{h} a. m., respectively, while three minima, of 0.0043 each, are reached at $4^{\mathrm{h}}, 5^{\mathrm{l}}$, and $7^{\mathrm{h}}, \mathrm{p} . \mathrm{m}$. The range is very small during this month, amonoting to 0.0008 only. The corresponding thermal eurve passes through the maximum at $6^{\mathrm{b}} \mathrm{p} . \mathrm{m}$., and twelve hours later through the minimum.

Iu February the observed and compnted maxima of 0.0083 and 0.0081 , respectively, occur at 11^{h} and 10^{h} a. m., respectively, the minima, of 0.0065 each, being reached at 1^{h} a. m. and midnight, respectively. The maximom temperature during this month is reached at $8^{\mathrm{h}} \mathrm{p} . \mathrm{m}$., while the minimum occurs at noon.

The curve representing the dimmal fluctuation during March coincides well with the thermal curve. The observed and compnted maxina of force of vapor occur at $1^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. and about threequarters of an hour past noon, cespectively, while the minima are reached at $11^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. The maximum and minimmm temperatures occur at $\mathscr{Y}^{1} \mathrm{p} . \mathrm{m}$. and $10^{1 /} \mathrm{p} . \mathrm{m}$., respectively.

The April curre exhibits a very regular course ; the maximum of 0.0357 being reached at $2^{\text {b }}$ p. m., while the minimum of 0.0246 occurs at 2^{2} a. m., the range thns being 0.0111 . The observed maximnm of 0.0351 coincides in regard to time with the corresponding computed valne, while the observed mininnm takes place about one hour before the occurrence of the one computed. It will be remembered that during this month the maximum temperatnre was reached as early as $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$., while the minimnm took place at g_{1} a. m.

In May the computed enrve passes through the maxinum of 0.0879 at $1^{\mathrm{h}} \mathrm{p}$. m., the minimum of 0.0775 being reached at midnight, thus giving a range of 0.0104 . The maximum and minimum of temperatnre occur at noou and widnight, respectively.

The following table of corrections derired directly from the table headed "Honrly means" may be found usefnu:

Corrections to be "pplicil to any howrly observation taken at Polaris House to obtain the mern force of vapor of the ray.

RELATIVE HUMIDITY．

The following two tables contain the daily and hourly means of the relative humidity extracted from the preceding record ：

Daily means of relution huminity observed at Poluris Honse．
0

Day of month．	Z \vdots \vdots \vdots	$\begin{aligned} & \square \\ & = \\ & \# \end{aligned}$	年	$\stackrel{\text { E. }}{\underset{y y y}{z}}$	云	$\underset{y}{E}$	$\underset{=}{E}$
	1．c．	p．c．	p．с．	p．c．	$p . c$ ，	1．C．	p．r．
1	7－89	61，1？	39.79	34.011	55．5n	（5）9 9	67.57
2	$\cdots 7.8$	59.18	2？． 95	5： 2.5	45．！ 1 ！	4］．：30	71． 3
： 3	－7．7\％	60．$\because 1$	－4． 917	－1，	－36． 4.	4 4 ，${ }^{\text {a }}$ ，	\＆1．68
4	86． 31	70.69	30.37	60．30	34． 2.	4：3， 614	7？． 47
5	－7． 11.	71． $4: 3$	511． 11	76． 91	43， $4 \times$	57.34	（i1． 19
（；	\％8．17	1i4．59	4？${ }^{2}$	50.77	43．51；	5i3． 40	－ 6 （，34
7	T\％． 2 C	14．51	6\％ 11	¢t\％， 81	41， 64	［i2， 04	50.64
x	7 71． 14	Eli． 31	（ii）1\％	47.56	46． 17	（i：2，－ 0	513， 29
9	S0，\quad \％	7\％，	－5． 44	57.39	－ 3 ：	（i1． 46	（i．3， 6
10	72.411	1i3． 91	59.48	40， 3	5ッ！！	（5\％） 211	7：3．92
11	67.7 ？	66.99	36.19	5\％．	－14．is	\％．05	74.315
12	62． 97	62.8	35．55	70．930	（i）． 99	74．64	81188
13	E11． 44	3？． 56	34． 39	：3： 39	51.98	76． 8	75．34
14	－1．心\％	60.64	32．1i\％	ㄴ．1．96	－11．63	Biter	－0．09
15	71.39	67.10	$\therefore 3.14$	50． 24	［3．3， 03	84． 2 y	Qis． 16
16；	※． 511	70．6．1	：31．3：3	36． 1 is	$\cdots \mathrm{mbl}$	76． 27	－ 7.04
17	75．\％2	7＊，5\％	91， 311	39.45	5！11，	－6． $4!1$	－1． 26
1－	$5 \sim .75$	74.94	3．5．7．5	： 4.93	\％3．8．	77，66	－1． 59
19	64．7x	71.75	（ii． 60	勺8， 75	57． 11	75.54	72．56
？ 4	71.50	74， 44	40．$=:$	3内，大－	71．5\％	79.57	－－－
Q1	7－5．3	7－ 4 －	29．62	39．唦	7－8\％	37.57	80.71
3）	R1．	7＊，「3	S？Sk	38． 84	54.81	31.54	\％1．45
い：	75.28	T－4	$\cdots 10,19$	62.64	40.60	69． 01	79.87
$\because 4$	70.8	71.71	36.14	（6）．	51.75	Rッ，	20，吅
\because	77．7x	74．73	36.8 .8	50.74	41.18	81.92	－9． 73
3	\％1．11	（ili． 64	17．00	49． 49	44． 6 \％	$7 \% .93$	76． 50
\because	7－1．7	位，淐	50，6i，	4：3． 30	89． 19	74． 44	81． 63
豕	6\％．1\％	b－ 3	30． 60	5．5． 51	22． 87	74.04	40． $2 \cdot$
－	（14．0．3	\％ 5			30．34	7．6．6	75．12
30	64.71	44．-1	47，32		＇21． 20	76.09	\％ 0.4
： 1		$\therefore \mathrm{H} .01$｜	㤩，（i）		14.00		80.54

Hourly mans of relutire huminity observed at Polaris House．

	p．c．	1）．c．	p．c．	1．${ }^{\text {c．}}$	1）．c．	1．c．	p．r ．
$0^{\text {b }}$	75.9%	tin． 18	11． 210	43.74	16.30	（15．）：is	74.39
1	77.77	6\％， 01	4）． 119	47.76	46． 10	1i\％， 31	713．32
2	7．	6．5．7．	411.110	17.77	45.3	18． 06	－ 10
3	73．01	66． 31	41.85	47.12	46． 13	17． 3 ？	75.56
4	\％5． 6	60， 54	40.514	$4 \times .85$	4\％．7！	66.46	75.91
5	76．37	（i）． 45	49.41	4 CN	41．： 1	11．\because	75．50
6	75． 114	（i）． 4 （i）	40.11	49.60	fir．-3	18． 79	7．5．31
7	75． 17	（ix． 4 ：	42，：31	49.51	47．$: 1$	69.99	74． $3:$
8	38.48	69，29	415.5	49．it	4－6． 14	71.42	2：． 18
9	74．71i	6－． 45	45，：3	49.02	47.19	70.31	7 3 ，35
10	7\％，㫛，	（ili． 13	42．56	4×34	47． 15	66.70	7－s
11	21． 51	（ii）． 15	41．：3	4！）：	4×10	128． 97	7ะ． 19
Noon，	71.84	66， 18	41．（1）	51.87	51.97	10.97	79.57
1^{12}	75． 55	（i5．23	40.111	51.3%	53． 21	70.13	73.91
\because	7ti． 51	（1） 11.3	：$\because 1.40$	51． 11	$\therefore 4.8$	71：1i4	75． 5
3	76．36	（i\％． 31		\％0． 01	5\％． 10	71． 3	75． 211
1	\％\％．39	（i．）． 50	Sid．cti	$47.4=$	50.47	71.19	75.22
5	76.79	1i4． 39	：17． 23	4\％． 81	40.23	\％1．1．	75．79
6	75．0゙	1il． 291	：3． 76	47.84	4－ 68	\％0．61	75． 13
－	71． $3:$	13： 21	36.5	47.63	4－i． 01	70.61	7－． 91
B	73．85	66，ッ＝	：19．sot	4\％． 16	44．：3\％	80.17	\％6． 4
9	74．54	（i．）．1\％	：3\％． 19	46．199	45.93	70.11	75.93
10	74．41	（ili． 95	39.98	46．58	4：3．75	69.53	75．58
11	7：3． 31	C6． 73	40.10	47.13	46.21	69.31	75.97
Means．	76.85	66.66	40.38	48.61	47.14	69.16	74.91

ANNUAL FLUCTUATION OF RELATIVE HUMIDITY AT POLARIS HOUSE.

In discussing the anuual fluctuation of relative humidity during the winter-half-year analgtically, the following elements and expression were used :

The following table contains the values obtained by the above formula; also, the observed values and the differences between the observed and computed ralues:

Months and seasons.	Observed.	Computed.	$\begin{gathered} \text { Differeuce, } \\ \text { O.-C. } \end{gathered}$
December, 1872	66.600	66.625	- 0.025
January, 1873.......	40.319	42. 519	- 2.900
February..........	48.513	49. 5ra	-1.075
March.	4 4. 039	47.889	$+0.150$
April.	69.270	68.149	1.121
May.	74.912	72.883	+2.029
Means	57.942	57.942	± 0.000
Winter	51.811	52.911	- 1.100
Spring	64. 074	62.974	$+1.100$

According to the preceding table the relative humidity is abore the mean in March, April, and May, while it is below the same during the three remaining months. As mar well be expected, it is less in winter than in spring, it being below the mean during the former seasou and above the same during the latter. At Polaris Bay the minimum relative humidity was reached in February, while in this case it occurs in January.

A comparison of the march of the relative humidity and force of vapor laring the winter-halfyear brings out the fact that the minimum relative hnmidity in Jannary corresponds to a relative maximum of force of vapor, while a relative maximum of relative humidity in February coincides with the minimum of force of vapor. From the middle of February until May the two curves run nearly parallel.

The mean relative humidity as observed at Polaris House and Polaris Bay during the winter-half-year compares as follows:

	December.	Jauuary.	February.	March.	April.	Nay.	Winter.	Spring.	Mean.
Polaris House	66.600	40.319	48.513	48.039	69.270	74.912	51.811	64.074	57.942
Polaris Bay	54.673	47.525	53.351	56.204	77.686	83.666	51.849	$\mathbf{7 2 . 5 1 9}$	62.184

It will be seen that the relative humidity as observed at Polaris Bay was greater in every month, with the exception of December, than at Polaris House; the greatest difference occurring in May, the least in February.

DIURNAL FLUCTUATION OF RELATIVE HUMIDITY AT POLARIS HOUSE DURING THE WINTER-HALF-YEAR.

In discussing the diurnal fluctuation of relative humidity during the wiater-half-year the following analytical elements and expression were used :

n	a_{n}	b_{n}	B_{n}	C_{n}
				- ' 1
1	-0.921	$+0.8596$	+ 1.2538	3130139
2	+ 0.7283	+ 0.57415	+ 0.9274	514503
3	+ 0.421	-0.8436	$+0.9586$	153 2048
4	-0.61383	+ 0.33023	+0.6979	- 2981646

$H=+60.292+1.2598 \sin \left(x+313^{\circ} 01^{\prime} 39^{\prime \prime}\right)+0.9274 \sin \left(2 x+51^{\circ} 45^{\prime} 03^{\prime \prime}\right)+0.9586 \sin \left(3 x+153^{\circ} 28^{\prime} 48^{\prime \prime}\right)$ $+0.6979 \sin \left(4 x+298^{\circ} 16^{\prime} 46^{\prime \prime}\right)$
$x=30^{\circ}, 60^{\circ}, \cdots$
By means of the above expression the following vaiues were obtained :

Time.	Observed.	Computed.	Difference, O.-C.	Time.	Observed.	Computed.	$\begin{aligned} & \text { Difference, } \\ & \text { O.-C. } \end{aligned}$
$0^{\text {h }}$	p. c. 60.296	$p . c$. 59.912	$p . c$. +0.384	Noon.	p. c. 61.357	p. c. 60.898	p. c. +0.459
2	60.106	60.524	+..418	2^{11}	62.548	62.974	+. 426
4	60.776	60.302	$+.474$	4	60.956	60.592	+. 364
6	60.162	60.666	-. 504	6	56.899	57.232	-. 333
8	62.147	61.656	$+.491$	8	58.740	58.390	$+.350$
10	60.082	60.549	-0.467	10	59.439	59.811	-0.372
Mean $=60.292 ;$ difference $= \pm 0.000$.							

The above values thrown into a curve result in the following diagram:
Diurnal fluctuation of relative humidity at Polaris House, winter-half-year 1872-73.

The computed curve passes through the absolute maximum of 62.986 at $2^{\mathrm{h}} 5^{\mathrm{m}} \mathrm{p}$. m. and through the absolute minimum of 57.134 at $6^{\mathrm{h}} 21^{\mathrm{m}}$ p. m., thus exhibiting a range of 5.852 . Besides the absolute maximum there are two relative maxima of 61.6565 and 60.570 , respectively, occurring at $7^{\mathrm{h}} 59^{\mathrm{m}} .5$ and $2^{\mathrm{h}} 30^{\mathrm{m}} .5 \mathrm{a}$. m., respectively, the corresponding relative minima of 60.230 and 60.203 respectively, being reached at $4^{\mathrm{h}} 28^{\mathrm{m}}$ and $10^{\mathrm{h}} 54^{\mathrm{m}}$ a. m., respectively. If we compare the curve under
consideration with that representing the diurnal fluctation of the force of rapor, we shall see that the absolnte maximam of the latter, occurring about $1^{\mathrm{h}} \mathrm{a}$. m ., corresponds almost to a relative minimom of relative humiditr : while the absolute miuimom, which is reached at $11^{\mathrm{h}} \mathrm{p}$. m., corresponds nearls to a relative maximum of relative humidits. It will be remembered that the thermal curre passes through the maximum at $\sum^{2} \mathrm{p}$. m. and throngh the minimam at midnight.

DICRNAL FLCCTCATION OF RELATITE HCMIDITY DCRING TNTER AND SPRING $\perp T$ POLARIS HOTSE.

Tinter.-The following computed ralues showing the dinrnal flnctuation of the relative hnmidity during winter are derired directly from the computed bihourly means of December, Jan. uars, and Febraars. For comparison the observed ralues are also giren.

	$0{ }^{\text {b }}$	\bigcirc	4	6	$=$	10	Noon.	$2^{\text {b }}$	4	6	5	10	Mean.
Obserred	$5{ }^{5}$	31.45	52. 24	52.05	54. 24	-2. 34	53. 回 2	53.15	50.63	49.96	$4 \equiv .54$	50.94	51. S\%
Compated	52.43	51. 24	31.40	52. 23	54.23	53.47	53.0 -	$5 \because 43$	51.41	49.89	49.63	51. 24	51. 5 \%

The abore ralnes thrown into a curse result in the following diagram in which the fluctuation of the force of rapor is also represented. The dotted curre shows the diurnal march of the relatire hamidity:

Diurnal fuctuation of relative humidity and force of rapor during winter, 18:-93, at Polaris House.

The thanetical curve exhbiting the flactuation or relative humidity passes throngh the maxi-
 $n \geq$ a ratice of 4.94. Bevilus the aliohlate minimum, just mentioned there is a relatire minimum of 51.24. morring at abont $\underset{-2}{ }$ a. m. It will be seen that the computed and olsertel ralnes agree pretts closels. the greates difference not exceniug 1.13.

144

A comparison of the two hygrometrical curves, represented in the above diagram, shows that the absolute minimum of relative humidity coincides with a relative maximum of force of vapor. Most likely, however, this is merely accidental, as during the rest of their march the two curres do not show the relation as traced in lower latitudes in general, and, also, at Polaris Bay, during summer.

At Polaris Bay the absolute maximnm of relative humidity during the season in question was reached at $8^{\mathrm{h}} \mathrm{p} . \mathrm{m}$., which is almost the time of the absolute minimum at Polaris House, while the relative minimum of the latter station coincides within two hours with the absolute minimum at Polaris Bay; the minimum at Polaris Bay being reached earlier.

Spring.-The following values were obtained for spring in a similar manner to that stated above:

The above values thrown into a curve result in the following diagram, exbibiting also the dimrnal fluctuation of the force of vapor :

Diurnal fuctuation of relative humidity and force of vapor during spring, 1873, at Polaris House.

The features of the curve exbibiting the dimual march of the relative hnmidity are less regular than those at Polaris Bay. The curve shows two maxima of 66.29 and 64.08 , respectively, occurring at abont $2 \frac{3 \mathrm{~h}}{\mathrm{l}} \mathrm{l}$. m. and about $6 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ a. u. ; the two minima of 69.31 and 63.34 , respectively, being reached at about $1^{\mathrm{h}} \cdot \mathrm{a}$. m. and about $9 \mathrm{E}^{\mathrm{h}}$ a. m., respectively; consequently, the range equals 3.98 , being 0.96 smaller than during wiuter.

At Polaris Bay a certain parallelism of the two curves in question was noted, and this may be observed here even to a greater extent, as the maxima of force of vapor coincide almost with the maxima of relative humidity; and the same will be seen iu regard to the minima.

DIURNAL FLUCTUATION OF RELATIVE HUMIDITY AT POLARIS HOUSE DURING EACH MONTH, FROM NOVEMBER, 1872, TILL JUNE, 1873.

As the time at our disposal was rather limited, it was thought sufficient to compute the values for every other hour instead of using the whole series of hourly observations, which would have been more laborious.

The analytical elements and expressions used in the discussion of this subject are as follows :
November.

n	a_{n}	b_{n}	B_{n}	C_{n}	
1	-0.455	+0.053	+0.694	319	7
2	-0.401	+0.999	+1.077	338	7
3	-0.609	+1.031	+1.111	329	23

$H=+76.248+0.694 \sin \left(x+319 \circ 7^{\prime} 24^{\prime \prime}\right)+1.077 \sin \left(2 x+338^{\circ} 7^{\prime} 30^{\prime \prime}\right)+1.111 \sin \left(3 x+329^{\circ} 23^{\prime} 1^{\prime \prime}\right)$
Deeember.

n	a_{n}	b_{n}	B_{n}	C_{n}
1 2 3	O +0.986 +0.186 +1.041	+1.299 +1.035 +0.864	+1.631 +1.051 +1.553	$\begin{array}{rrrr}\circ & 1 & \prime \prime \\ 322 & 47 & 43 \\ 10 & 11 & 20 \\ 50 & 18 & 30\end{array}$

$H=+66.656+1.631 \sin \left(x+322^{\circ} 47^{\prime} 43^{\prime \prime}\right)+1.051 \sin \left(\because x+10^{\circ} 11^{\prime} 20^{\prime \prime}\right)+1.353 \sin \left(3 x+50^{\circ} 18^{\prime} 30^{\prime \prime}\right)$

January.

n	a_{n}	b_{n}	B_{n}	C_{n}	
1	-1.975	+0.947	+2.191	295	
2	+0.982	36	17		
3	-0.403	+1.609	+1.408	64	

$$
\begin{gathered}
h=+40.375+2.191 \sin \left(x+293^{\circ} 36^{\prime} 17^{\prime \prime}\right)+1.40 \times \sin \left(2 x+64^{\circ} 28^{\prime} 19^{\prime \prime}\right)+1.659 \sin \left(3 x+3450^{\prime} 57^{\prime} 10^{\prime}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots
\end{gathered}
$$

February.

"	a_{n}	b_{n}	B_{n}	C_{n}
1	-1.586	- 0.287	$+1.61 \%$	0 \prime 259 45 1
2	- 0.129	$+0.614$	$+0.602$	3481044
3	$+0.557$	-0.503	+ 0.751	132430

$H=+48.614+1.612 \sin \left(x+259^{\circ} 45^{\prime} 1^{\prime \prime}\right)+0.62 \alpha \sin \left(2 x+348^{\circ} 10^{\prime} 44^{\prime \prime}\right)+0.751 \sin \left(3 x+132^{\circ} 4^{\prime} 30^{\prime \prime}\right)$
March.

μ	a_{n}	b_{n}	B_{16}	C_{n}
				- , '
1	-2.472	-2.082	+ 3. 232	22953.39
2	-1.585	+ 0.998	+ 1.879	302126
3	$+0.332$	+ 0.093	+ 0.344	74200

$$
\begin{gathered}
H=+47.939+3.232 \sin \left(x+239^{\circ} 53^{\prime} 39^{\prime \prime}\right)+1.879 \sin \left(2 x+302^{\circ} 12^{\prime} 6^{\prime \prime}\right)+0.344 \sin \left(3 x+74^{\circ} 20^{\prime} 0^{\prime \prime}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots
\end{gathered}
$$

April．

n	a_{n}	b_{n}	B_{n}	C_{n}
1	－0．447	-1.843	$+1.806$	$19340 \quad 5$
2	-0.396	-0.931	＋1．012	$203 \quad 243$
3	＋0．766	＋0．203	＋ 0.792	$7510 \quad 8$

$$
\begin{gathered}
H=+69.163+1.896 \sin \left(x+193+40^{\prime} 5^{\prime \prime}\right)+1.012 \sin \left(2 x+203^{\circ} 2^{\prime} 43^{\prime \prime}\right)+0.792 \sin \left(3 x+75^{\circ} 10^{\prime} 8^{\prime \prime}\right) \\
x=30^{\circ}, 60^{\circ}, \ldots
\end{gathered}
$$

May．

n	a_{n}	b_{n}	B_{n}	C_{n}
1	+1.185	-0.307	+1.224	1043047
2	+0.135	-0.474	+0.493	195.5243
3	+0.509	-0.351	+0.618	1243625

$H=+74.908+1.224 \sin \left(x+104^{\circ} 30^{\prime} 47^{\prime \prime}\right)+0.493 \sin \left(2 x+195^{\circ} 52^{\prime} 43^{\prime \prime}\right)+0.618 \sin \left(3 x+124^{\circ} 36^{\prime} 25^{\prime \prime}\right)$
$x=30^{\circ}, 60^{\circ}, \ldots$
By means of the above expressions，the values contained in the following table were obtained． The observed values were also added for the sake of comparison ：

Time．	November．			December．			January．			February．			
							$\begin{aligned} & \text { ت } \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\stackrel{\text { 号 }}{\stackrel{y}{y}}$	$\begin{aligned} & \text { E. } \\ & 0 \\ & 0 \\ & \text { in } \\ & 0 \end{aligned}$	号	$\begin{aligned} & \text { 䓌 } \\ & \text { 䔍 } \\ & 0 \end{aligned}$		
$0^{\text {n }}$		${ }_{\text {chec }}^{\text {p．}}$ c．	$p .6$ +0.178		pis．${ }^{\text {cos }}$	$p . c$ +0.166	$p . c$ 41.958	p．c^{*} 41.307	$p . c$ +0.0 .1	17．c．${ }^{\text {P／}}$	$p . c$ 47.1152	p．$c^{\text {c．}}$ $+(0 . \operatorname{lin} 1$	
2	77． 75%	74．10m	－0．255	65， 34.	67.050	－1．302	41.85	39．51\％	1．305	47． 31 ix	47． 169	＋11．589	
4	75.890	76． 219	0． $3: 9$	69.590	6 6i． 904	＋	40.542	S＊． 441	＋ 2101	4n． 0^{511}	4－． 81	－0．614	
6	75． 1142	75． 699	－0．15\％	6i6． 452	6， 6.325	－1．573	411． 113	40.619	－0． 51119	43．1300	$4!1.346$	＋0．35：	
8	77.4×3	71.794	＋0． 62	19． 214	18x．	＋0．996	419．${ }^{2}$	45． 2ibi $^{\text {a }}$	＋0．91－15	49． $3: 34$	4！9．182	＋0．151	
10	75．993	76．लia	－0．974	（65．129）	61.75	－0．685	42．5n－5	4．11：4	－1．419	41． 3339	49． 610	－1．271	
Noot．	715．837	76．0ヶ9	＋0．746	66． 177	66．9xi	－0． 200	41.917	41.164	－0．167	51.86 \％	51．1112	$+0.766$	
$2^{\text {b }}$	76． 514	76．5se	－ 11.01 .5	69．019	Vis．大ha	＋1．151	39， 4111	39．14：	＋0．358	51． 111	50．365	＋0．746	
4	75．：34	73．1041	＋0．306	1ia． 5 dx	6iti． $0: 36$	－0．4．8	3s．${ }^{\text {and }}$	39.766	－0． 0.115	47．479	$4 \times .431$	－0．95\％	
（i	75．7－11	75． 46	11．312	1i4． 293	dis． 110 N	＋1．205	37．75，	37．409	0.051	17． 8.39	47.044	＋0．794	
8	$73 . \times 19$	73，5： 31	＋11．306	192．984	1i：3． 4×6	$-1.80 \cdot 3$	35.8×1	37． 8.60	－1．799	47． 457	41.734	－0． 077	
10	74．41：	74．	－0．414	66.945	1ili． 8.17	＋0．114x	39． $2-1$	39．364	＋0．1113	46.588	47.533	－0．975	
11．\＆D．	71．ロが	71，24，	± 11.000	66． 120	lis． 656	10.000	411.375	40． 35.5	± 0.0101	4－614	$4 \times .614$	± 0.000	
Time．	March．				April．				May．				
		\\|			ت	菏				童			
$0{ }^{\text {b }}$	11．8．80	$\begin{array}{c\|c} p . c & b . c \\ 4+923 & +1.467 \end{array}$							$7 . c$ 74.919		先	p．c． -0.75	
2	45.314			0．912	（is． 057	65． 910 m		2．1180	\％ 5.100		：mi	＋0．7e0	
4	$4 \times .794$			1． 440	66． 460	127.513		1． 15.3	75． 104		1158	0.853	
6	45， 816		（331	1．815	6ix． 7 9\％	19）50\％		11． 319	75． 313		11：8	＋0．276	
－	$4 \times .136$		470	0．Cibil	71． 4×3	（6）． 441		1．！！－	73.177		721	－0． 544	
10	47.977		190	0.513	viti． 700	1ir． 449		1． 749	72．s．4		．179	0.195	
Noon．	51.974		100	1.174	69\％．733	（31）．21is）		0． 5010	78.574		． 1104	-1.334	
$2^{\text {h }}$	51.348		71	1． 3 \％	71． $1: 37$	71.140		11． 415	75． 216		． 717	$+1.069$	
4	50.474		704	1． 930	71.193	71． 6104		0． 1×1	75.216		． 913	＋0．817	
8	48． 6		103	0．520	211． 1617	711．77：		0．16is	75． 671		\％ 31	－0．065	
8	4． 1374		124	0.711^{1}	711．47：	\％1．10：		0．371	71， 80.5		7ッロ	＋0．053	
10	43.745		209	11． 46.4	46．530	169．112 1		0． 4415	75． 5 m 1		． 413	－0．886	
M．\＆D．	47.319		1：3）	13． 1001	19，16\％	13：1 16	i3	0.1017	74．10x		． 110 W	± 0.000	

From the above table it appears that in November the obserced and computed maxima of 77.853 and 78.108 , respectively, occur at 2^{h} a. m., while the obserred and computed minima of 73.877 and 73.570 , respectively, are reached at $8^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. The ranges, as derived from the computed and observed values, are 3.176 and 4.538 , respectively.

In December the computed curve passes through the maximum of 68.325 at about 6^{h} a. m while the corresponding observed ralue occurs one hour earlier. The computed minimum of 63.008, is reached at $6^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. and the minimum, as observed, two hours later. The range, somewhat larger than during the preceding month, is 5.317. The maximum and minimum force of rapor occur at 6^{h} a. m. and 6^{h} p. m., respectively, while the thermal curve passes through the maximum at mid. night and through the minimum at $2^{\mathrm{h}} \mathrm{p}$. m .

In January both the observed and compated maxima of 46.252 and 45.266 , respectively, occur at $8^{\mathrm{h}} \mathrm{a}$. m., while the observed and computed minima of 35.881 and 37.680 are reached twelve bours later. Owing to the small range of force of vapor the curve represeuting the fluctuation of the latter during this month is rather irregular, while the thermal curve passes througb the maximum at $6^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. and twelve hours later through the minimum, the tropical moments of the latter coinciding within about two hours with those of the relative humidity.

In February both the observed and computed maxima of 49.600 and 49.248 , respectively, are reached at 6^{h} a. m., while the observed ninimum of 46.578 occurs at $10^{\mathrm{h}} \mathrm{p}$. m., and its corresponding computed value of 47.062 near midnight. The ranges, as deduced from the observed and computed means, are 3.022 and 2.186 , respectively. The maximum temperature of this month is reached at $8^{\mathrm{h}} \mathrm{p}$. m., while the minimum occurs at noon; and the maximum and minimum tension of vapor are reached at $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$. and miduight, respectively.

The theoretical curve representing the diurnal fluctuation of March passes through the maximum and minimum of 52.971 and 44.209 , respectively, at 2^{h} p. m. and 10^{h} p. m., respectively, coinciding in regard to time with the maximum and minimum, as observed, and exhibiting a range of 8.762 . The maximum and minimum force of vapor are reached at $1^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. and $11^{\mathrm{h}} \mathrm{p}$. m., respectively, while the thermal carve passes through the maximum at $2^{\mathrm{h}} \mathrm{p}$. m., and through the minimum at $10^{\mathrm{h}} \mathrm{p}$. m.

In April the observed and computed minima of 65.377 and 65.968 , respectively, occur at 0^{h} and 2^{h} a. m., respectively, while the observed and compated maxima of 71.637 and 71.604 , respectively, occur at $2^{\text {h }}$ and about 4^{h} p. m., respectively. The range, as derived from the computed values, is 5.636, while that deduced from those observed is a trifle smaller. The maximum and minimum tension of rapor occur at $2^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. and 2^{h} a. m., respectively, while the thermal curve passes through the maximno as early as $10^{11} \mathrm{a} . \mathrm{m}$. and through the minimum at $2^{\mathrm{h}} \mathrm{a}$. m.

In May both the observed and computed maximum occur at 8^{h} p. w., the former amountiug to 76.835 , the latter to 76.782 . The observed and computer minima of 72.574 and 73.079 , respectively, occur at noon and about 11^{h} a. m., respectively. The computed and observed ranges are 4.261 and 3.703 , respectively. The maximum tension of rapor during this month occurs at $1^{\text {b }} \mathrm{p}$. m. and the minimum at midnight, corresponding in regard to time almost with the tropical moments of temperature during the period in question.

ATUIC WIND-ROSE OF POLARIS HOUSE.

The two following tables exhibit the indueace of the wind ou the relative humidity of the air. They were constructed in a manuer similar to that before described :

Monthe.	N.	N. E.	E.	S. E.	8.	S. W.	W.	N. Wr.	Calm.
December	$p . c$ +6.2	$\underset{\varepsilon_{\cdot}}{p \cdot c_{1}}$	$p . c$ +0.5	p.c.	p.c.	p.c.	$p . c$.	p.c.	p.c.
January	+4.3	5.7	+ 0.9		+2.9	+ 8.7			- 0.7
February	-8.1	6.5			4.4	9.9			+ 0.6
March		-5.4	-3.6		+ 5.1	5.7	$+3.7$		-5.5
April.		+2.1		+2.1	-3.1	+ 2.6			-1.6
May	$+7.4$	$\underline{+1.0}$	$+0.6$	-1.8	- 9.6	-0.7	+ 3.0		$+0.1$
Half-year	-0.2	-3.8	-0.7	$+0.7$	-0.1	$+5.9$	$+1.0$	$+0.2$	-2.6
Winter Spring	$\begin{array}{r} -3.1 \\ +2.5 \end{array}$	-6.8	-0.1 -1.1	+0.1	$\pm \begin{array}{r}2.5 \\ \hline 2.5\end{array}$	+9.4 +8.5	+ 2. \because	+ 0.2	-2.8 -2.3

The results exhibited by the above two tables are somewhat more satisfactory than those derived for Polaris Bay，but still they do not permit any definite conclusions．If the time at our disposal had been less limited we should have investigated the influence of the direction of the wind on the elevation or depression of the force of vapor，which might，perhaps，have yielded some better results．

The atmic wind－rose of Polaris House may be represented by the following analytical expres－ sion ：

$$
H=+0.32+2.74 \sin \left(x+223^{\circ} 43^{\prime}\right)+0.43 \sin \left(2 x+339^{\circ} 27^{\prime} .\right)
$$

The following table contains the correctious to be applied to any hourly observation taken at Polaris House to obtain the mean relative humidity of the day：

Corrections to be applied to any hourly observation taken at Polaris House to obtain the mean relative humidity of the day．

Time．	$\begin{aligned} & \dot{\dot{\theta}} \\ & \text { 苟 } \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$				－ ¢ \＃	家	岂
$0^{\text {b }}$	p．c．${ }^{\text {c }}$	p．c． -1.81	p．${ }^{\text {c．}} 0.58$	p．${ }^{\text {c．}}$ +1.07	p．${ }^{c}$. +1.55	p．c^{c}. +3.78	$p . c$. +0.69
1	－1．52	－0．38	－0．61	＋1．85	＋1．84	＋1．85	＋1．61
2	1.60	＋0．91	0.52	0.84	2.62	1.10	0.19
3	－0．76	＋0．32	0.49	0.69	＋1．81	1.93	0.65
4	＋0．36	－2．93	0.16	0.36	-0.85	2． 70	1． 00
5	-0.12	－0．79	－0．03	$+0.36$	＋1．73	1.64	0.67
6	＋1．20	＋0．21	＋0．27	-0.99	2．12	＋0．37	－0．40
7	＋1．08	-1.77	－1．93	0.90	＋0．63	－0．83	＋0．59
8	-1.23	2.56	5.87	0.73	-0.20	2.26	1.73
9	＋1．49	1.79	4.93	-0.41	0.05	-1.15	1． 66
10	＋0．26	$+0.53$	2.18	＋0．27	0.04	＋2．46	2.03
11	－0．39	0.51	0.97	-0.76	0.16	＋0．89	2.72
Noou．	－0．59	＋0．48	－0．62	3.26	3． 33	－0．61	2.34
$1^{\text {b }}$	$+0.60$	－0．57	$+0.37$	3.12	5.27	0.97	＋1．00
2	-0.26	2.36	0.98	2.50	6.41	2.48	-0.91
3	0.11	－0．65	1.62	-1.40	4． 16	2.09	0.89
4	1.14	＋1．11	1.52	＋1．13	2.53	1.96	0.91
5	－0．54	2.57	3.15	1.05	1.29	］． 86	0.88
6	＋0．47	2.37	2.62	0.77	0.68	1.45	0.76
7	1.92	3.45	4.13	0.98	-0.07	1.55	1.00
8	2.37	4.38	4.50	1.15	＋3．57	1.31	1.93
9	1.67	1． 54	3.19	1． 69	2.71	0.86	1.02
10	1.84	＋0．29	1． 10	2.03	4.19	0.47	0.67
11	＋2．91	-0.07	＋0．28	＋1．48	＋1．73	－0．15	-0.36

DEW－POINT．

The two following tables contain the daily and hourly means of the temperature of the dew． point，extracted from the preceding general record：

Daily means of the temperatnre of the dew－point olserved at Polaris Mouse．

Day of month．	1878.		1873.				
	$\begin{aligned} & \dot{4} \\ & \stackrel{y}{3} \\ & \cline { 1 - 3 } \\ & 0 \\ & 8 \end{aligned}$				这	家	过
	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc
1	-4.55	－19．35	-40.30	－42．40	-28.50	-39.80	＋ 0.10
2	＋6．79	22.69	43.40	33.30	41.90	36.60	11． 10
3	15.48	24.05	44． 10	29.40	44.70	33． 50	13.60
4	12．89	15.40	43.80	26.50	43.20	33 i .00	＋2．40
5	＋3．09	16． 65	29.70	13． 10	42.90	27.90	－ 4.50
6	-4.45	20.20	37.50	97． 70	39.10	28． 70	0.80
7	4.39	-15.29	23.80	25． 80	39.30	22.30	9.60
8	8.51	＋2．46	22.50	32.70	34.10	20.20	6.80
9	7.03	-14.29	28.30	28.80	25.80	24.10	-3.50
10	11.76	29.10	30.40	34.20	32.50	15． 20	＋ 3.90
11	18.69	19.80	41．80	27.00	33.20	8.40	7.50
12	－22．36	22.68	43.40	44.80	24.90	－12．40	5.60
13	＋ 4.01	29.30	43． 10	44． 60	36.10	＋9．80	10．$\because(1$
14	7.15	23.69	44． 30	43.60	37.00	＋5．50	18．20
15	1.74	17.99	43.70	41.40	35． 30	＋ 4.50	25．80
16	＋1．11	16． 03	42．30	42． 20	32.10	-8.50	26.20
17	-13.12	15.48	46． 00	42． 50	28.90	9.80	19.30
18	25.15	11.00	42.40	44． 10	39.50	9.00	23.50
19	24.13	11.57	43.30	44.70	29． 10	－9．40	23． 60
20	16． 44	10.81	39.50	45.70	20.40	＋1．80	21.10
21	13.43	12.57	44.30	45． 20	26.40	-5.50	22． 30
22	2.02	1.62	43． 20	40.00	35.90	8.00	26.60
23	5.40	1.07	46.90	25.00	38.30	-12.10	20.60
24	11.83	2.24	45.60	23． 60	26.90	＋ 7.50	20.00
25	12.06	1． 28	44． 70	37.10	35.50	+0.80 +0.10	19.80
26	11.05	13.90	44． 60	39.40	38.90	-3.10	19.90
27	9.93	14.97	37.90	40.30	39.10	－3．10	23． 40
28	11.37	18.95	40.20	-33.10	43.20	＋1．70	19.20
29	18.95	30.78	41.90		41.00	＋3．00	11． 50
30	－15．43	34.49	42.10		44.50	＋ 4.80	7.20
31		－41．85	-32.00		－46． 20		＋ 7.30
Means．	－7．61	-16.76	－39．90	-35.56	-35.64	-11.72	＋12．7\％

Hourly means of the temperature of the dew－point olserved at Polaris House．

Time．	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {b }}$	-7.40	-15.63	-39.42	－35．84	-36.48	－16． 23	＋10．13
1	7.01	15． 56	39.89	36.81	36.78	15.99	10.50
2	7.56	16．55	40.04	35.99	36.70	15． 20	11.37
3	7.76	15． 59	39.68	36． 35	36． 55	15． 06	11.57
4	7.88	15． 57	40.16	35． 55	35.69	14． 69	12.23
5	7.74	16． 40	39． 60	35.39	35.74	13.58	12.82
¢	7.79	15.55	40.05	34.89	36.61	12.42	12.81
7	7.68	16． 60	40.03	34.19	35.55	11.45	14．31
8	7.05	16． 03	38.63	35.16	35.15	9.46	14.41
9	7.44	16． 13	39.45	34.38	35.74	8.99	14.38
10	7.43	15.98	39.10	34.59	35.01	9.97	13.86
11	6.98	17.99	39.59	33．52	34.33	8.65	14．99
Noon．	6．$\times 2$	17.09	39.52	34.50	33.37	－． 78	14.00
$1^{\text {n }}$	7.05	16.93	39.83	34.95	32.93	8.91	13． 59
2	7.02	17.02	39.64	34.84	32.95	8.72	13． 64
3	7.13	16．42	40.22	34.86	34.39	8.78	13.56
4	7.10	17．70	40． 19	35． 30	34.00	9.52	12.94
5	7.30	17.82	40.43	36． 34	34.34	10.10	12.99
6	7.45	17.73	40.55	35． 19	35． 27	11.00	12． 87
7	8.00	17.93	41． 18	34.46	36.35	11． F	12.81
8	8.71	18.12	41.18	36． 22	37.31	12． 40	12.84
9	8.56	17.56	41.32	36． 84	37.68	13． 34	12.08
10	8.73	16.78	40． 24	36． 41	37.96	13.00	11． 17
11	-9.15	-17.58	－40．38	-35.20	－38．43	－13．75	＋11．3．\％
Means．	-7.61	-16.76	-39.90	-35.56	－35． 04	－11．7\％	＋12．37

20 H о

ANNUAL FLUCTUATION OF THE DEW-POINT AT POLARIS HOUSE DURING THE WINTER-HALF-YEAR.

The following table contains the observed and computed temperatures of the dew-point, and also the differences between the observed and computed values:

Months and seasous.	Observed.	Compnted.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$
	\bigcirc	\bigcirc	\bigcirc
December, 1879....	-16.85	- 16.66	-0.19
January, 1873......	40.06	39.80	0.26
February	35.62	35.08	0.54
March.	35. 76	35.35	-0.21
April...............	- 11. 5.3	- 11.83	+0.30
May ...-...........	+ 12.97	+ 12.07	+0.90
Winter	- 30.83	- 30.51	-0.32
Spring	- 11.44	- 11.76	+0.32
Half-уеаг.......	- 1.13	- 21.13	± 0.00

The analytical elements and expression used in the above computation are as follows :

n	a_{n}	b_{n}	\boldsymbol{D}_{n}	C_{n}
1.				\circ \prime 95 41
2	+6.17.1火	+ 0.07	+ 17.19	12421
3	- 0.03	± 0.00	+ 0.03	$90 \quad 0 \quad 0$

$$
D=-21.13+24.43 \sin \left(x+95^{\circ} 41^{\prime} 6^{\prime \prime}\right)+17.19 \sin \left(2 x+1^{\circ} 24^{\prime} 21^{\prime \prime}\right)+0.03 \sin \left(3 x+90^{\circ} 0^{\prime} 0^{\prime \prime}\right)
$$

For the sake of better comparison the differences between the temperature of the air and the temperature of the dew-point are given in the following table:

From the above table it appears that during the six months in question the difference between the temperature of the dew-point and the temperature of the air is greatest in January and least in May. At Polaris Bay the greatest difference was found to exist in December, amonnting to $11^{\circ} .93$, being somewhat greater than at this station. In December, April, and May the difference between the temperature of the air and the temperature of the dew-point is below the mean, while it is above the same during the three remaining months. Further comparison shows that during winter the difference under consideration was greater at Polaris Bay than at Polaris House, while in spring it was less at the former locality than at the latter. If we calculate the difference during the winter-half-year at Polaris Bay we shall have $9^{\circ} .17$, being $0^{\circ} .85$ greater than the differeuce as made out for the more sonthern station. We shall see, hereafter, that the greatest amount of atmospheric precipitation at Polaris Honse took place doring the month of May, when the difference between the temperature of the dew-point and that of the air was smallest.

DIURNAL FLUCTUATIUN OF THE DEW-POINT AT POLARIS HOUSE DURING TLE WINTER-HALF-YEAR.

The analytical elements and expression representing the dinrual fluctuation of the dew-point are as follows :

n	ω_{n}	$b a$	B_{n}	C_{n}
				- "
				3578000
\because	-0.01	+ 0.31	+0.30	347:30 30
3	-0.03	$+0.17$	+ 0.96	$5610 \quad 0$

$$
\begin{gathered}
D=-21.13+0.06 \sin \left(x+350^{\circ} 30^{\prime} 0\right)+0.3 \sin \left(2 x+34 i-30^{\prime} 30^{\prime}\right)+0.26 \sin \left(3 x+50^{\circ} 100\right) \\
x=150^{\circ}, 30^{\circ}, \ldots .
\end{gathered}
$$

By means of the above expression the following values were obtained :

Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$	Time.	Observed.	Comprited.	1)iltoremar, O.- ${ }^{\text {C. }}$
	\bigcirc	\bigcirc	\bigcirc		\bigcirc	o	\bigcirc
$0^{\text {b }}$	-29.94	-	-0.14	Noon.	-19.84	-19.	$+0.01$
1	29.15	29.3	$+0.04$	$1^{\text {b }}$	19.15	19.95	-0.1以
9	92. 16	? ${ }^{\text {che }} 16$	± 0.00	\because	19.89	111. $=1$	± 0.00
3	21. 6	21.84	-0.01	3	$\because 0.16$	$\because 1.17$	+ 0.01
4	$21.4 \times$	21.41	$+0.01$	4	20.3)	20.57	-0.1以
5	21.37	$\because 1.37$	± 0.010	5	$\because 0.40$	91). 3	± 0.100
6	21.51	$\because 1.51$	± 0.00	6	$\because 1.12$	$\because 1.13$	$+0.01$
7	20.97	20.9.9	+0.03	7	$\because 1.45$	$\because 1.40$	+ 0.013
8	20.41	-11. 40	-0.01	s	$\because 302$	$\because 20$	-0.102
9	20.09	$\because 0.08$	0.01	9	$\because 3.43$	-2.1:	-0.01
10	$\stackrel{90.10}{20}$	20.09	-0.01	10	-290	-9.913	$\begin{array}{r}\text { a } \\ +0.01 \\ \hline 11.01\end{array}$
11	-20.06	- 20.08	+0.112	11	--3:36	-2:35	- 11.01
$\mathrm{N} \times \mathrm{an}=21^{\circ} .13$.							

The differences between the computed temperature of the air and the temperature of the dewpoint are giren in the following table. As the former values were ouly computed for every other bour, this table only contains the bihourly differences:

It will be seen that the temperature of the dew-point approaches nearest to the temperature of the air at noon, while the greatest difference exists at $8^{\mathrm{h}} \mathrm{n}$. m. The temperature is alme the mean during the hours $4,8,10$, noon, and $\because 1$. m., while it is below the same during the remaining hours. The diurnal range during the winter-halt year equals 10.38 .

We shall now consider the dinmal fluctuation during winter and spring separately. The values for these two seasons, given hereafter, were not properly computed according to the formbla, but we mere satisfied to combine the computed hourly means of the respective months constituting one season, takiug their mean instead of the computed values.

Giurnal fluctuation of the temperature of the dew-point during winter at Polaris Honse.

Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$	Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$
	c	\bigcirc	\bigcirc		\bigcirc	-	\bigcirc
$0{ }^{\text {b }}$	-30.51	-30.77	$+0.26$	Noon.	-30.30	-30.23	+0.07
1	30.44	30.51	+0.27	$1{ }^{4}$	30.22	30.39	+0.17
$\stackrel{1}{2}$	$30 . *$ \%	30.55	-0.28	$\stackrel{2}{3}$	30.44	30.41	+0.03 +0.39
3	30. 15	30.56	+0.09 +0.57	3	30.44 30.99	30.83 30.87	a +0.39 +0.12
4	30. 0:3	30.60	0.57 +0.17	${ }_{5}^{4}$	31.31	31.04	-0.127
5	30.59 30.90	30.76 30.66	+ +0.17 +0.22	6	31.11	31.40	$+0.29$
7	31.05	30.73	0.32	7	31.12	31.11	- 0.01
-	30.76	30.53	-0.23	8	31.78	31.58	0.20
9	29.	30. 20	+0.38	9	31. 83	31.47	-0.36
10	29. ${ }^{42}$	30.33 -30.18	+0.51 +0.42	10	31.07 -31.11	31.26 -30.82	a +0.19 $-\quad 0.29$
11	-30.54	-30.12	-0.42	11	-31. 11	-30.82	-0.29
Mean $=-30^{\circ} .74$.							

The bihourly differences between the temperature of the air and the temperature of the dew. point are as follows:

| $0^{\text {b }}$ | 2 | 4 | 6 | 8 | 10 | Noon. | $2^{\text {b }}$ | 4 | 6 | 8 | 10 | Mean. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The following diagram represents the-
Diurnal fluctuation of the temperature of the air and temperature of the dew-point during winter, 1872-73

It will be seen that the computed curve exbibiting the fluctuation of the dew-point reaches its maximum of $-30^{\circ} .12$ at about $11^{\mathrm{h}} \mathrm{a}$. m., while it passes through the minimum of - $31^{0} .58$ a short time after $8^{\mathrm{h}} \mathrm{p}$. m., thus exhibiting a range of 10.46 . The maximum and minimum, as observed, riz, $-29^{\circ} .82$ and $-31^{\circ} .83$, respectively, occur at $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$. and $9^{\mathrm{h}} \mathrm{p}$. m., respectively. The range, as shown by the latter curve, equals $2 \circ .01$, being $0^{\circ} .65$ greater than that of the former. The thermal curve and that representing the diurnal fluctuation of the dew-point approach each other most losely at noon, while they recede most from each other between 6^{h} and $10^{\mathrm{h}} \mathrm{p}$. m.

The following table gives the-
Diurnal fluetuation of the temperature of the dew-point during spring at Polaris House.

Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$	Time.	Observed.	Computed.	$\begin{gathered} \text { Difference, } \\ \text { O.-C. } \end{gathered}$
$0{ }^{\text {b }}$12334567891011	\bigcirc	\bigcirc	\bigcirc		-	\bigcirc	\bigcirc
	-13.97	-13.96	-0.01	Noon.	-9.39	- 9.27	-0.12
	13.92	13.93	$+0.01$	1^{11}	9.42	9. 23	0.19
	13. 49	13. 75	0.26	$\stackrel{2}{2}$	9.34	9.23	0.11
	13.30	13. 17	0.17	3	9. $\mathrm{N}^{\text {a }}$	9.37	0.50
	12.75	13. 05	0.28 +0.86	4	10.18	9.70	0.48
	12.18	12.74	+ 0.56	5	10.48	9. 66	-0.82
	12. 11	11.17	$\begin{array}{r}+0.94 \\ \hline \quad 0.0\end{array}$	6	11. 14	11. 66	+0.52
		10.99 10.34	+ 0.10 +0.28	7 8	11. 125	11.99 12.93 12.8	$\begin{array}{r}0.14 \\ 0.56 \\ \hline\end{array}$
	$10.06 i$ 10.36	$\begin{array}{r}10.34 \\ 4.83 \\ \hline\end{array}$	+0.28 +0.53	$\stackrel{8}{9}$	12. 27 13.03	12.83 13.47	0.56 0.44
	10.38	9.82	-0.56	10	13.15	13. $\checkmark 7$	
	-9.57	-9.36	-0.21	11	-13.61	-14.03	+ 0.42
Mean $=-11^{\circ} .53$.							

The bibourly differences between the temperature of the air and that of the dew-point during spring are as follows:

$$
\begin{array}{ccccccccccccc}
0^{\mathrm{h}} & 2 & 4 & 6 & 8 & 10 & \text { Noon. } & 2^{\mathrm{h}} & 4 & 6 & 8 & 10 & \text { Mean. } \\
8^{\circ} .51 & 80.37 & 80.29 & 7.66 & 8.22 & 80.59 & 80.22 & 70.79 & 70.43 & 80.29 & 80.43 & 80.79 & 80.22
\end{array}
$$

The following diagram represents the-
Diurnal fluctuation of the temperature of the air and temperature of the dew-point during spring, 1873.

During the season in question the mean temperature of the dew-point is 190.21 higher than it was during winter. The curve derived from the computed values reaches its maximum of - 90.23 between $1^{\text {h }}$ and $2^{\mathrm{h}} \mathrm{p}$. m., while it passes through the minimun of -t 4.03 at about $11^{\mathrm{h}} \mathrm{p}$. m., thus exhibiting a range of $4^{\circ} .50$. The observed curre passes throngh the maximum of — $9^{0} .34$ at $2^{\mathrm{h}} \mathrm{p}$. m., and through the minimum of -130.97 at midnight, its range being $t^{\circ} .63$, which value is $0^{\circ} .17$ smaller than in the former instance. The two curves, represented on the diagram, approach each other most closely at about $5^{\mathrm{h}} \mathrm{p}$. m., white the greatest difference between the temperature of the air and that of the dew-point occurs at $10^{\mathrm{k}} \mathrm{p}$. m., amounting to 80.79 .

It remains now to discuss briefly the diurnal flnctuation of the temperature of the dew-point during each of the six months in question. As mentioned before, each month was treated analytically. The analytical elements and expressions made nse of are as follows:

Deeember.

Jamutry.

"	a_{n}	b_{10}	i_{n}	C_{n}
				- ' "
1	- 11.41	+ 0.35	+ 0.83	3104219
\because	+ 11.07	+ 0.41	$+0.41$	$10 \quad 0$
:	-11.14	+ 0.01	+0.15	3-6 192

$D=-30.06+0.5 \sin \left(x+310^{\circ} 4 y^{\prime} 19^{\prime \prime}\right)+0.41 \sin \left(2 x+10^{\circ} 0^{\prime} 29^{\prime \prime}\right)+0.15 \sin \left(3 x+2 \sim 5^{\prime \prime} 19^{\prime} 23^{\prime \prime}\right)$
$x=10^{\prime \prime}, 30^{-}, \ldots$
Februtry.

March.

April.

n	${ }^{\prime}{ }_{n}$	b_{n}	B_{n}	θ_{n}
				- ' "
1	- 2.93	-1.61	$+3.34$	127038
2	-0.06	-0.43	+0.44	$1 \because 3528$
3	+ 0.:3:3	+ 0.42	+0.53	123019

$$
\begin{gathered}
D=-11.72+3.34 \sin \left(x+241^{\circ} 18^{\prime} 17^{\prime \prime}\right)+0.44 \sin \left(2 x+187^{\circ} 5: 3^{\prime \prime}\right)+0.53 \sin \left(3 x+35^{\prime \prime} 23^{\prime} 31^{\prime \prime}\right) \\
x=15^{\circ}, 30^{\circ}, \ldots
\end{gathered}
$$

May.

"	a_{n}	b_{u}	$i_{1,}$	$\%_{6}$
1 9 3	-1.46 -0.45 -0.18	- $\begin{array}{r} \pm 0.13 \\ -0.31 \\ -0.12\end{array}$	+1.80 +0.54 +0.21	

$D=+12.77+1.50 \sin \left(x+270^{\circ} 95\right)+.0 .54 \sin \left(2 x+295 \cdot 28^{\prime}\right)+0.21 \sin \left(3 x+33 i^{\prime} 19^{\prime}\right)$
$x=15,30^{\circ}, \ldots$
By means of the above expressions the following values were obtained:

Time.	December.			January.			February.		
	$\begin{aligned} & \text { ® } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$$		吾	
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	ก	\bigcirc	\bigcirc
$0^{\text {h }}$	-15.63	-16.14	+0.51	-40.05	-40.00	-0.05	-35. 84	-36.18	+ 0.34
1	15.49	15. 91	+ 0.42	39.75	39. 65	0.10	36.09	35. 97	-0.12
2	16. 62	16.32	-0.30	39.57	39. 40	11.47	35. 9.9	35. 92	- 0.17
3	15.59	15.91	+0.32	31. 47	89. 34	-0.13	36.35	36.44	+ 0.10
4	15.57	15.9.	+ 0.3	:3.96	39.46	+ 0.50	3i. 5	36.40	0. 0.
5	16. 39	15.96	- 0.40	39, 39	39. 66	0.9	55, -1	36. 6	+ 0.76
6	15.55	15.48	0.07	39.85	: 3 , si	0.01	32. 30		- 0.65
7	16. 60	15.97	-0.63	39. 20	319.93	+0.10	36.71	36.98	-0.43
8	15.96	16.12	+0.16	41. 15	35.84	-1.31	35.16	35.16	+0.48
9	16.14	16.37	0.3?	33.98	(1). 51.	+11.7	:34.30	: 34.5	+ 0.20
10	15.98	17.16	$+1.1-$:3, 8 !	39.4.	+ 0.0 .3	34.59	34.40	- 0.19
11	17.99	16.95	-1.04	(3) 39	39. 20	-0.10	34.25	34.91	0.14
Noon.	17.09	17.0 O	-0.01	34. 31	39) 3	0.05	:3. 50	: 4.36	0.14
$1^{\text {L }}$	16.03	17. 09	+0.10	:11) 69	39)	-0.33	34.95	:24.71	0.94
2	17.02	16.5%	-0.44	:31) 47	(4) 5 m	$+0.11$:34. ${ }^{3}$	35.06	+ 0.21
3	16.45	17.05	+0.61)	411.10	39.	-0.20	34. -15	35.6	+0.76
4	17.70	17.23	-0.47	3 31.9 m	40.06	+ 0.08	35. 30	35. 3	+0.13
5	17.89	17.54	- 0.20	39. 24	$40.2 n$	0.44	36.97	33. 31	- 0.910
6	17.73	18.34	$+0.61$	40. $4 \because$	40.4%	+0.06	35. 19	35. $: 17$	$+0.12$
7	17.93	1ヶ.17	+0.14	40.97	40. 6 F	-0.32	34.46	34.60	+0.14
8	1 1. 15	1\%.1):	-0.13	40.68	40.77	0.21	:36. 21	3.594	- 0.27
9	17.54	17.71	+0.16	41.1\%	40.77	-0.3.	36.84	35. 11.	-0.49
10	16.7\%	16.70	- 0.0n	40.03	40.64	$+0.61$	336. 41	36.44	$+0.03$
11	-17.58	-16.59	- 0.98	-40.15	-40.37	+0.19	-3.35. 56	-i.5. 50	-0.06
Means.	-16.76	-16.76	± 0.00	-39.90	-39.90	± 0.00	-.35. 56	-35. $0^{\text {a }}$	± 0.00

Time.	March.			April.			May.		
	$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { 䔍 } \\ \stackrel{y}{E} \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & \text { تٌ } \\ & \text { E } \\ & \text { E. } \\ & 0.0 \\ & 0 . \end{aligned}$			$\begin{aligned} & \text { 『ं } \\ & \text { E. } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		
	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
$0^{\text {b }}$	-36.48	-37. 44	$+0.96$	-15.56	-14.71	-0.85	$+10.13$	+11.08	-0.95
1	36.78	36.94	+ 0.16	15. 49	15. 05	-0.44	10.52	10.77	-0.25
2	36.70	36.45	-0.25	15. 14	15. 30	$+0.16$	11.37	11.23	$+0.14$
3	36.49	36.14	-0.35	14.99	15.95	$+0.26$	11.58	11.65	-0.07
4	35.69	36. 00	$+0.31$	14.96	14.73	-0.23	12.23	12.38	0.15
5	35. 69	35.98	+0.29	13.68	13.68	± 0.00	12.84	12.85	0.01
6	36. 68	36.00	-0.68	12.52	17.30	-0.89	12.86	13.35	-0.49
7	35.55	35.90	$+0.35$	11.45	10.91	-0.54	14.32	13.56	$+0.76$
8	35.14	35.67	+ 0.53	9.46	9.83	+0.37	14.42	13.63	$+0.79$
9	35.73	35. 23	-0.50	8.99	9.22	+ 0.23	13.64	13.64	± 0.00
10	35.01	35.59	0.42	9.97	9.08	-0.89	13.84	13. 63	F0.21
11	34.35	34.11	-0.24	¢. 65	9. 1^{4}	+0.53	14.29	13. 62	0.67
Noon.	33.37	33. 60	$+0.23$	8.78	9.27	0.49	13.99	13.58	0.41
$1^{\text {b }}$	32.92	33.29	0.37	8.92	9.21	0.29	13.59	13.48	0.11
2	32.95	33.23	$+0.28$	8.73	9.00	- 0.27	13. 65	13.32	0.33
3	34. 39	33.43	-0.96	8.78	8.89	- +0.12	13.56	13.17	+ 0.39
4	34. 00	33.91	-0.09	9.52	9.06	- 0.46	12.97	13.00	-0.03
5	34.33	34.65	$+0.32$	10.09	9. 65	0.44	12.99	12.96	+ 0.03
6	35.27	35.53	0.26	11.01	10.60	0.41	12.87	13.09	-0.2:
7	36. 41	36.45	+0.04	11.99	11. 73	-0.26	12.84	13. 56	0.22
8	37.31	37.24	-0.07	12.35	12.76	+ 0.41	12. 85	12.89	0.04
9	37.73	37.77	$+0.04$	13.45	13. 53	0.08	12.08	12.52	0.44
10	37.96	37.98	$+0.02$	13.12	14.02	0.90	11.67	12.44	0.77
11	-38.43	-37.83	-0.60	-13.75	-14.38	+ 0.63	+11.35	+11.45	-0.10
Means.	-35.64	-35. 64	± 0.00	-11.72	-11.72	± 0.00	+12.77	$+12.77$	± 0.00

In December the differences between the computed temperatures of the air and the computed temperatures of the dew-point are as follows:

$0^{\text {ฉ }}$	2	4	6	8	10	Noon.	$2^{\text {h }}$	4	6	8	10
$7^{\circ} .97$	$8^{\circ} .00$	$6^{\circ} .86$	$6^{\circ} .06$	$7^{\circ} .00$	$8^{\circ} .07$	$7^{\circ} .55$	$6^{\circ} .83$	$7^{\circ} .67$	$8^{\circ} .87$	$9^{\circ} .61$	$7^{\circ} .85$

The greatest difference, of $9^{\circ} .61$, occurs at 8^{h} p. m., while the smallest, of $6^{\circ} .06$, is found at $6^{\text {h }}$ a. m., giving a range of $3^{\circ} .55$, which, at Polaris Bay, was but 10.03 during the same month. The curve passes through the absolute maximnm of - $15^{\circ} .48$ at abont 6^{h} a. m. and through the absolute minimum of $-19^{\circ} .03$ at about $6^{11} \mathrm{p} . \mathrm{m}$., oscillating between several relative maxima and minima. The maximum and minimum temperatures during this mouth occur at midniglt and $2^{\text {h }}$ p. m., respectively.

In January the differences between the computed temperatures of the air and those of the dew. point are as follows:

0^{b}	2	4	6	8	10	Noon.	9^{b}	4	6	8	10	Mean.
$10^{\circ} .60$	$9^{\circ} .79$	$9^{\circ} .70$	$10^{\circ} .08$	$10^{\circ} .21$	$9^{\circ} .99$	$9^{\circ} .94$	$10^{\circ} .34$	$10^{\circ} .96$	11°	.52	11	.78
$11^{\circ} .47$	$10^{\circ} .53$											

The curve passes throngh the absolute maximum of $-39^{\circ} .20$ at about noon and through the absolute minimum of $-40^{0} .77$ between 8^{h} aud $9^{\mathrm{h}} \mathrm{p}$. m., exhibiting a range of 10.57 , being by 10.98 less than during the preceding month. Besides the absolate maximum and miuimum there are several relative maxima and minima, as a glance at the general table will readily show. The maximum and minimum of temperature are reached at $6^{\mathrm{h}} \mathrm{p}$. m . and 6^{h} a. m., respectively.

For Febrnary the following differeuces between the computed temperatures of the air and the computed temperatures of the dew-point were deduced:

$$
\begin{array}{ccccccccccccc}
0^{\mathrm{h}} & 2 & 4 & 6 & 8 & 10 & \text { Noon. } & 2^{\mathrm{b}} & 4 & 6 & 8 & 10 & \text { Mean. } \\
11^{-.55} & 10^{\circ} .86 & 10^{\circ} .86 & 10^{\circ} .02 & 9^{\circ} .96 & 8^{\circ} .20 & 7^{\circ} .69 & 8^{\circ} .79 & 10^{\circ} .05 & 10^{\circ} .74 & 11^{\circ} .40 & 10^{\circ} .95 & 10^{\circ} .17
\end{array}
$$

The maximam temperature of the dew-point of $-34^{\circ} .21$ is reached at 11^{h} a. m., while the curve passes through the minimum of $-36^{\circ} .65$ between 5^{h} and 6^{h} a. m., thus exhibiting a range of 20.44 , being somewhat greater thau during the preceding month. The maximum and minimum of temperature are reached at $8^{h} \mathrm{a} . \mathrm{m}$. and 8^{h} p. m., respectively.

In March the differeuces under consideration are as follows：

The greatest difference of 12.13 occurs at $10^{1 /}$ a． 1 m ．，while the smallest，of $9: 9$ ，is reached at 4^{1} a．m．，giving a range of $\mathfrak{s} .13$ ．The curve leprasenting the diuran flactuation of the dew－point passes throngh the maximum and minimum at $2^{h} \mathrm{p}$ ． 10 ．and $10^{\frac{k}{2}} \mathrm{p}$ ．m．，renpectivel， ，closely coincid． ing in regard to time with the maximm and minimum of temperature．

For April we get the following differences：

$0^{\text {n }}$	$\stackrel{\square}{\sim}$	4	6	8	10	Noon．	\because	1	6	g	10	Me：m．
6－． 61	15－， 66	69.99	$6^{-} .96$	7.09	21	78		$5 \therefore 7 \times$	6．． 17	\because	$7 \% .70$	（5．）！2

It will be seen that the greatest difference betwen the temperature of the den pomat and that of the air occurs at moon，and the least at $t^{11} p$ ． 1 m ．The range dming this mouth is 20.25 ，being a little greater than during March．The maximum ant minimum temperatores of the air during the period in question oceur at 10^{4} a．w．and $z^{\prime \prime}$ a．m．，renpectively，while the maximnm and minimun
 coinciding in regard to time，while the maximum temperatme of the dir is rewhed fire hours pre－ rious to the maximmm temperatmre of the dew－point．

In May the differences under consideration are is follows：

During this month we observed，for the first time in this season，the temperature of the dew－ point to be above zero．The diumal curve passes throngh the absolnto maximum of 130.64 at about $9^{\mathrm{h}} \mathrm{a} . \mathrm{m}$ ．and through the alsolute minimmof of 10.75 at $\mathbf{1}^{\text {h }}$ a．m．，thus exhibiting a range of 20.87 ，being $0: 91$ less than that of the temperature of the air．The maximum temperature of the air occurs at noon，while the minimum is reached at midnight．

The following tabie contains the correction to haphed tu any hourly observation taken at Polaris Honse to obtain the mean temperature of the dew－point of the day：
 temperthere of the diar－puint of the elly．

Time．	$\begin{aligned} & \text { 苟 } \\ & \frac{3}{3} \\ & 6 \\ & 6 \end{aligned}$			采		少	$\stackrel{\text { S }}{\sim}$
	\bigcirc	c	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0^{\text {h }}$	-0.21	－1．1：	－ 10.51	＋ 0.5	$+0.81$	＋ 4.49	＋9． $26 ;$
1	0． 60	1．30	-11.14	1．401	1.14	4．	\％ 3
2	－0．15．	11.21	$+0.01$	11． 6.6	1． 04	3． 46	1． $1:$
3	＋ 11.15	1.17	－0．35	1．0：	0.91	吅没	1．\because
4	0.3	1.19	$+0.13$	11.38	0.05	\because	＋0． 0.0
ir	0.13	6．${ }^{\text {a }}$ ，	－0．43	＋11．93	0.10	1.84	－0．13：
6	0.12	1． 21	＋0．03	－0．4．3	＋ 11.15	＋11．63	11.118
7	＋0．07	0.16	± 0.111	1.14	－ 0.09	－ 0.93	1．${ }^{1}$
\checkmark	－0． 06	11.73	－ 1.40	11． 116	－0．111	$\because 2 \mathrm{O}$	1． 0^{2}
9	0.17	0． 13.3	0.58	1．	$+0.111$	只云	1． 5.3
10	0.18	－ 8.88	0． 113	11． 73	－0．63	1.75	1.118
11	0． 13.3	＋1． 3	0． 44	1．${ }^{-11}$	1．：11	3， 119	1．
Noon．	11.89	0.33	0.51	11．	29	？ 91	1．$\because 1$
$1^{1 / 2}$	10． 56	0.17	0． 90	11． 3	9． 71	？－i；	0．-11
2	0.59	＋ 0.20	－0．int	19．4	2． ti 2	： 02	0.5
3	0． $1 \times$	－0．34	＋0．19	0． 46	1．95	？！！\％	11.7
4	0.51	＋ 0.91	0.16	－ 11.18	1.64	只景	0.15
5	19.31	1． 06	0． 10	＋11， 2	1．：310	1．lit	11．${ }^{10}$
，	－ 11.16	11.97	11．5	－ 11.13	－0．： 27	－0．74	11.17
7	＋0．39	1.17	1．15	－ 0.80	＋ 0.71	＋ 11.14	0.10
$\stackrel{\sim}{r}$	1.10	1．36	1．15	＋ 01.90	1．17	0． 616	－ 11.15
9	0.15	0.80	1， 29	＋1．59	411	1．1810	＋0．71
10	1．1）	0．10：	0．21	＋ 1.01%	吕：	1． 26	1．1\％
11	$+1.54$	＋0．83	＋ 0.30	－ 0.12	＋	＋	＋1．44

21 H 0

ATMOSPHERIC PRECIPITATION.

For measuring the amount of rain and snow, two ombrometers were used, one supplied by the United States Sigual-Servire Weather Burean and the other by the Smithsonian Institution. The former consisted of a copper rylinder about 18 inches long and 3 iuches in diameter, provided with a funnel whose diameter was four times as great as that of the cylinder. The Smithsonian gange consisted of a plain crlindrical tube of tin, 12 inches long and 32 iuches in diameter. Since the difficulties to be contended with in the measurement of very small quantities of rain-fall with any degree of accurary are very great, various methods of proceediug were adopted.

During our residence at Polavis Bay the larger rain gange was almass in use, being placed in :tu open space 30 rards east northeast of the observator:5, either resting directly upon the ground or elevated upon an oreltnrned boat, whose height was scarcely 18 inches. If the snow-fall was accompanied hy wind, then the suom was not canght in the gange itself but collected from the surface of a hoard, which wan brmshed clean after erery fall. The fnmel was removed from the cylinder and the latter was turned over, mouth downward, and pressed against the board; a sheet of stiff paper was then slipped unter the mouth of the ertinder, aud the latter raised from the board. This process was repeated more or less frequently according as the quantity of snow was small or large; then the measme was placed cither in warm water or near the store until the snow was completely melted. The measmrement was made by means of a woodeu rod which was dipped into the collector and allowed of correct readings to the limndredth part of an inch. Of course, the result thas obtaned had to be divided by the number of times the eylinder had been dipped in the snow, as above explatined. In taking each mean the third decimal was retained. During our second winter the smaller rain-gange, furuished by the Smithsonian Institution, was made use of. The following table contains the observed quantities of moistmre precipitated. Besides the number of hours doring which it ramed or snowed, the character of the fall is also given: l indicates a light and h a heary snowfall. The next colnmo indicates the quantity of snow in English inches. Wheuever, in this colomn, a query is found, it is intended thereby to denote that the quantity was imperceptible or immeasurably small. The next nine columus show the wiud that was blowing at each hour at which precipitation occurred, including calms. The last column contains the mean velocities of the winds.

The following table contains the condensed result of the preceding record ：

Months．	Lrirection of wind．									$\begin{aligned} & \dot{\dot{m}} \\ & \tilde{\theta} \end{aligned}$	世
	N．	N．E．	E．	S．E．	s	S．W．	W．	N．W．	Calm．	$\begin{aligned} & \text { ت } \\ & \text { ت } \\ & 8 \\ & 8 \end{aligned}$	
Novomber，1＊71	1	8	（1）	4		9			4	：5	Inches．
		\because	1				1		$:$	7	＂
			－			131	\because	1	\because	吅	？
February ．．．．		9	1	6	3	1		：	\％	吕	0．195
Mareh．．．			17	11			学	\％	30	（1）	0.10 .17
Apmil		13	景	\because		9	5	8	5s	11.	O．Iftis
Mal		7	\because	1		17		1	3	：$:$	！
Jıи4						11			1	15：	！
July－	：	8	3	：	1	13	11	4	5	50	0， 3 \％$: 3$
August		6				－			1	15，	！
Sums	4	46	20	［11	8	\cdots	$\because 1$	1 n	114	41．：	0.635

The greatest amount of precipitation is recorden in J_{n} y，amomeng to $0^{\text {in }} .363$ dmine 50 hours， consisting mostly of rain．

Besides the amome of precipitation that cond be measured by mons of a gange，we noticed， sometimes，that deposits of horr－frost on exposed wherts took phare，or that the atmosphere was
 the metenrological register，ron thins：
 ground．
 overhead visible．

Jantury ${ }^{2} 4,3^{11} \mathrm{p} . \mathrm{m} .:$ Deposit of fine ice crystals．Wind，east．
Jf＂nury $\mathscr{2}^{-}, 1^{\text {h }}$ and $2^{\text {h }}$ p．m．：Light precipitation of rapm．Wimd，northeast．

Frbuary 2， $11^{1 \mathrm{~h}} \mathrm{p}$ ．m．：Light precipitation of vapor；stars very bright．Calm．
 gronnd．Wind，southeast．

Februay 10，5h p．m．：Deposit of minate icrarystals on exposed oljects．Calm．
Fetrnary 12， $9^{12}, 10^{\text {h }}$ ，and 11^{14} a．m．：Light precipitation of irespenta，Wind，northeast．
February 21， 6^{h} ， ＇rh $^{\mathrm{h}}$ ，and 8^{h} a．m．：Clond of dense vapor．Wimd，rast；at 8^{h} ，calm．
Murch 5，4n ：n．m．：Light precipitation of ich－spicnl：Wind，sonthwest．
March $13,1^{\text {h }}$ p．m．：Light preripitation of ire－spicular．C＇alm．
March 29， 4^{11} a．m．to 1_{2}^{14}（noon）：Deposit of icerrvitah on exposen objects；wind，east south－ east，and calm． $7^{\text {l／}}$ p．m．：Deposit of ice－crystals on mposed objects．Wind，southeast．

Mrefle 30， 4^{14} and 5^{11} a．m．：Theposit of ice－erystals on exposinl obecets．Wimd，east．
March 31，noou：Deposit of iceerystals on exposed whects．W＇ind，sontheast．
 of iceerrsitals on exposed olyects．Wind，east and northeast．

April：$:, 3^{11}$ to 9^{11} a．m．：Deposit of ire crystals on exposed obperts．Film．

Aprit 15， 11^{h} a．m．：Precipitation of fine icerrystals．Calm．
May 16， 6^{6} p．im．to midnight：Fine iceerystals falling．Calm．
May 17，midnight to f＂a m．：Fine we－crytals falling．Calm．

The following observations were made at Polaris Honse; the mode of observation is the same as stated before:

During the following days the occurrence of precinitation was noticed, too slight, homerer, to be measured:

December 6, 15:2, $2^{\text {h }}$ a. m. to $3^{\text {h }}$ p. m.: Deposit of fine ice-crystals on exposed objects. Wind, calm and northeast.

December 24, $5^{\text {h }}$ p.m.: Precipitation of minote ice-spicula'. Calm.
January $\mathscr{S}^{2}, \mathbf{1 8 7 3}$, noon to $3^{\text {h }} \mathrm{p} . \mathrm{m}$.: Deposit of fine ice-crystals on exposed objects. Calm.
Thumery 5, 5 p. m.: Cloud of minute ice-crsstals sweeping orer the ground. Calm.
Jenuary 9, 4^{h} a. m.: Cloud of minnte ice-crystals sweeping orer the ground. Wind, southwest.
February $6,3^{\text {h }}$ a. m.: Precipitation of minate ice-spicule. Calm.

The following table contains the condensed result of the record kept at Polaris Honse:

Months.	Direction of wind.										
	N.	N. E.	E.	S. E.	S.	S. W\%.	W.	N. W'.	Calm.		
November, 1-8	?	27	2	1	7	34			21	95	Inches, 0. $3:!5$
1)ecember .-..	6	111				3			2	$\because 1$	0. 397
Janaary, 1-73.		4			11	9			96	50	0.295
February ...	5	-	8		5	2			$\square 1$	74	0. :3io
Mareh.						1			10	11	0. 1994
April .		-		2		11			23	61	0.500
May .		14	5	1	4	40	1		45	117	0. 374
Sums.	14	91	10	4	$\because 7$	107	1	0	179	43	-2. 219

A comparison of the nomber of hon's daring which atmospheric precipitation occurred at Polaris Ilouse and at Polaris Bay will show what we might have expected a priori. During the seven months in question, it snowed at the former station during 403 hours and at the latter during 335 only. While the amount of snow measured at Polaris Baty from November, 1871, till June, $18: 2$, is $0^{\prime \prime} .314$ only, that measured at Polaris Honse is $2=319$, if expressed in volmme of water. The maximum of snow-hours at Polaris Bay was noted in-April, viz, 14s, aud at the other station in May, viz, 117; the amonnt of snow corresponding to both periods is $0^{\mathrm{n}} .063$ and $0^{\prime \prime} .374$, renuectively. The minimum of show homs of any month is 7 hours at Polaris Bay (December, 1871), and at Polaris House it is 11 hours (March, 1873).

It is true that the amonnt of snow conld not alrats be ascertained accurately. If we should assume that the amome which actualls fell at Polaris Bay was double that measured (though that assumption would be too great), and should, therefore, donble the valne previonsly given, it would still only give $1^{\text {in }} .354$, including the rain that fell dming July and Augnst. That, under such circomstances, the glacial period of Northern Greenland camot approach a maximmm, but that the glaciers must be on their decline, is evident. In the next volmme, containing, among others, the geological results, we shall dwell at greater length on this subject.

ATMOSPHERIC PRESSURE.

.

record and lliccussion of THE ObsERVATIONS ON ATMOSPHERIc PRESSURE MADE AT POLARIS BAY.

In comection with the observations on winds, recorded in the preceding part, we shall now give those on atmospheric pressure. The hours of observation are the same as mentioned before, and all the omissions occurring in the preceding observations also occur here.

The instruments used were of different character and manufactured by different makers. We han three large aneroids, two of which were made by Casella and the other by Beck, London; three marine-barometers by Adie, reading to $0^{i n} .005$, and three standard barometers, of Fortin's construction, manutactured l_{y} Green, reading to $0{ }^{\mathrm{in}} .002$. Besides the instruments mentioned, the expedition was supplied with a number of very superior pocket-aneroids by Green, Beck, and Casella, which, however, were only used by traveling parties or for deducing the refraction in connection with the temperature for astronomical purposes. When at sea on our way north in 1sit, the Adie and one of the aneroids were read, which were kept on the after-deck in the same louver-boarded box containing the rest of the meteorological instruments. The cistern of the dilie was about nine feet above the surface of the sea, the aneroid being on the same level. In some instances this height may have varied more or less, according to the quautity of coal and provisions on board the vessel. After our arriral at Polaris Bay the three Fortins* were humg up, on the western wall of the observatory, thirty-four feet above the level of the sea and at the height of the eye. In order to protect the instrmments from the direct radiation of the warm stove, a small oblong box, somewhat longer and a little broader than the barometer, was firmly secured against the wall hehind each instrument. The banometers were suspended on heary rods about five inches long, on which the suspending rings might slide with ease, the rods being turned up at the ends to prevent the instrmments from slipping off. The barometers remained in the box, the dom of which was kept closed until the time of observation, when it was opened and the barometer to be read taken by the mper end of the tube and mored toward the free end of the rol-that is, towarl the olserver. No special precaution was taken to secure perfect perpendicularity of the instrmants, they being eonstructed in such a manner as to take their efuilibrimm themselves. When the ivory point in the cistern was brought in contact with the surface of the mercury, artifirial light was used, either a short cande or a small oillamp, made for the prose. In taking the reading and making the adjustment the usual precantions were taken. In the course of the winter the meremry contained in the cisterns of the diferent instruments had to be cleaned repeatedly, in which iustances the respective barometers were compared with others before and after the performance of the operation.

From November 6, 1871, till June $22,152 \boldsymbol{2}$, Green's barometer No. 947 was read; if other instruments were made use of, their readings were referred to the barometer abore mentioned. Before learing Washington Oity, Mr. Meyer compared another barometer, supplied by the SigualUfice, and also mannfactured by Green, with the standard at the United States Naval Observatory. After our arrival at winter-ruarters the corrections of the other barometers were ascertained by moms of the instrument compared by Mr. Neyer with the standard at Washington. As these comparisons were lost, we dednced the correction of Green's No. 947 for a mean atmospberic press. me of $29^{i n} .5$, which was found to be $+0^{\text {in }} .051$. We managed to bring this instrument back to

[^17]Washington, and through the kinlness of the Superintendent of the United States Naval Observatory, we were enabled to take a number of comparisons with the standard above mentioned. The corrections, as deduced subseguent to our return, are:

At inches.	Correction
30.4	. +0.040
30.0	+ +0.042
29.S.	. +0.045
29.5.	+0.053

As the greater number of our observations had already been reduced at winter quarters with the application of $+0^{\mathrm{in}} .051$ as correction, no use was made of the above figures, the mean correction, as found sobsequent to our return, differing only by $-0^{i} .006$ from that first applich.

From Jnue 2.2, when the ressel was freed from the ice, Casella's aneroid No. 1210 was userl. This instrument being divided to $0^{\text {m }} .010$, the dirisions are large enongh to enable the observer to estimate, by means of a magnifier, with some degree of certainty, the tenth part of a division. thus giving a very satisfactory result. Whenever an opportunits offered the ancroid was compared with one of the mercurial instruments, and corrected accordingly.

The following record contains the reduced hourly observations. Those made with the memenrial barometer were referred to the temperatme of the freezing joint of water by means of the Smitheonian Meteorological Talles. Besides this, the observations were corrected for an clevation of thirty-four feet and for the temperature of the air. The following table, having as vertical argument the height of the barometer and as horizontal argument the temperatme of the air, was used for this purpose:

If it shonld be considered desinable to refer any one of the folloming obserrations up to Jure $\because 2,185$, to the original reading, as conrected for temperature loy means of the Smithsonian Tables, it will only be found mecessiry to take the corresponting themometerreading from the record of the temperatme of the air and to subtract the comertion due to the same from the value under ronsideration. The aneroid observations are only corrected for index eror. No cormetion was applied for the influme of gravity, and as the instument used was compensaten, a comection for temperature was deemed monecessary.

Date．	NOVEMBER， 1871.											
Time．	1	2	3	4	5	6	7	8	9	10	111	12
	Inthrs．	Inches．	Inches，	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Iurlies．	Infins．	Inchers．
0^{17}							：31． 319	： 0 ，为	29． 7 （is	30， 3	：31． 40.5	211． 494
1							30， 34	30．0．en	－0，－1：9	30， 411	：31． 419	31． $5 \cdot 4$
\because								30．0．0，	29．－86	30.418	$30, \therefore 12$	30． 464
：							31．30	： 310.919		311． 410	811， 54	30． 48.4
4							31． 364	310． $3 \cdot 4$	39．130	30.413	311．58！	30．45：
\because	30． 314	：11．：14	31， 50	30．61：	：31． $6: 3$	89． 1810	311． $3-4$	30.816	30， 1110	30.416	：311． 51.19	30．304
19							30． 340	30.129	： 20.010%	30，4：31	30.512	30.36
7							（31）． 3 \％	：310． 146	30． 17310	30． 424	30.0	30． 3.1
$\stackrel{\square}{\prime}$		．					30.310	30，16：3	30.125	30， 405	311.83	30． $3: 111$
${ }^{9}$		．				30.103	30． $11 \times$	：30． 134	311． 1144	： 11.410	：316． 669	：30，没显
10						30.11%	310．320	30． 3111	：30． 0117	30． 1111		30，：11
11						\％11．11\％	30．	： 010.114	311．（1）－1	30． 414	？ $31.8 .8+1$	：0． $2: 1$
Nomon．						31． 136	30.317	30． 1117	30.103	S11． 31.4	311.549	30，211
${ }^{\text {b }}$						30.194	30． 3	Sal． 112 l	（in．1：9	3， 3.4	：11，\％4	30． 214
3	810，	30.319	： 0.611	30． 6111	31．号枵		30． 30.8	30． 6100	（31，13！		缶， 514	30，
4						30.143	30． 31.27		30，	30． 310	30.83	\％ia． $1: 8$
\square						31．10，	$30.27!$	－9．！1\％	211．	：311． 114	31， 2.6	： 210.144
$1{ }^{1}$						：0．1：5	311．${ }^{2}$（1）	－39．171	311． 219	（21）． 4.3	30． 240	20．11ti
7						：3．147	30．	29．14：	\％n， 3	（11）． 514	： 11.5	$\because 0.1 \geqslant 1$
－						30.140	：31． 2416	29.1949	：31．30	311． 4103	： 010.515	［10，11－！
$!$						：30． 160	31．	3！910，	：10，$\therefore 9$	：31． 471	31．	（31）． 1104
111						30．1－1	311， 26	30，	： 11.3 －	：311． $4: 15$	31.4115	30．120
11	210．314	（11）	30，成	30． 136	29.990	30． 203	30． 5.4	29，： 13 lij	： 01.181	30.46	31． 20.11	20．10：
Sleans．．	30，	311．44－1	30． 3011	30，仿1\％	30.1529	30．14：1	30． 411.14.	（31）． $12-10$	$30.1: 13$	：31． 1418	30.53	211． 51
1rate．						OVEMBI	ER， 1871					
Time．	13	11	1.7	16	1%	18	19	20	21	22	23	21
1	Fur hes． 30.040 ：31．14：	Inches． （3）． 170 （31）． 170	Inches． ：31． $3: 3$ ： $11, \ldots$	Inches． 301．343	Inches． ：311． 319 ：31，3191	Inches． 301，摂 311：：	Inches． ：in． 160 30,144	Inches． ？！！ 16 ar － 204	Tuches．	Influs．	Inches．	Inrlus．
\because	：31． 1411	（3）． 110	：0，：34	60．	31.8	30.8	30.141					
3	30.04%	30． 119	：10， 3.4	$30 . \therefore$－	310， 0.3	20，碞	31．1：39	？ 3 景！				
4	31.1148	：0． $11:$	：0，110	30，	30． 3.54		：31． 121	30． 113				
1	31.61024	\％	$\cdots 10$	：31．	$30 . \therefore 24$	311， 3.4	：31． 14	80．978				
1	30，08：	（all	：11．344	30，15\％	311．：51		：31． 162	20．044				
$\dot{\sim}$	30.010	30． 217		30.165 30.109	30,366 30.1101	30.83 .3 30.314	：31．141	： 10 ， 10 30． 144	30.119		31）43：	311.18
1 10	30.0112	（31）：34	：31．411	30.13 F	：310． 361	30.304	$30.1 \geq 1$	30．13．16				
10 11	30.118	30． 20.91	30.829	30.141	30.409	30．8．	30.114	30． 10				
Xom．	30． 314	30． 244	30， 4110	311.147	30.412	301． 8.4					－	
1^{14}	30.124	310． 310	30． 412	30.140 30.114	30.42% 30.440	31． 30.1						
3	30，（2）	30.27	30，4：3	30． $1-3$	311． 425	311.312	：30．0．3	：30．172		30． 89	30． 410	30.14
4		30，eral	：311．4．1	30.304	30.427	311． 212						
$\stackrel{4}{5}$	30．10：9	30． 261	：311． 410	：11） 214	30． 424	311． 012						3111020
\because	310． 114%	30，30，	：111． 3	30．	30． 411 ；	30.304						31． 01
7	314．1102	30． $3: 11$	30， $3: 11$	30． 2 ti	30． 117	30.174						：10．1176
！	319． 103	30.321	30． $3: 1$	311.90	311． 410	30． 161						30．114：
111	：3，111i	？ 310	30． 3 th	$30.8-4$	30.16 .1	311．13－		30．1．11		30．	31，	30．10：1
11	Bir．141	吅號	30， 31919	311.219 80.315	30.423 30.117	311.116 310.138	89．04．5					30.002 wy． 990
Mrins．	20， 00.017	30，河 11	30.3840	30．2988	30.3952	30． $0^{3} 1$	30.0254	30，06：	30．	30， 31%	30．4611	30，11－1

Itale．	NOVEMBER， 1871.						DECEMBER， 1871.					
Time．	35	26	97	28	29	30	1	\pm	3	1	5	6
	Huches．	Inches．	Imrlors．	Tuchers．	Inchus．	Turlues．	Inthes．	frubus．	／urbrs．	Tuchis，	Imflus．	Juches．
$0{ }^{1 /}$	26．1\％	29． 790	：30，（1，－6；	9！）． $11 \% 1$	？ $31.120:$	：30． 30.1	：30，$-6,5$	？ 11.810	\％ 0.15%	？ 3 ！－－ 181	㫛9．50	谁， 016%
1	3！． 171	迷，－51	：30．11－\％	？！： 1114	2！1． 7011	30.350	\％30． 2 R，	$\because 11.8310$	：31．1－1	23，－－\％	只． 517	：31．12\％
2	49， 15	2．9，-711	：31）． 1190	201． 9111	23，\％1：	：31． 31	309， 50.1	： 110.81%	（3）．13：	9， 4.6×1	93． 51	：3，115
：	29． 951		\％11．119	？！！－－\％	－！．31！	（31）．Atim	：31．517	：11，： 1111	310.10	C9，－261	－39． 3 亿为	：10． 111
4	39． 4151	39.915	：311． 12×4	（1），$\times 10$	2！ 1 ，	：30． 211	（i1）．513，	$313.3: 3$	：il． 13	69．9020	69．5．9	$\therefore 11.170$
5		20．9．15	30， 110	2！，	＊9． 12×1	：30． 3.51	： 0.0 .81	：3）：$: 11$	： 11.113	39，パパ	？	S11．149
1	＂！！¢m，	－3．！リn	：3）Nria	（ 31 ，－ 10	：17． 1111	： 11.	：30． $5 \cdot \underline{9}$	： 31$)$ ，\because ？	811.111	23！M15	6－n 5．1！	： 111,
7	？！＋－	29．90\％	311． 110	？3． Ba	：n．1：31	：30． 3617	：10． 501	： 110.20	： $11.0101 ;$	？ 9.7×3	$\because 9.610$.	： 11.
H		（1）．！10	（1）．11：4	（3），50，	$\therefore 11.151$	：11．． 317	30.101	：31． $31 \times$	：311．12－11	Q！ $7: 1$	吕！ 0 ，	$\therefore 0.241$
3	（3） 96	29．	$\because 10.115$	23）． 5116	：11．	\＃0，法，	30． 110	\％（1） $3: 3$	： 31.118	如）16\％1		：10．$: 16$
111	93，－ 41	－31． 314	（31）． 1170	－3，fi， 0	$\because 11.0$ ： 1	811.85	：31）．101！	？	？ 1110.15	36． 7110	昭3． 614	： 11.313
11	29． 5 － 5%	［31． 1101	：31． 118%		311.3	211.411	：30． 2631	：10． $3: 64$	$\therefore 11.017$		St，6it	30，ar
Noon．		29． 3141	：30． 1055	－3！．$: 11$	S11， 211	$\therefore 6.121$	30． 31.2	［31． 31.7	：31）． 110%		29， $10-9$	31）． 3
$1{ }^{\text {1／}}$	： $9,81:$	31）． 000		$\because 3:$	：31． 419	： 11.10	：30． $31: 3$	：30，：3：6	： 211.1115	？ 6.6		20．3：12
\because	？！－－1：	：30． 010	30．118	2！1tio	$\therefore 0.41$.	：014 4	30．351	：30，：$: 10$	\＃11，mil	＂！1． $0^{\prime} 1$	4．9．7：3	314．410
：		$30.10: 1$	$\therefore 31100$	$\because 1.19$	：i1） 4.51	211． 45.	：30． 385	311． 3	：i1）． 11.1	U3． 6.15		310.131
4	639．4141	319． $111: \%$	30． 111%	？！113：	： 11.14 .1	： 31.181	：30． 31.1	：210． 3	： 11.10	－$\because 1.118$	＂！1．$=11$	： 30.45
\square	2！\％\％		311． 1717	哭） 171	：19．171	\％ $31.1!5$		S10， 3	：31）（1） 1 ：		－\％－－\％	维． 11.1
13	4！8．730	：31）． 1368	$\therefore 0.11 .81$	19，3． 3 ：	（i1）． 4715	：31，5， 01	$\therefore 0.3 \%$	：31．$: 14$	＂9，949\％		20，－37	2117
7	（3）． 75.4	20，1171	：30．019	－3．30	： 310.463	： 11.5111	：31．（？${ }^{\text {a }}$	： 010 ， 317	－31，！nm	？！Stili	99， 404	： 31.45
－	4．3． 77	（31）．11－11	30． 310.1		：31．125	（al．51！	：11． 312	：31． 310	（2）． 510	？${ }^{\text {a }}$ ，	201． 18	： 30.45
$!$	24．8．19	：10．0x 0	： 20.110	2！！． 411	： 310.15	：31．．n：3	：11）． 3 㫛	（10） 295	－！！！129	ㄹ！ 5.58	29，！r－11	30.141
111	品．76	30． 171	9！． 9 9\％	30．494	：31． 417	\＃10，5ins	明． 2×1	：10． 31	－ 9.9610	是1， 21	$\therefore 11.01!$	30．10．19
11	？ 3.72 .1	20． 10×3	＇3！！！ハ－	291． 5900	$\therefore 0.417$	30，50－	：10． $310:$	（3） 3	$211 .-5$		：0，04， 0	210.111
M10：118．4．	$\cdots-1-$	311． $10: 14$	）．	0	； 0	30．1：39	217． $10-1$	\％ 317	（3）．11．3	21， $40-6$	？ 31.31	20． 311
Date．	DECEMEER， 1871.											
ima．	\％	8	9	10	11	118	13	14	1．5	16	17	18
	Surlues．	Jmbles．	fuches．	Jumbs．	furlies	Inches．	furlies．	Iurlues．	Juthers	Juchers．	Tmehrs．	Thelors．
（1）${ }^{\text {a }}$	： 11.30	30.311	！！\％\％	等！19，11	64． 411		4！ 911	－ 3 ．15，\％	㫛，析	！！！！！	：11，：$: 1$	
1	汭． 31	$\because: 11$	号！1020	吅碞 1315	［9！ 3 ： 30	49，	20，：317	94.1211	－！，in 11	2！1， 110	\％吅浞	20． 1131
8	311． an $^{\text {a }}$	：an．1！	－3．1．13i－4		49\％ 3		＊！，： 10	$3: 10.16$	3t．fito	－ 19.14%	：10．30）	
\％		31，202	4？）（int		－1．404	99，ごご	－！：：\％ 5	3！ 491		景！！！－！	： 11.108	9！ 901
4	：11） 3 ：\square^{3}	：31． 131	－！！，614	29）（6．5	近：348		－11，：10：	（6）50，	49． 3189	：31．118：1	：3．1．：3	89，－19
5	： 311.38	$\therefore 111112=$	29.161 .8	3日． 681	思1．：77	（3）．$:$ ：${ }^{\text {a }}$	？1．1011	3！1． 5 ：		$\therefore 10,10: 1$	$\because 11.311$	29，
0	31． 31.1	$\therefore 11.101 .3$	昭日，605		品．${ }^{\text {a }}$		（3）9． $2 \times 1 ;$	20．．17	2 4.810	？11．05！	吅，呺：	星只： 1
，	： $11 .: 20$	：31． 1114		？ 2.15		U9，itis	－19，$\because-1$	（93． $51!$	？！． $8:$	：31．111：	：10． 310	2！ 4.17
－	30． $3: 6$	$311.10-1$	4！5．5til	\cdots－1，\％－4	\％1． 250	＇3！： 315	－いうご		（3）－1．19	$\therefore \because 1.121$	消，：10，	号． 7171
9	：310．314	$\therefore 11.101$		6！（1）（1）	？ 3 ，351\％	29）： 316	－！！，¢－1	（89）：$: 71$		（31）．1．81	：11．3！	？ 3 T， 3
10	：11，：319	： 311.151%	03050	20！ 5151	64）：3：17	\％ 3 ：	－！9 \％¢	Sen 5	383，25\％	做，119	洌，この－	2！ 70.4
11	$\therefore 0.3110$	30． 1139	4！3． 5191	6．3）50，	吅， 31	20， 3	迷	？！1． 277	（9）\％\％	：31．1－5		6！ 7.76
Nrim．	：11．こう！	：30，10，仿	6！！S＊	－1，	301， $3=1$	㐌！：江1	－14， 314	（2），京以	Quc，5\％	30.311	310． $2 \cdot$	
$1^{1 /}$	：11． 319	30，1017	约，50－5	$\cdots 1.511$	呺． 311	3！ 3131	20． 231	3！54，	29．1its：	（11）劲：9	：11． 21.4	昆位只
$\stackrel{\bullet}{\square}$	30，30	2！） $91-6$	？ 4 ，5，	3！1，511	211． 31	9！3．311		929．Sme 1	29． 130	：11，	： 11.1	23． 6
\because	311． 314	93，15\％		2！5， 5 \％	6！1． 2611	29． $3: 77$	4！1，：371	30，5， 3	89，（18）	：11，号1	：31， 113	－94．6
4	311，	6！1， 918	？！ 601	94． 447	？ 310	吅 ： 17%	6！1：： $5-1$	139． 10100	4！71	（11）97\％	：31．15	39．62
\％	：011）	？！9，！17！	？ 11.61	2！1．111	［19． 3117	A19．吅i	91，$: 3-1$	？！，	319	：11．$\because 17$	：31，193	－9，淅1
18	S11） 310	9！1，$\times 1$.	69，（iel	2．1． 446	26．30\％		3	20，㗤！	2！ 5 \％	：$\because 1.31$	30． 11%	49．5－i
7	：11， $31!$	边，心13	？！ 3 ，12，	8！1．11\％	9！）． 2111	20．$: 10$	？11，30．6	4！－8！	2！	： 11.3	：31．1H？	29， 507
¢		24，	？ 31.10	6！ 10.4	4！1．3： 4	39． 3.24	4！3， 3		－ 3 ，－－	： 31.	㓢．11－1	23．${ }^{3}$
4 10	：31． 3116	2！1． 74	？9．11011	3！ 1.1 .5	3，31\％	？！，$\because 1 \%$	231．10，	2915180	E！），स1．－	：1． $31: 1$	：21． 017	4！ 3110
111	39， 3		29．4． 614	？ $1 \times 1 \times$		！1．30，	？ 91.421	（4）5\％\％	6！$)^{\text {c－}}$（1）	（30，$\because: 11$	$\therefore 0.110 \%$	9！48！
11	Sil．Sth	93， 745	23．（inil	293． $4: 3$	201． 2×10	20．	29.111	299．5117	2！：¢ 1\％	： 30.3 .36	2－4．971	89． 4.0
	（3）－3！！M，	：31．101：1	29，（\％25 293，5500		$\text { 29. }: 1 \cdot 10$			29. ramin	$2!1,(0,2-1$	$\therefore 0.1710$		$\text { 是, } 51: 16$

$\because A P$

D：itte．	MARCH， 1872.											
Fime．	1	\because	3	4	；	6	7	8	9	10	11	12
		Furlis．	Inethes．	Iucture．	In．rity	Inturs，	In，hes		turnes	Inchus	Infles	
${ }^{11}$	做吅	（110．2115		\％ 6 6， 6	呺析	为！	\％ay		andil	\％	\％	
1		31110	为	，相	い1	W－：	3，1：3x	\％	30：	20．20	2098	［29， 6 de
3	\％	\％ 16	\％	9，6\％	3 211	3，－	3.116	3n	311， 811		\％ 2.81	？ 3.619
4	\％as	30， 1	\％rs			为为	30． 110				3in） 1116	
f		3112	成	\％．	为为	\％\％	（3）	313 3	3n，：3： 1	m！！！	3．101：	\％
\div	5is	30．13i	，		\％ 20	㫛明碞	3011：		吅	边	3，	\％
	30．21	边 1		\％	器吅		3n	3in：	3，\％1		31．113i	\％－
3		（30）	\％－i	\％rin	为	，	3ind	（1）4，	304．20	为	3in 01.	2951
${ }_{11}^{111}$	30\％	30．0．1	，	3.611	\％	\％	：30． $1: 3$	（10） 3.1	30．2．3	M，	3．1013	\％ 3.5
A，．．．11．	Suct	31，Мы	（9）＊111	19）in－	2000	\％916	（31）．111	： 31.341	（3）201	3日，4．	311， 10.18	？
${ }^{11}$	3n	anmin	29）－（11）	a， 11.3	29． 21.	W， 104	\％		，		\％17\％	䢒
$\stackrel{3}{3}$		20，		arm	20－1：	30，int	（i）1：\％	3．3． 112	3il． 112	50，	\％ 919	961
4	\％114	2，	\％190＊	2913：	19－12	（11） 141	301． 141	314．	30．1吅		㫛品	㫛溉
\％						and	（1）	3in） 418.	（3） 119	\％	\％	，
7	\％11．314		\％rin	\％，mis	为析	3．111	30．10	（3） 112	30， 191	20， 11		20\％
＊	311920	W1：911	\％	哭保	为		3014．	3in） 119	？	边	20，	
9		\％，	哭：17	边	䢒	（1） $11: 1$	30．	30，	\％10：	\％	\％ 2111	\％ini
11	䢒	20．421	2．	316.6	\％	31．1．11	31．1－9	3， $3^{\text {an }}$	209\％		只湤	！．1319
Mrans	31．	15：5，	－	？！19\％		29，	（1）． $1 . \mathrm{za}$	5\％	519131	\％－		W！（G1）：
1）ite．						MARCH，	1872.					
Time．	13	11	15	16	17	18		20	11	28	23	$\because 1$
	turns		隹	Inemes． 1	Sucters	comes	（1arhes）	londex			${ }^{\text {lun hix }}$	Hestur
1	时为	3， 10.1	3ns	3n．mil	\％2， 9.1	\％ 3 m	30． $19 \times$	\％ 1 ！	3．	吅㥩	\％u， 6151	
\％		（aller	明明寺		淐路		（13） 10.6	\％		\％il 1	310，	3icme
4	\％．7！	80， 10.2	\％．．．in	3）	\％ns	31303	（in） 14.9	90，	\％		30． 1×2	30．812
5	29，	30． 19.1	310．1931	29.961	29，	3， 414	：31． 1515	Mrsin	30， 361	30， $3: 1$	：＂，	
\％	\％		（1）	ツハハ1	314， 116	311． 116	3：1．1919			\％	Nom	and
？	为，	（1） 118	边	\％	and 10.8	\％		\％	30．3im	（1）	测里的	
9	20， 11	30， 114	\％in） 113	\％19\％	3i， 110	3014，	：117 $1: 3$	9， $1 \times$	\％1\％	\％	311，（1－1）	30， 12×11
II		831．11\％	3，	20．93）	：an $1: \%$	30， 3 ： 4 ！	（1） 16	\％	（3）	31．5． 1	\％010，	311， 61617
11	wry	31． 117	311．141	29， 5	：3．11．x	沙澵	（14．11：	39， 31	30．3	31．3．3	31.	31，617，
Num，	\％－テ！	311．12：	：4，从1\％	29．963	3113	31．3\％	31， 11	\％	：3013	3．20：	an	and
	，	31，17，	51414	2，9\％		－ 30.30	（i）． 1 （1）－8	？，	速：3．			
\％	2， 0^{11}	\％10－	30． 0.0	90．943	310， 17	31931	（1）11：	\％！	\％ 3 ： 3	［10．7）	\％	1016：1
1		31150	31010	31	湤訨	313．3	（a） 10	\％19\％	2193：3	3，5\％	测館	31．31
5	3，	30．1203		\％		31）：303	11． 12	晾：	an	（1）．92	潞 68	边
	29，	50．			5in		（10） 19.6	（13， 1111	31303	边， 6,5	（1），	\％
$\underset{\sim}{ }$	\％	\％	3，成－	210	吅吸	\％	洮必；	（1） 1×10	\％10	\％ictio	31． $1 \mathrm{~F}_{1}$	\％ 711
9	3ill	311） 121	，	\％	：0，	310	\％	m			311．6ios	30172
111	3，113？	31．1126	311．10．3	20， 12	30，	\％	31． 115	30，				3187
11	30， 13.3	80．96	31， 10,0	219．94	率棌	：4，		90， 16	30， 99	：114 6	30， 104	311．741）
Mans．	29．4．0）	1107	Hes	S！	11． 15.0 ，	（10．3141）	31．11：	4， 311	3， 3 ： $3: 3$	30．	30， 6	年16

Joate． \qquad Timn．	MARCH， 1872.							APRIL， 1872.				
	2.5	26	27	29	49	30	31	1	4	3	1	5
	Inches．	Inches．	Inelies．	Inehesos．	In，${ }^{\text {a }}$ ¢	Inmos	Inm	In，hom．		Curbis．	Lin＇t．，	
$0^{\text {b }}$	： 11.81	30，	30． 473	31． H （1）	（3）［117	（it． 419	： 010 ． $11=$	：311． 31.	30， 30.7	311．	30．112－	$\begin{aligned} & \text { Roblhex, } \\ & 2!.!100 \end{aligned}$
1	20．704	30.80	（11． 4 ¢ 1	311． 4	30． 401	21． 111	（11） 413	34．：31\％	30．3．4．\％	\％118	31）． 110	29．973
\because	：11， 311	314.4	（3）．+1	31． $4: 5$	30． 41%	31．412	（i1） 413	吅，吅：	：3． 4.11	311	30． 111	ご！！！
3	：0．14	：31． 46	i11．4－，	（t）． 18	30．43：	（in） 410	： 311.419	311．．．．11	3ill $41.1{ }^{1}$	：3．11i	31． 1	－ 311%
4	（10）－－	31）．4．	（11）．31：	［i1．4，	：31）． $4: 1$	31． 414	30．41\％	Sill	30． 4111	：．11．1：1）	3ill 111 ；	？．）．11
5	310．	（31．4 4	做縝	（a）fan	：3． 4.11	31． 41 ？	：31．．f1）	：in）．${ }^{\text {in }}$	211．417	30．21：	湖．115	こ1．1－1
6	䀎，－	31.44 .7	310．	：11． 4 ：	：10．4：	30． 215	： 10.1111	： 1 ，\％ 1	； 11.4	（11．11．1	： 11.115	2．119
7	20．	30.12	30． 31%	30.4010	31）．4i，	（31）． 114	： 11.14	． $11.81: 3$	： 21.45	（1）1－	虽吅：	ㄴ！！！ 1 －
－	： 21.76	31． 411	： 510	319．415	［11． 41%	211． 3.11	： 3101	： 11.0	（1）． $4:-$	： $31.1-1$	S103	21．1－5
$!$	，こ，	：19．417	： 11.31%	（1）． 415	31．40\％	30，	：10：$: 1-1$	（i）． $110:$	（in） 4×1	：31．131	［11．1151	ゴ1星
10	31． 194	30.410	： 14	（1）． $41:$	31． 113	21， 410	： 14	：3． 41.	ar． 4	（3）．1．1	： 11.10%	2．9．3
11	30， 201	（in．	2il． 511	30．尔非	30411	（1）	做，	31）11－	：31． 11.3	（1） 14	2．1914	2！！－
Nimu．	：it． 31.8		311．	30． $410=$	211．411	： $11.3-1$	： 11.10	31．12：	： 11.36	：13．1\％－	$\because 14.11$	－
$1^{\text {b }}$	30.319	30． 36	：31． 4 － 31	：31． 411	（21）． 400	314．30	：31．$: 12$	［il）19\％	： 11.85	（31）．119	$\because 1.3$	39．9\％
\because	30． $2:$	311）：ia	：11． 411	20．${ }^{2}$	310．31－	（10） ：$^{\text {a }}$			： 11.3	： 11118	－110\％	$\because 1.10 .11$
：	30．1－3	30.391	（31）－ 112	：30． 409	31）， $3: 4$	（10）Sm，	：14．：3－	311． $43 \times$	：11．3i，	： 0 0． $10: 119$		－ 2.93
4	30． $4=11$	31． 411		30．409	$\therefore 10$	： $31.3-1$	34，\％	：31）． 117	： 1 ，${ }^{\text {a }}$	（in） 11.2	$\because 1.18$	\＄1．10：
5	30． 16.3	30． 114	澵质い	20． 30	21）． 409	（11）． 3 －	： 11.8	（ in $^{4} 4$	：110．3ili	（i1） 11 it	？ 9 －	（1）！
6	（al）． disio $^{\text {a }}$	20．4？	： $11.1 \times!$	：31． 30	30． 410	： 11.0 ：	（3） 3	：31． 4.8	： 11 ）$: 311$	．in 110		2！． 0 \％
7	20． 12.11	30． 4.46	： 31.40	30． 410	219．40；	［11．．1，	：31）：3：	（11） 454	： 11.31 .3	（31）．1153	只行品	
－		31．tist	： $11.4 \times$	（10） 4110	［ia． 419	31111	：1，：30－	：31． 4 4 4	（11）	：1． 041	21． 9^{4}	$\because \cdot 13$
9	311．fill	30． 4611	（i）． $12 .:$	：31）． 417	：31． 414	219， 54	： 11.3	211． 463	： 11.3 ： 1	211931	90.90	21．40
10	： 11.8	31．fie：	（3）． 46	30． 41.3	：11）． $411=$	（1）． 410	30．．．11－	$\therefore \mathrm{Al}$ ，Hili	测：	： $31.11: 3$	－1． 14	21．4－
11	（10．s．is	21）． 417	：i0． 41.1	30． 3 呺	31） 409	20． 401	2llath	：i1． 4.71	：11． $21 i$	： 110	2 $9.98:$	2．94：
Mrans．．	（3） $7: 3$	30． $4: 4 \%$	（1）． 4 4，	20．4170	：11． 4114	20，		［il． 14.7		30．13：5；	21.910	
Date．						APRIL，	1872.					
Time．	6	7	8	9	10	1.1	12	13	111	1．3	16	18
$0{ }^{\text {b }}$	$\begin{aligned} & \text { Inches. } \\ & \hline 0 y y \end{aligned}$	Inchers． 29． 911	Inches． 51． 17	／Iurlis． ：in 17：	$\begin{aligned} & I n+1 / 4 . \\ & : 30,11: 0 \end{aligned}$		$\begin{aligned} & \text { In, hax } \\ & \because \because, 11.51 \end{aligned}$			$\begin{aligned} & \text { Inchas } \\ & \because 1.1 \text { an } \end{aligned}$	Tucher． ［i1． 413	
1				（a1．161		：0．11）		－1：	23．	311．15，	：11． 433	（11）： 3
2	－19． 519	29．	30． 191	：3．1．ind	30.115	：30． 1101	311115	2！ 911.		： 11.1	21． 401	30．：140
3	9．919	90， 4	211．1！1－	（in）1：3		（ $30.118 ;$	（\＃）いい	景！！！	$\cdots 9$	2i1．193	21．426	（a）． $11=$
4	（191919	2！ 94	30． 2111	：11．1：4	30.014	3alio	：31） 1140	$\because!1 / 1 /$	－1， 410	洮：1－1	20． 441	澵洲
	2\％！	29，晾	30． 31	Sin．1：－	（11．114！	：31． 110	：11）．114	23.175	21． $2-1$	（31）1011	吅． 411	
6	29． 4 \％		30．	\％1．124	30． $110=$	： 310.113%	S 310.048	29． 3 \％	？	311.9	：31． 414	（11．Sn
i		－！！9i4	澵边	2in． 1115	30， 10 i	30.0	： 311110	23）！10	2.9 .913	30． 2.4	：11． 41.1	$\because \subset$
	3！ 10	2！91！	：11．0	$\because 1.114$	31．0i5	（2）．0．9	20．020	－19 91	－3！！5	（in）214	（3）．	$30 . \because 1$
9	20， 194	？ 919	30．	： 0 ，109	（ 81.1171	： 10.14	219．117	㫛－－	2！194，	：11．$\because 1:$	（11． 4.1	30．${ }^{\text {a }}$
111	2！	29．1n－4	31． $2: 3$	： 11.1098	30.16	？ 11.041	：0．013	29，\cdots	219	吅，吅；	30.4 .0	30．27，
11	－ 13	： 1.001	（1）．	： 11.111	311111	［ 310.15	： 31.164	U12－8i	＊！！！	30．2以	：31．14：	
Noon．	星．	新，119	311．	： 110	30.118 .5	（3）． 041	3！！－	31，－－18	2！！2－：	： 311.3	：31． 4.3	吅只活
$1^{\text {b }}$	然．192	： 210	（al） 211	2al｜l边	（1）．（1）	：311．1311	2！\％${ }^{\text {a }}$	2！－	2！）！！－ 11	30． 30	311．41\％	310．
？	291．918	： 3.014	$\because 11.041$	：31． 041	？ 110.10	$? 11014$	29．15． 1	31）	：31） 11014	：311 \because	：31．40，	30.214
\％	\％！1， 111	20．10313	：11．	（i）10，	$31.10: 5$	30．03：	29．4010	29，－54	30．1120	： 21.3 ， 311	：11）． 411,	:iil. गh:
4		30.117	：31011	2010．11：3	Sut unti	211．0311	\％1．14！	－ 0,1	：in 小尔	：11）：319	30． 241	30.371
5	－	：41．070	： 31.814	（10）11：	310.110	\％1112	2！9\％	＊3，-4.	30.0 .31	：11．：317	3H．：31\％	30．
6	？！！2\％	20．10－1i	（3）	：31．03	30． $11:-$	30，02	29．	$201-4$	30． 0.11	211．	激： $3:$	31． 275
\％	－！！＋－	20． 114	： 311.19	：11．114	：10． 10%	30． 10×2	里吅吅	3： 210	S11． 41.	31）． 3141	30． 3	
－	49．98－	路 11\％	？ $11.1 \cdots$	$\because 0.005$	： 310.10	：31． 1121	㫛吅	20．－$\because 1$	（1）． 18	吅路	吅	311． 210
1	219， 4		： $31.1-7$	30．01：	$\therefore 11.150$	31． 19.18	（9）， 0.15	2！－－ 4	（31）． 1192	（1） 3216	311， 31	311．
10	－3．19－	（3） 156	31．1 1	30.014	（31）．112	$\text { 洞 } 045$	？！！！ 14	（29，－	（21）． 1109	：11，：－－2	311．33：	ain
11	2！919	： 31.163	On 1－	： 11.01 .1	30． 0121	30， 11.01	29．93\％	$\because 1.0$	：31．1：11	2），41）	30，：3：${ }^{\text {a }}$	31，昭
Mr．tnc．．	29，9ぐ！	30． 111.	30．シmil	竍，11：－\％	211． 11.5	30414.4	29， $10-1$	29．－8，	2！！！＊が，	30． 3.8	30.4117	30．リッ－1

Date．	JUNE， 1872.											
Time．	哭	8	9	10	11	12	13	14	15	16	17	18
	findors．	Jmehis．	Imblis．	Inchers．	Smmes．	／urhts．	Itrehos．	Jurhes．	Imolur．	Inlus．	Imbluc．	Inthis．
$0^{\text {h }}$	29．Eiti	31）．$\times 24$	2！．ex	－\％－－\％	$30.1 \because 1$	（3）． 173	唎．（him	－3！！！！	30． $11: 3$	30.1912	－9．900	Q！！！at
1	？！－ 1	U1，心榢	$\cdots 9.54$	$\because 1.214$	：3） 1411	30． 16.9	$\because 1.1619$	（3）．1012	31）． 1142	－1． 911 ？	？ 3.111 .1	311． 1019
\because	8！－8i5	40，x^{3}	2！ 2 －－	－ 31.910	$\therefore 0.18$	30．1：1	23， 11.916	30.4130	（30．03：	－9，9－9，	吅．90，	二11． 1009
3	？ 3 ，－－－	29．心，	－ 9.901		：31．1：3！	3：144	30． 071	$30.10 \cdot 9$	30． 11.22	－9！！ 1 － 1 ！	2． 910	20． 012
4	$\because 9.486$		－9，！114	2！1，N！ 2 ．	$\therefore 11.15$	（3）．10，	30，11： 1	30． $11.2-$	：0． 1141	－3． 4.6	？ 3 ，！ 15	30． 1118
5	9）．-61	＊31．${ }^{2} 115$	－3！ 909	29.5114	： 31.15	ia．lit	30． 11.16	：11． 1144	30， 11.2	2！ 9.941	29，！ 1.5 ？	3：3． 11.5
6	－39，sia	31.69	$\because 1.1101$	$\because 3.9015$	30.115	30． 160	：31，0，0，	311.0811	唯． 11.7	29． 115	0！1，9，	30.043
7	20． 510	21，¢\％	29． 9111		30.151	30． 171	30.010%	：31， 11.5	30． 11.5		¢）	20．Wh
K	－3． 50	$\cdots 3$,	－39． 191	－3）．$\times 17$	：11．173	：3．11：	：31）．11i4	$\therefore 11.011$	：31． 044	－9． $3+4$	29． 1 リ月！	30.15
9	－19，心品	U！－S	－93． 9 9 ${ }^{\text {a }}$	29． $0^{3} 9$	：11．1－5	（3）． 15	（3）11：30	：10． 10.11	： 310.0 ，	＇3！！＇11	－9，9\％	
10	29．w 1	－19．$=11$	$\because 9.916$	－3！ 9091	：io．1－7	：31． 1.4	：21． 041	：0． $03:$	？ 310.0	－9．92；	29． 10.0	：11． 11.4
11	2！1．－1931	－ 4 － 10	－39． 1110	21． 1710	（31）．1－1；	：31．14：	30． 10.3	：i1．0．3n	：30． 115	－9，！ 17	29． 94.4	：0． 0174
Noult．	29． 318	39.70 .1	29． dnt $^{\text {a }}$	291． 917	30，14il	：20．111－	20．019	：31． 1111	：311． $11.1 i$	29．－341	8！ 9 ． $1: 30$	： 0.0101 m
$1^{\text {b }}$	29.35	41） 791	29． 9100	2！，！！：	：0． 150	ain．0191	＊リリサース	29．991	$30.1031{ }^{1}$	34． $2-2$	94．93：	311． 04.9
\because	39.810	－3． 38	3）-2	－3！！！4－	30．1．11	2ib． 100		－39，！ 14	3il 10.3	39．-11	3！9．9\％！	30．1049
3	？9．730	29． 120	9！S－1	29． 917	30.164	311．0－：	29．99\％	29.940	（3）． 12.5	－	29．917	$31.11 / 4$
\pm	93． $3:+4$	29． 21	49．－71	39．！2\％	：11） 113	2i1．0i4	－ 41.108	：31， 009	：31． 017	24．－20	92．142	：30． 1141
\because	09．752	29， 25	20． 50.5	30， 1117	30． 147	：11．1151	O1， 1004	31）． 1115	30.111^{2}	20．s．a	29.954	30．10： 12
6	？ 9.754	93． 2 210	－9．-.1	：30． $11: 3$	（31）． $1+15$	30． 1114	30． $1111=$	：30．11t？	$\therefore 310.0 .24$	－ 4.5	29．9030	311． 1141
7	29． 3 A		$\because 1.50$	30，114＊	：3． $1+4$	－ 310.0 .78	311． 1100	（3）． 11118	：31． 1110	－！－E 1	－1．19	： 3114%
－	－39． 59	29．－ 17	29．－131	30.10131	30.112	311.1165	．i1． 0104	：311． 1018	311． 1114	29.901 ：	$\because 1.9515$	30.123
$!$	99．－10	29．${ }^{17}$	（19）－i^{-1}	31． 115	：1）．1：39	30.18 .7	：31． 0171	30.100	：30．1104	－9！91：	21.545	：31．011
10	29．$\times 16$	？9．－41	4 39.73	（31）． 110%	30.14	30．114：	311．0102	34． 19%	－1，！19\％	2\％． 923		211． 011
$\begin{gathered} 11 \\ \text { Means. . } \end{gathered}$	3！－ 4.2	4，	＇34． 2×2 ！	［30． $11 \times$	：31． 161	3ill．11： 4.		？9．19191	29.982	－ 21.924	2．1．！n＊	
	2！$\times 14 \%$	บ！－－1\％		2！ 9 ． 0,51	：0．1－5，	30.1141	（31）．03313	6． 1115%	30.1510		21． 113.5	33.0331
Date．	JUNE， 1872.											
Tim．	19	20	21	22	18	21	25	26	27	48	29	30
	Iurhis．	1 cthe	Flithor．	Itirhtr．$3!1, \therefore: 3$	Iurlies	Indire	Itrbs．	Fimphes．	Inches．	Inturs	Jurhrs．Junhrs．	
0^{17}	： $010.0: 1$	29．7NE	20． 74.5		-等, 5以		$\because!$ 18：	－！！．\％	シリ．－－	－！－－85－	－3．5\％	？！ 7 ． 7
1	澵，昭！	21．70	（11．72以	$\because 2.90$	S里． 583		$\because!1 .(1 ; 30$	＊！1．7－1	2！－－ 14	－！	－1．－－	2076
3	：30．Mre	29， 76	29， 3.0	29． 54.	9！．5811	29， 3130	－39，63：	－6！－－ 01	29．ふ以	－3． 584	21．3－	31．7．7i
3	－	ㅂ․ 75：	？ $31.73!$	－9．3． 511	29.5701	$\because 1.05$	－ 3.619	29． 2101	29．72011	3！：01	$\because 1.37$	2．）． 214
4	？ 4.91	$\because 1.742$	91， 71%	3 \％ 1.51		491．519	29． 1 Le	319， 21	－9．3i4	S1）（31）	3 ） 76	29．17：
5	？！！！－\％	＊9． 845	－3．708	20， $5 \cdots$	215．5－211	29，－3，	－9． li ， 6	－3t．rsi，	21． 21.1	2．） 6.61		
6	＊！！！！（1）	3！． 544	29． 4 thx	911， 81%	3！50，	29，	＇2．（i）${ }^{\text {a }}$（1）	－1，	39．7．1	3！（5．5）	29． 761	？$\because 1.7$
\checkmark	20．${ }^{\text {ati }}$	？！ 749 ，	？！，位\％	91．50	2！1． 115	2！9． 7	23． 113 is	－！－－－	29．73		23） 3.01	－$\because 11.7!\cdots$
8	－3！！18\％	$3!8.716$	3！1，14：	315 5，	－Sn	30，－90	29.670	31，－20	35．714，	－Clitic	？1．74	－11，i－x
9	29， 166	29．74\％	23． 621	？吅，	U11．ntio	－3！502	39．6\％	？1．${ }^{3}$	39．65	－ 13	29． 210	2！ 1 － 10
10	－4．944	－！ 514	20．\therefore－	4！50，		（1）．50］		2！ 10	？ 3 ， 1.4	？，	29． C －	－！！ $31!$
11	29，92：4	$\because 3.38$	20． 5 （194	？！！5－5！		－ 0 ）S	$33^{3} .1511$	20，	\％6．bel	29． i^{2}	29．7 \because ？	29．7． 3110
Nomin．	？！．916	20， 740	－11． 3 －	29．5－il		2！1． 514	－3．130	－31）	29．6．314	89． ，1－	31.3	2！． 410
$1^{\text {b }}$	2！1， 909	2！ 0 ，	39，5int	90． 515	3，万心号	29，－5t	30． ain $^{\text {a }}$	21． 21	3！）60t	21． 20	39.74	301． 8116
2		23． 312	39，－2\％	－\％，小	$\because 9.517$		－¢ ，1－is	－1）－m	？1，（ill！	3 O － 315	919.7	$\cdots \cdots$
3	29，－17	39．6\％	（3）， S 15	－9．820	2！9， 810	36． 63011	24.158	2！mis1	94． 5 －	－1）		319， 41.
4		29． 210	4！ 50.00	－30． 5	313， 312	26，61，	20． 15 T	39，－ 3	6！）－5	34． 205		21，－1，
5	24． 314	99． 619	3！Li，tis	？9， 5	2！S号	96． 010	－89． 8 －	－19．－ 3 \％	？ 31.517	39， 3 ， 3	29． 311	－1！－ 1,1,
6	3！	34．704	3！ 300	9，お吅	－19	2U，111	20．13： 4	－29．+46	29．-11	23． 514	21．71－	20，s17
¢	99． 4 4，	39.714 29.713	39． 505	29． 575 29.50		6！1． 15010	（19． Cl 10	39，	31， 45	3！\％ 5	20．725	29，－ 4
9	99．－1＂	96． 317	Q9， 380	29． 96	39， 3		20．719	？！－3：			90．730	20，
10	24． 21.5	29．71．	961． 511	29，513：	39.54	219．630	3！ 314	2！ 3.31	34，5178	2！． 3 行	？3！its	2！
11	29．7－11	9！ 917	2！． 511	39． 561	29． 25.5	3！1． 15.3	\％9． 710	3！－	39． 5.4	夋． 76	29．7．4i	－ 29,20
Means． 1	29．！31511	29. 子以20	$\text { 14. } 10: 1$	24．550，	R). 54(th)	2！1． 519		$24 .-11$	29.1500	29.3070	29． 74	9！ 9.3180

Date.	AUGUST, 1872.											
Time.	20	21	22	23	21	25	26	2%	± 8	29	30	31
	Inches.	Inclies.	Inchis.	Inches.	Inches.	Inches.	Iuches.	Iuches.	Inches.	Inclurs.	Inches.	Inches.
$0^{\text {h }}$	30.033	30.017	29.844	29.920	30.202	30.192	30.093	30.064	29.930	30.04:	30.143	30.150
1	30.052	29. 993	99.8\%	29.938	30. 215	30. 1-ti	30.093	30.060	29.930	30.04.	30. 143	30.148
2	30.075	39.985	9!. 828	93.98	30.208	30.179	30. 090	30.060	29.930	30.048	30.140	30.147
3	30.118	99.905	29.802	29.9n0	30.914	$30.12: 3$	30. 0.ak	30.060	29.937	30.060	30.140	30.155
4	31). 154	29.975	29.800	30.010	30. 210	30. 173	30.095	30.1455	29.64*	30.176	30.144	30.166
5	30.1×2	99.976	29.818	30.030	30.220	30.168	30.090	$30.04 \times$	$29.14{ }^{\circ}$	30. 1156	30.144	30. 178
6	30.216	30.968	99.816	30.052	30. $2 \cdot 8$	30.168	30.0.as	30.045	29. 195	30.082	30.146	30.182
7	30.	29.90\%	99. 816	30.118	30. 24.	30.122	30.092	30.644	29. 90.16	30.125	$30.14 \times$	30.100
8	30.251	20. 9912	29.597	30.092	30. $2: 9$	30.119	30.093	30.034	29.920	30. 11\%	30.149	30.17 ¢
9	30.30,	29.994	29.819	30.093	30. 23%	30.169	30.093	30.1027	29. 117	30.093	30.14	30. 175
10	30. 938	30.004	29, -13	30.110	311.44	30.167	30.095	30.112	29. 118	30.1091	30.149	30.170
11	30.	310. 013	39.810	30.124	30. 29	30.162	30.093	30.013	29.1190	:31. 019	30.152	30. 170
Nion.	311. 5	30.013	29.	311. 1:3	30. 2×2	30.150	30.105	30.002	30.000	30.114	30. 155	30.172
$1^{\text {h }}$	30.947	30.003	29.809	30.137	30. 290	30.14:	$30.15=1$	29.997	30.110 .5	30.113	30.162	30.163
2	30. 240	30.000	39, 91	30.141	30.200	311. 142	30.10211	29. 9×6	30.015	:30. 120	30. 165	30. $1 \mathrm{ti}:$
3	30. 25	29.902	29, \%	30. 14 :	30. 2.20	30.15	$30.10-1)$	29.937	30. 115-5	30. 1.30	:0.176	30.14%
4	30.915	29. 978	29.835	31) 155	30. 8.2	30.130	$30.07{ }^{-}$	69. $37 \pm$	30. 113%	30.136	$\because 10.175$	30.146
5	30.214	\$1. 916	29.865	30. 16 R	30. 290	$30.11 \times$	30.151	29.966	:11. $11: 36$: 11.142	: 31.14 l	30.137
6	30.10	21.964	29. 58	$30.1-4$	30. $21 \times$	30.116	30. 02.	29.10\%	30. 113-3	30.154	30. 164	30.12:
\%	$30.15 t j$	23.936	$31 . \operatorname{sRR}$	30. 1-9	30.914	30.116	30.157	29.406	311. 13.36	30.157	: 3160	30. 102
8	30.1:2	29.913	29.81 .3	$30.1-3$	30.213	30.115	30.178	29.14:;	:10.042	: 19.159	:0, 15,	30.090
9	30.093	-99, 8	29.910	30. 19:	30.210	30. 110	30.0 .11	29.940	30.1410	: 60.150	30.15%	30.062
10	30.1019	0.873	29.910	30.145	30.192	30. 103	30.17 .1	93. 933	:30. 10:3	30.147	: 11.149	30.058
11	30.035	29.85	21.912	30. 19-	30.195	30. 1095	30. 065		$30.10: \%$:30. 14,	: 11.153	30. 035
Means..	30.1725	30.05*4	29. 8123	30.1003	30.2199	30.147	30.0844	30.003:!	-9, 9906	:30. 115.5	30. 15:	30.1415

The following tables contain the condensed result of the preceding record，giving the daily and hourly means of atmospheric pressure at Polaris Bay：

Daily means of atmospheric pressure at Polaris Bay．

Date．				$\dot{\overrightarrow{y y}}$	寄	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{3}}$	$\stackrel{シ}{\rightrightarrows}$			\＆ 0 0 0 0		
	Inches．	Inch	fuches，	Inches．	Iuches．	Inches．	Inches．	Inclues．	In		Inches．	Indes．
1	39． 6164	129.84 .2	30． 2505	30， 405%	30.1542	29．$\times 1.1$	99.7930	30.11873	29．6840	29.9050	31，313：	30.40×4
2	39． $\sin ^{3} 4$	\％2， 0	30． 0 ：37	30． 3279	30.0016	29． 9092	29.6360	$\because 3.9670$	29． 6210	23． 7214	：31． 4480	30.3178
3	29．	ソ1．50，	92．${ }^{2}$	：20．13：33	39.8734	29．9640	29.5490	30.0905	29． 7970	29． $81: 20$	30.5910	30.0548
4	29.6165	4．	29． 3 He	29． 11 －	29.7690	30.0372	29． 5570	29．1298	29.7210	29.9280		29．6869
5	30.314 .5	30，11－00	29．811k	$29.16 t i 4$	29.9520	29.9670	29.5640	30．0494	99．7420	30.0190	30． 1930	9！1．7348
6	9）． 2643	31．1－44	99．006	－9，（12：39	30． 0 c 63	$29.8-20$	29．5810	Q9． 9859	29.8260	29.9560	：30．14：30	30． 3×11
7	29．936：	30.0514	30． 1553	30.0158	30.1258	29.8143	－ 3 ¢，5\％－0	－5．92\％	29，xito	99．sita	30．4080	30． 2990
8	189．797	29． 51515	30．335	30．V0fif	30． 0 ？ 2×7	29．8312	29.5860	99．92x	9！ 9.3311	29．-371	30． 1500	30.0031
4	199． 4.45	3！，5521	30． 2134	30.158	99，\％．3E	29.8830	89．5930	－	29．04－11	29.9460	30.1313	99． 021.5
10	20．504	－9．4981	99，－735	3：10． L ati	29． 54.32	29.9551	29． 6000	29．$\times 113$	29．6370	｜99．8371	： 3.4410	29.5500
11	＇99，66660	2！fism	29．9044	30．1444	99，15－48	20． 1550	29.6070	29．7324	29．7441	29．9470	：01，5ise	2！． 3400
$1!$	24，6is．	29，－3，	20． 60×5	29， 905	30． 14 2：	30.1140	29．6150	20．-311	29．9760	29.840	30． 2720	
13	20．700－7	30.0713	99．\times ¢010	29，－795	30． 217	30.0290	29.8150	29．9006	30．1040	90．9\％	30． 0520	24，：308
14	1 31． $710: 0$	30.0482	30.0779	9！）．リem；	：311． 3411	30.0159	20， 2930	30.0111	29．区－201	¢9，7－	31， 3 3－30	29． 5555
15	93． 24.3	49．9771	30.11469	30． 2651	311．5263	：30． 0.10	30.0150	29． 17 \％	99．0以20	29， 6790	30，3840	
16	2！！ 3 301	30． 1704	29.9633	30.4117	30，5865	29.9239	30．1720	29，さri1	30．哏11	30.80 .00	30，2e	31．1310
17	30，13：30	29．${ }^{\text {tand }} 1$	：30． 1583	30． 251	30．535－1	29．053）	23．950	29． $23 ;$	30． 1 290	29.9770	30． 3951	30． 91% ？
18	30.3102	2！， 29	［31． 3100	：30．344if	30． 4504	30.0331	29．$-2-10$		30， 3599	29，9\％20	30．－¢ ¢（	29．71：10
19	30． 3115	［ 31.7259	1：0．11：5	： 31.7360	30.5573	－3．9151	29．-760	1 29.871	30． 4030	29.4501	30． 12 20）	29．4342
20	29， 0101	\bigcirc	29．374	30.5070	30.4191	29． 73001	－9． 494	：31． 1725	30.3010	29.3750	30.1640	20．7361
21	93．大res	（311． 1137	30． $3: 31: 3$	30． 1516	30， 0044	\％！ 6031	29． 2240	30，0524	30.1090	29.6910	：31． 20.30	39．R64
92	\mid 99， 014	｜31．1446	30． 55967	29．-810 H	胥，7：9\％	21， 5590	29． 242	29， 3423	30．1520	29.8530	30，3120	94，68（3：
景		：30． 1955	30.1518	30.174	29．469	29．54901	99． 9420	30． 1003	130． 3220		30.4690	29． 2610
明	－29．4fe	29． 5 －89	30． 0.106	30． 24\％$^{\text {a }}$	29，4：4	29．5950	30.0090	30． 219	（30．：i，＋i／1	20．\times x！90	30． 11380	23.4030
U	193．15032	明，41：0	30.7210	30，90，	24． 5336	24． 5.54	\％！． 7739	30． 1475	130． 7790	$30.09 \% 4$	29．-5.01	29，5590
26	${ }^{1} 9.919151$	？ 91007	：3，4：3：	30．4534	29．634	99． 241	29，9750	30．12－4．4	30． 2520	30． 200	：0．11： 21	2！ 4 4－09
品	＇31． 0495	： 31.3500	30． 4 ± 35	130．4754	31． 8106	29.6550	30．11130	30．110：3	29.1755	30． 44351	30． 15.50	29， 762
－14	－30．0842	， 30.4553	：30．4170	30． 293	30． 1058	2\％． 6910	29.8590	99， 990%	99， 2910	30， 5,240	29.5120	29． 8237
9！	－931．7179	30． 9019	：30． 4116	30． 3109	30． 2161	？3， 74.5	39． 2 － 0	30．105，	29．$x-10$	：30． 4180	30. セere 0	29，17415
31	89． 11159		30．：39\％	：0，Pru9	30.10873 29.8483	？ 31.7960	99． 0030 29.9070	$30.153: 3$ 30.1415	¢9． 160	30.4410	30.4310	29， 5 ，4i：
							23．	30．141：		： 0.3541		82.6126
Mean	29．7750	94． 8085	30． 1963	30．$\because 0: 3$	30.0294	29． 8 －85	29．7866	29．9916	29.9207	29． 3645	30． 2481	29．750\％

Hourly means of atmospheric pressure at Polaris Bay．

Time．		E	تِ	害	宅	$\stackrel{\text { ® }}{\text { ¢ }}$	家			8 8 0 0 0	岂	烒
$0{ }^{\text {a }}$	Inches．	Inclues．	Inches，	Inches．	s．	Inches．			Inc			es．
1	，30，${ }^{\text {con }}$											
\because	29，\％\％	211 $\times(3 \cdot 9$	30． 1830			29.802 29.9034	39.301	29， 17	． 90.9	29.9691	30． 2×6	7603
3		2！ 2 arit	$30.1-79$	30．2094	30.0421	29． $110: 17$	29． 7 －	39，426	129.9829 2988	29.9691 99 9.9691	30，2239	20.7647
4	39． 76014	29．resil	30.14	＇30．214：	30.0431	29． 9045	29． 1241	29． 2 － 11	29， 9829	29.9691 29.9691	30.2279 30.2309	29．7643
5	23． 20.303	？ 31.	30．119：7	30． 2218	30.0437	99． 9069	29.7849	29．y2a	29．9－29	29，龙	30． 32×1	23， 2564
1	29.7735	9！1，－94x	30．19～0	30．Exat	： 20.0439	$\because 9.9074$	29.7849	29． 9325	29.9811	2！． 9691	30． 24519	29．7565
\％	94， 8174	39.905	30.1971	30． 919	30．0460	－9． 9067	29， 754 L	30.0006	ㄴ．9．9829	セ！．9691	30． 2354	29，7\％in
			30． 20.5	，30，2162	30．1447	29.9068	99．7851	30.0006	39．0429	－	30． 23.44	29．344：
111	129．736	39． 90.9	30， 30 ， 10,	30． 2165	30.0459	29．9017	29． 7571	30.0006	29．96\％	29.3691	30． 2399	29.7489
11	其示家	99－0．04	30， 30711	30， 21.2100	30.0485 30.1251	29． 29.44	29．7871	30． 6000	29． 9829	29.9691	30， 2135	20． 2515
Numb．	－31． 7766	199．80．10	30.2061	30， 20 ？	30.0192	－9．	べか1	30.0026	29． 10.9	9！！ 1601	30． 2419	99． 7555
$1{ }^{\text {b }}$	29.7601	9，mest	30.2068	30．1－3）	30.0121	MS1	29．7xal	24． 9999	29． 12	29． 3601	30.2344	29.7395
\％	ソ3．75以	20． 4 （2， 11	30． 20 a	30．1－9\％	30.0150	－9，conk	29．${ }^{\text {ans }}$－	24.9963	29．9099	29.9691	30.2349	29．7402
3	3！ 3 － 4.		｜30． 2111	30．1－94	31.0133	29－211	29． $7 \times 7 \times$	－9， 295	$\because 9.9743$	29． 9211	30． 2461	29．7436
4	－ 3.5 \％	－\％xTx	20． 2103	30．1－80	30.0113	29．- －	29． 7131	29． 9973	29． 3 20：	29． 9691	30.	11499
G	－ 9.5×71	49．E－$\square^{\text {a }}$	130．1219	30．1mis	30.0133	29．	99， 7941	29．9453	29．95：	24.9691	30， 2430	29.7476
6		？ 4 ，त－91	：01．144：	？11．1E09	$30.01: 37$	－9－ 2711	29． 7951	2！9 94\％	99．9829	29.9691	30． 2413	29.7498
\％	32， 1000	3\％－－ 6	30，1193	30．1上4	30．012	19． 3×2	¢9．7991	99． 9 － 4	29．020！	29．9691	30． 2452	29.7496
9	99，	20，－6，	30．196：	30．1～9］	30.029 L	39，Sers	2！1．-111	29.957	29.0805	凹9． 9691	30． 2416	29.7414
111	69． 2×9	39，9047	30． 1971	30， 1951	30.024. 30.0244	90．rat	2！ 1.8140	29．9－67	29．982！	29． 9691	30.2493	29， 7420
11	199．760		$30.10 \cdot 5$	30.1966	30.0239	29．8905				－39．9691	30.2446	29， 7345
	－17．0，	29．806	30．1！ 1 i：＇	30， 20 \％ 5	$30.12-94$	P9，Mrs		29． 9916	29．9＊3	29． 11 ¢f6	30． 2381	29．3．112

ANNUAL FLUCTUATION OF ATMOSPHERIC PRESSURE AT POLARIS BAY.

In order to treat the preceding observations analytically, the following means were calculated:

Mouths.	Mean lyarometer of actual months.	Mean barometer of equiinterval.	Months.	Mean barometer of actual months.	Mean barometer of erpuiinterval.
January .	Inches. 29.75 .00	Inches. 29.7722	July .	Inches. 29.7866	Inches. $\because 9.7900$
February	29.6865	29.8959	Angust	29.9916	\cdots
Mareh...	30.1963	30.1977	Septemuer	29.9827	29. 12
April.	30.2030	30.1979	October - .	29.9665	29.96\%
May	30.0294	30.0227	November	30.2381	30. 3419
June .	29.8885	29.8858	December	29.75013	20. 2394
Annual mean $=99.9769$.					

The analytical clements and expression made use of are as follows:

n	a_{n}	b_{n}	B_{n}	C_{n}	
				0	
1	-0.02260	+0.02905	0.036808	322	
2	-0.11804	-0.14142	0.18		
3	+0.02986	-0.06856	0.0704	219	
4	-0.01566	-0.06105	0.06303	156	

$$
\begin{aligned}
\mathrm{B}= & 29.9769+0.036808 \sin \left(x+322^{\circ} 7^{\prime} 17^{\prime \prime}\right)+0.1842 \sin \left(2 x+2195^{\circ} 51^{\prime}\right) \\
& +0.07047 \sin \left(3 x+156^{\circ} 28^{\prime}\right)+0.06303 \sin \left(4 x+194^{\circ} 23^{\prime}\right)
\end{aligned}
$$

By means of the above expression, the following values were obtained:

According to the above table the absolute maximum of $30^{\text {in }} .1839$, as computed, occurs in April, corresponding to a relative maximum as observed, and the absolute minimum in January, while the observed minimum is reached a month sooner.

The following diagram will illustrate the annal fluctuation more strikiugly :

Evidently, the true maximum is the one occurring in April, that in November being merely accidental, although there seems to be a tendency to a higher pressure in autumn at most of the different aretic stations. An examination of the Port Foulke observations shows that at this locality there is also a relative maximum in November. At Rensselaer Harbor there is also a slight indication of a secondary maximum corresponding to the one under consideration, and the same is the case at Sabine Island, where a relative maximnm occurs in the same month as at Polaris Bay. The curve of Port Kennedy shows similar features.

The annual fluctuation, as represented above, is the result of the combined pressure of the dry air with the pressure of the aqueous vapor. By eliminating the iufluence due to the latter, we get the following values:

Annual fluctuation of atmospheric pressure corrected for the infuence of force of cupor.

Montbs.	Inches.	Months.	Inches.
January .	29.7556	July	29.6348
February	29.9513	August	20. 8219
March.	30.1697	September	29. 729
April	30.1565	October	29.9895
Juy..	9.9847	November	30.0968
	29.6815	Deceublber	29.7771
	Corrected mean $=29.9071$.		

The following table contains the monthly mean values of atmospheric pressure，as olserved at seven diflerent localities in the arctic regions．The maxima are denoted by asterisks，while the minima are placed between parentheses：

Monthly means of etmospheric pressure at sereral stations．

Mouths．	1－81－89．		10\％ 2 －38．	1860－61．	185\％－N．	1：5－51．	1869－70．
	$\begin{aligned} & \text { Polaris Biny; } \\ & \text { latt. }-1 \text {. } \end{aligned}$	Rumselaer Barlur． lat．T－ 0	Polaris Hoase， lat．is． 4	Port Foulke， lat． 2 －．． 3	Baffin＇s lsity， lat．$\%$ ．．	Port Kemmedy lat． $2: 0$	Gabive Imland， lat． 84
Jammary	Inches． 20． 37.011	Inches． 09.75	Inchis．是 10.6	Inches． $29 .-31$	Inches． （2）．8．2）	Inches． 939.979	Inches． －9．-9.5
Febrnary ．		こ！」゙い	23． 907	29.347	－ 6 ¢ 6419	29． 933	20． 178
March ．．．．．	：31．190：3	－	21．solu	29．813	99． 21.3	30.173	＊30．168
April	30． 2030	21．90：	＊： 20.017	30，0，\％	$\because 9.940$	＊30．179	49.806
Miay ．．．．．．．	30，U294	－99．942	30．043	20.903	＊：30． 014	30.010	29．－83
June ．．．．．．	ソ！－－－	\cdots		29.678	39．	91． 913	29.919
July ．	－9． 2×66	O1． 711		2！ 6901	29．75：	（29．704）	（20）（10）
Allart．	－ 21.1011	－31．694		29.668	－9．736	\％9． $2+1$	29.946
Supember．				31．64	20．735	39，－ 40	20．－9，
Drtohur．．．	29，	2！8：		（39，，61－）	99．750	29．708	29，－－
Norember ．	＊31． $2: 51$	－ 3 法	29.834	$\because 311.0 n 7$	de．Litio	30．002	U1． 73
December．．＇	（ 5.8509 ）	99．85：	29．484	311．0\％	99．3ill	29．40	$29.3!91$
Meatso	90，1\％4	＊9．85		29，	29．85	29．130	8198

The above observations，extending over but a comparatively short period of time，no general conclusions can be drawn from them，because the atmospheric pressuce is very variable from year to year，as an examination of the observations made at Rensselaer Harbor will readily demonstrate． It will be seen，for instance，that the barometric mean of January，1855，differs by $0^{\text {in }} .631$ from that of the same month in 1854；the difference in February being smaller，although esceediug $0^{\text {in }} .3$.

Returniug to our table，we see that at Sabine Island the observed maximum occurs in March， at Polaris House and at Port Kennedy in April；while in Baftiu＇s Bay and at Reusselacr Harbor it is found in May．Both at Polaris Bay and Port Fonlke the absolute maximam，as observed， oceurs in November，during which month the respective computed curves show a secondary maxi－ mum，as stated above．In Baffu＇s Bay the minimum was observed in Jaunary，at Port Kenuedy and Sabine Island in July，while at Rensselaer Harbor it eceured in September．It Port Fonlke the month of lowest pressure is October，and at Polaris Bay it is December．At the two stations last mentioned the highest and lowest pressure oceur in two consecutive months．At Polaris Bay the absolute maximum in November is followed by the absolate minimum in December，and at the other locality the absolute minimum of October precedes the absolute maximum，which is reached in the following month．

THE DIURNAL FLUCTUATION OF ATMOSPHERIC PRESSURE AT POLARIS BAY．

The diurnal fluctuation of atmospheric pressure is best represented by the deviation of the hourly means from the annual mean．Taking，therefore，the annual means of every hour of the day，we obtain the following elements for the analytical expression：

$a_{1}=-0.00243$	$b_{1}=+0.00: 24$	$\mathrm{B}_{1}=0.0040$.	$\mathrm{C}_{1}=3 \cdot \mathrm{~B}, 3^{\prime} 10^{\prime \prime}$
$a_{2}=-0.00079$	$b_{2}=-0.00295$	$\mathrm{B}_{2}=0.00305$	$\mathrm{C}_{2}=19 \%-5 \mathrm{I}^{\prime} 40^{\prime \prime}$
$a_{3}=-0.00045$	$b_{3}=-0.00133$	$\mathrm{B}_{3}=0.00148$	$\mathrm{C}_{3}=295 \mathrm{H} 3^{\prime} 40^{\prime \prime}$
$a_{4}=-0.00022$	$b_{4}=+0.00175$	$\mathrm{B}_{4}=0.00177$	$\mathrm{C}_{4}=3{ }^{-2} 45^{\prime \prime} 30{ }^{\prime \prime}$

The analytical expression，therefore，assumes the following form ：

$$
\begin{aligned}
\mathrm{B}= & 29.9769+0.00 \pm 05 \sin \left(x+323^{\circ} 3^{\prime} 10^{\prime \prime}\right)+0.00305 \sin \left(x+19551^{\prime} 40^{\prime \prime}\right) \\
& +0.00148 \sin \left(3 x+206^{\circ} 13^{\prime} 40^{\prime \prime}\right)+0.00177 \sin \left(\pm x+35 z^{\circ} 48^{\prime} 30^{\prime \prime}\right)
\end{aligned}
$$

The period is referred to $0^{\prime \prime}$ as its begiming, and the angle x increases at the rate of 15 per hour. The following table contains the observed and computed means, as well as the deviation from the annual mean:

Time.	Observed hourly mean.	Computed hourly mean.	Difference, (1 . - 6.)	Deviation from annual mpan.
	Infors.	Inclies.	Inches.	Inchis.
$0^{\text {b }}$	29. 9687	29. 17.97	- 11.0440	-1. 10041433
1	29. 0716	29.9732	-0.0016	
2	29, 1738	29.97\%	-0.0001	-0.00314i α
3	29.9737	99.9742	- 11.010105	
4	29.9746	29.9756	-0. 101010	-0.041:409
5	29.9784	29.95~4	± 0.0000	+0.01151-9
6	29.11813	99.9821	-0. 11600	+0.00.51-5
7	29.9883	29.9847	+0.0036	+0.0178)
8	29.1845	29.9-48	-0.0003	+0.0639504
9	29.9627	99.1020	+0.0051	+0.015:307
10	29. 0×01	29.9800	+0.11001	+0.01330
11	29. 17×4	(2).9787	-0.0003	+0. 1111 l - 965
Noon.	29. 9839	¢9. 97×9	+0.0050	+0.01203\% ${ }^{\text {a }}$
$1^{\text {b }}$	6. 01812	6.9.9740	+0. 11102	+0.01021321
2	29. 9773	-21.9744	-0.0001	+0.0100408
3	29.9720	4.9. 9741	-0.0015	-0.01205093
4	99. 1727	29.6211	+0.0016	-0.0053741
\therefore	99, 1710	29. 92006	± 0.0000	-0.0062713
6	99. 975	69, 9296	-0. 0004	-0.0039483
7	29. 1754	20. 1810	-0.0008	
$\dot{\prime}$	49.1746	29.9741	-0.01035	+0.11012950
9	㫛, 176	99. 9744	+0. 11010	+10. $1000.46:$
10	29. 9750	-9. 9286	-0. 10.000	-0. 01011505
11	99.9716	40. 9838	-0.0017	-0. 1035 Sa 1
Mcans..	29.9769	29.966	± 0.0000	± 0.0000000

Denoting the deviations from the annual mean in the order in which they appear in the above table loy $i_{1}, i_{1}, i_{2}, \ldots x_{2,}$, we obtain for the probable errors-

$$
\begin{aligned}
& r=0.11101717502049
\end{aligned}
$$

$r_{2} z^{11}=0.100000150 ; 09536$
$7-1 .=0,00000030173049$

Denoting the sum of the squares of any numbers $r_{i}, r_{1}, c_{z}, \delta c .$, by $[c r]$ we bave in the pres ent case-

$$
[v v]=0.00037249986194
$$

The probable error of any one representation is expressed by-

$$
p_{\mathrm{r}}=0.674489 \sqrt{\left[\begin{array}{ll}
v & v \\
23
\end{array}\right]}
$$

and the probable error of the annual mean by-

$$
p_{\mathrm{m}}=\frac{0.674489 \sqrt{[v v]}}{23}
$$

Substituting therein the ralue for [$v v v^{\prime}$] we obtain-

$$
\begin{aligned}
& p_{\mathrm{r}}= \pm 0.00271 \ldots \\
& p_{\mathrm{m}}= \pm 0.00057
\end{aligned}
$$

The probable error of any single hourly mean is, therefore, almost five times as large as that of the annual mean ; or, more accurately-

$$
\frac{p_{\mathrm{r}}}{p_{\mathrm{m}}}=4.7!157 \ldots
$$

The following diagram exhibits the diurnal fluctuation of the atmospheric pressure as derived from the preceding table:

Dinmal fuctuation of atmospheric pressure.

If the atmospheric pressure at Polaris Bay was not abormal in 1871 and $15 \sqrt{2} 2$, then the features of the dinmal curre differ considerably from those of the neighboring stations, being more in aceordance with those manifested in the temperate zone. By the aid of the diagram the absolute maximum will be fonnd to occur at abont 8^{h} a. m., while the absolute minimum is reached at about $5^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. If we consider the minima occurring respectively at abont $11^{\mathrm{h}} 30^{\mathrm{m}}$ a. w. and at 9^{h} p. m. to be accidental, then we shall bare a maximnm at about $10^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. , and a secondary minimum at abont midnight.

Among the different aretie stations our curve shows the greatest resemblance with that of Sabine Island, where (according to the formula) the forenoon maximum is reaebed at $10^{\mathrm{h}} 34^{\mathrm{mi}}$ and the eveuing maximum at $9^{\mathrm{h}} 45^{\mathrm{m}}$, while the two minima oceur at $3^{\mathrm{h}} 40^{\mathrm{ma}}$ a. m. and at $4^{\mathrm{h}} 33^{\mathrm{m}}$ p. m., respectrely. At Fort Foulke, (compare diagram on page 217 , loc. cit.,) there is a rery slight indication of a maximum at abont $7^{\mathrm{h}} 30^{\mathrm{m}}$ a. m., while the absolnte maximnm occurs at abont $6^{\mathrm{L}} 30^{\mathrm{m}} 1$. m.; at Rensselaer Harbor the highest pressure during the day is reached at about $10^{\mathrm{h}} \mathrm{p}$. m . and at Port Kennedy aud Baffu's Bay at abont $7^{\mathrm{h}} 30^{\mathrm{m}} \mathrm{p}$. m. The principal minimum at Port Foulke oceurs at about $3^{\text {h }}$ a. m. At Rensselaer Harbor the (secoudary) minimum is reached about $4^{4 .}$ a. m. and at Port Kennedy and Baffin's Bay at about $4^{\text {h }} 30^{\mathrm{m}}$ a. m.

At Polaris Bay the diurnal range is $0^{\mathrm{in}} .014^{2}$, to which we add the following values for comparison:

	Inches.
Rensselaer Harbor	0.010
Port Foulke	0.017
Sabine Island	0.005
Baffin's Bay	0.028
Port Kennedy	0.045

The theory established by Daniell, and farored by quite a number of moderu meteorologists, that the diurnal flnctuation would vanish almost entirely in high latitudes, does not find any support in the table above given. Most likely the theory does not hold good in this instance, as the dis-

ATMOSPHERIC PRESSURE

crepancies seem to increase with the growing number of observations，which circunstance ought to induce us to abandon this theory，unless it be confirmed by subsequent observations．Between the latitude of Port Kenuedy and that of Reusselaer Harbor，except at Sabine Island，a decided decrease evidently takes place；but at Polaris Bay，which is sitnated in the region where the diurual range was supposed to vanish，we find the dinrnal fluctuation to be greater than at Rensselacr Harbor，situated three degrees to the south of this station，and almost as great as at Port Foulke．

After having corrected the diurnal fluctuation for the influence of the force of vapor，the hourly salues will run as follows：

Dinval Inctuation of atmosphoric pressure at Polaris Bay，corverted for foree of iotor．

Time．	Inchers．	Time．	Inches．	Time．	Incles．	Time．	Tuchus．
$0^{\prime \prime}$	บ！． 9018	$6{ }^{10}$	29． 1 M\％；	Noon．	29．9035	6^{4}	\％9． 94%
1	29． 11104	7	¢9．9104	$1{ }^{\text {b }}$	99． 9 （1）：4	7	9．9．90：\％
\because	2！！9以ン	8	29．9102	2	29． $9111 \sim$	\checkmark	29， 1067
3	291．911．37	9	29.9077	3	29．－－人，	9	安！！ 10×4
1	31． 31104	10	29.9105	4	－9，m69	10	－ 31971
5	29.9054	11	99． 91036	5		11	29． 3401

An examination of the above talle will show both the relative minimum and maximum at $11^{\mathrm{t}} 30^{\mathrm{m}} \mathrm{a}$ ． m ．and $1^{1 \mathrm{l}} 1 \mathrm{~m}$ ．to disappear，the curve assuming a more regular character，if we except the abonomal minimum ocerurring at $9^{h} \mathrm{p}$ ． m ．

For the sake of comparison the following table was formed，containing the diurnal fluc－ tuation of atmosperic pressure for six stations situated in the arctic regions，and arransed according to decreasing latitude．For some of these statious only bihourly observations existed； we therefore hare given bihourly observations at all，in order to make the table more uniform：

Time．	Polaris Bay， $\phi=-1.6)^{2}$	Renuselaer harlor， $\phi=76$.	Port Foulke， $\phi=7=3$	$\begin{gathered} \text { Sabine Yslaud, } \\ \phi=74.5 . \end{gathered}$	Port Kennedy， $\phi=70.9 .$	$\begin{gathered} \text { Baffin's Bay, } \\ \phi=72.5 . \end{gathered}$
	Inclies．	Tnches，	Inches．	Inchers．	Inchers．	Inches．
［4］	29．17\％	29， 7 （3，		29.876	29．906；	9！\％ 7 \％
4	29．1184	99． 2685	29． 80	29．85．5	20． 27	29．3：10
6	8．961	29.766	29.812	29.85	29． 594	29．729
\checkmark	29.984	29.763	9！ 9	29．878	29．903	29.731
10	29． 120	29.764	99，	29．880	29.935	29．850
Noon．	29．184	99．713）	29.80	29.879	29.933	29.743
$2^{\text {h }}$	29.677	29.759	29， $8: 0$	29.877	29．93\％	29.74
4	29.128	29.763	29．825	29.45	29.939	29． 753
6	29.172	29．767	29.835	29）． 877	29.140	29.756
e	29.975	29.769	29． 89	29．480	29，94？	29．756
10	20， 120	29.351	29． $8: 31$	29.81	29.138	9！ 9.753
12	29． 96	29．713	29．	29．879	29．909	99.743

After having discussed the diurnal flnctuation during the year，it may be interesting to incesti－ gate low far the law stated above will hold good during the different seasons．In constructing the curves representiug the diumal fluctuation during the latter，we used the computed values for each of the three different months constituting one season，and took the mean of the same．This was done to sare the labor involved in establishing the analytical expressions for the respective seasous，as for certain reasons we had thought it proper to treat each montb analytically；but we abstain from giving these results，they being without any rallue for the present discussion．Owing to the shortness of the period over which the series of observations in question extends，the law governing the diurual fluctuation duriug the jear can scarcely be recognized in the curves exhibit－ ing the dinrnal flnctuation of the different seasons．In winter the absolute maximum of $29^{\mathrm{in}} .8184$ occurs at about $5^{\text {h }}$ p．m．，and the absolate minimum of $29^{\mathrm{ih}} .7$ ？ 11 at midnight，the curve thus show－ ing a range of $0^{\text {in }} .0213$ ，oscillating irregularly between the hours of highest and lowest pressure．

In spring the curve is less irregnlar, passing through the maximnm of $30^{\mathrm{in}} .1542$ at about $6^{11} 45^{m} \mathrm{a} . \mathrm{m}$. and through the minimum of $30^{\mathrm{in}} .1332$ at $7^{\mathrm{h}} \mathrm{p} . \mathrm{m}$., its range differing only by two units in the fourth decimal from that of the preceding season. In summer the maximnm of $299^{\mathrm{in}} .8949$ is reached at 6^{h} a. m . and the minimnm of $29^{\mathrm{i}} .8767$ at midnight, the range being $0^{\mathrm{i}} .0182$. The autumn curve shows a decided maximum of $30^{\prime \prime} .0726$ at about 5^{h} a. m. and a well-marked minimum of $30^{\prime \prime \prime} .0536$ at about $11^{\mathrm{h}} \mathrm{p} . \mathrm{m}$., exhibiting a range of $0^{i n} .0190$. During each season the diurnal range is greater than that of the year, the smallest range occurring in snmmer and the greatest in winter, the former differing by $0^{\text {in }} .0040$ and the latter by $0^{m} .0071$ from the diurual rauge during the year.

The following table contains the maxima and minima of atmospheric pressure as observed during each month. It need hardly be mentioned that the values given are rednced to $32 \circ \mathrm{~F}$., and to the level of the sea:

Monthly extremes.

Months.	Maximum.	Date.		Minimum.		Date.	Range.
	Inches.		h.	Inches.		h.	Inches.
January	30.338	18	$9 \mathrm{p} . \mathrm{m}$	29.390	94	6 and 8 p. m.	$0.94 \times$
February	30.551	28	$2 \mathrm{a} . \mathrm{m}$	28.827	17	11 p.m.....	1.7-3
March.	30. 804	25	$3 \mathrm{a} . \mathrm{m}$	29.483	12	$1 \mathrm{p} . \mathrm{m} . . .$.	1.221
April.	30.777	19	4 p. m	29.514	22	$10 \mathrm{p} . \mathrm{m} \ldots .$.	1.263
May	30.631	16	$11 \mathrm{p} . \mathrm{m} . . .$.	29.389	23	pp.m...-	1. 24.
June	30.187	11	$10 \mathrm{a} . \mathrm{m}$	29.486	21	$5 \mathrm{p} . \mathrm{m} . \ldots$.	0.701
July	30. 298	16	$10 \mathrm{a} . \mathrm{m}$	99.591	3	11 p.m......	0. 707
August.	30. 25%	20	11 a. m	29.748	11	$7 \mathrm{p} . \mathrm{m} . . .$.	0.509
September	30.521	25	$7 \mathrm{a} . \mathrm{m}$	29.513	\because	7 ı. m	1.008
October	30.590	28	$\begin{aligned} & \text { 7 a. m. and } \\ & \text { 2 p.m. } \end{aligned}$	29.523	8	11 p.m......	1.067
November	30.672	4	$5 \mathrm{a} . \mathrm{mm}$.	99. 159	2	$3 \mathrm{p} . \mathrm{m} . . .-$.	1. 513
December	30.536	1	$1 \mathrm{a} . \mathrm{m}$.	29.120	-4	$0 \mathrm{a} . \mathrm{m} . \ldots .$. .	1.416

According to the abore table February shows the greatest and August the smallest range; it will also be seen that in most instances the maxima ocenr doring the forenoon and the minima during the afternoon.

As was the ease at Port Foulke and at Rensselaer Harbor, the greatest range at Polaris Bay occurs in winter and the least in snmmer. The extreme observed ranges of this and other localities in the arctic regions compare as follows:

Locality.	Maximum.	Date.	Minimum.	Date.	Range.
	Inches.		Inches.		Tuches.
Polaris Bay	30.804	Mar. 25, 18\%2	28. ${ }^{2}$	Dec. 24, 1-1	1.97\%
Rensselaer Harbor	30.97	Jan. 22, 1855	26.84	Fel3. 19, 1854	2.13
Port Foulke	30.74	Nov. 25, 1860	48. 96	Oct. 16, 1-6\%	1. 1
Baffin's Bay	30.93	Jam. 30, 1858	28. 64	Mar. 11, 180	9.29
Port Kennedy	31.06	Apr. 12, 1859	22.76	July 10, 1859	$\because .30$
Sabine Island	30.825	Mar. 11, 1870	23. 377	Oct. 30, 1869	1.948

BARIC WIND-ROSE OF POLARIS BAY.

To obtain the dependeney of the atmospheric pressure upon the direction of the wind the following method of discnssion was adopted:

The monthly means of atmospberie pressure for the hours midnight, G^{h} a. m., noon, and $\mathfrak{g}^{14} \mathrm{p} . \mathrm{m}$. were subtracted from the observed readings at those hours for every day of the year, (as far as they were on hand, and the differences thus obtained were considered to be due to the direction of the winds prevailing at the hours $0^{\mathrm{h}}, 6^{\mathrm{h}}$ a.m., 12^{h}, and $6^{\mathrm{h}} \mathrm{p}$. m. These differences were found to be positive and negative for the same directions of wind; the mean of the differences are then
$4 \triangle P$
considered as the mean effect of the winds from the respective directions, which is either positive or negative, i. e., elevating or depressing, as shown in the table below:

S.	SW.	W.	NW.	N.	NE.	E.	SE.	Calm.
+0.0164	+0.0202	-0.0032	-0.0262	+0.0336	-0.0406	-0.0133	+0.0060	+0.0195

For the analytical expression we obtain the following elements:

$$
\begin{array}{l|l|l|ll}
a_{1}=+0.012135 & b_{1}=+0.00758 & \mathbf{B}_{1}=0.014308 & \mathbf{C}_{1}=5 \varepsilon^{\prime} & 0^{\prime}: 30^{\prime \prime} \\
a_{2}=+0.016625 & b_{2}=-0.00005 & \mathbf{B}_{2}=0.016625 & \mathbf{C}_{2}=161^{\circ} 36^{\prime} 30^{\prime \prime}
\end{array}
$$

The analytical expression now assumes the following form:

$$
\triangle=-0.0008875+0.014308 \sin \left(x+58^{\circ} 0^{\prime} 30^{\prime \prime}\right)+0.016625 \sin \left(2 x+161^{\circ} 36^{\prime} 30^{\prime \prime}\right)
$$

The period is here referred to the direction S., and the angle x reads in the direction $S W$., W., NW., \&c.

Substituting $x=0, x=45^{\circ}, x=90^{\circ}$, \&c., we obtain in this successiou the elevating or depressing effect for the winds from the directions S., SW., W., \&c., as given in the following table:

Direction.	S.	SW.	W.	NW.	N.	NE.	E.	SE.
Observed.	+0.0164	+0.0202	-0.0032	-0.0262	$+0.0336$	-0.0406	-0.01:3	
Computed	+0.0164989	-0.0027227	$+0.0014474$	$+0.0116679$	-0.0077771	-0.0306043	-0.0137132	+0.0181091
Difference	$+0.0000999$	-0.0229227	+0.0046474	$+0.0378679$	-0.0413771	$+0.0099957$	-0.0004132	+0.0121091

The computed effect of the wind is represented graphically on the following diagram, where the elevating or depressing effect is measured from the circumference of the circle in the directions to and from the center, respectively :

The following table，containing the corrections to be applied to any hourly observation，taken at Polaris Bay，is derived directly from the table giving the hourly means，following the original record of observations：

Corrections to be applied to any hourly observation，taken at Polaris Bay，to obtain the mean atmospheric pressure of the day．

Time．					烒	荷	总	$\stackrel{シ}{\square}$	$\underset{\square}{\square}$	\％ 00 00 80
	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Tuches．
$0^{\text {h }}$	＋0．0158	－0．0089	＋0．0202	－0．0054	＋0．0100	＋0．0003	－0．0054	＋0．0219	＋0．0047	$+0.0201$
1	0.0113	0.0101	0.0212	0.0024	0.0146	－0．0049	0.0051	－0．0087	0.0035	0.0191
2	0.0142	0.0145	0.0128	－0．0064	0.0133	0.0049	0.0062	0.0149	0.0036	$+0.0165$
3	0.0102	0.0141	0.0174	$+0.0216$	0.0084	0.0064	0.0127	0.0152	0.0044	－0．0010
4	＋0．007：	0.0109	0.0146	0.0204	0.0066	0.0113	0.0137	0.0160	0.0026	＋10．0025
5	－0．0008	0.0062	0.0081	$+0.0227$	$+0.0026$	0.0187	0.0143	0.0184	0.0017	－10．0012
6	－0．0098	0.0063	0.0015	-0.0083	-0.0017	0.0206	0.0145	0.0189	0.0017	0.0013
7	＋0．002\％	-0.0053	0.0009	-0.0100	0.0008	0.0189	0.0166	0.0182	0.0318	0.0090
8	＋0．0034	＋0．0010	0.0022	$+0.0293$	0.0087	0.0132	0.0153	0.0183	0.0315	0.0090
9	－0．0018	＋0．0013	＋0．0014	-0.0098	0.0042	0.0135	0.0165	0.0122	＋0．0296	0.0090
10	0.0004	-0.0013	-0.0075	0.0100	0.0059	0.0111	－0．0131	－0．0064	－0．0005	0.0084
11	－0． 0083	-0.0053	0.0042	0.0079	0.0107	－0．0038	＋0．0043	＋0．0009	0.0024	0.0110
Noon．	＋0．0037	＋0．0107	0.0016	-0.0025	0.0098	$+0.0007$	0.0102	0.0071	0.0015	0.0075
1^{h}	＋0．0032	0.0100	0.0005	＋0．0042	0.0105	0.0132	0.0173	0.0134	0.0023	0.0047
2	－0．0080	0.0066	0.0038	0.0075	0.0108	0.0132	0.0154	0.0297	0.0023	0.0043
3	土0．0000	0.0003	0.0145	0.0081	0.0148	0.0136	0.0161	0.0174	0.0012	0.0041
4	＋0．0004	0.0011	0.0158	$+0.0083$	-0.0140	0.0144	0.0181	0.0158	0.0065	0.0057
5	-0.0049	0.0026	0.0120	-0.0004	＋0．0154	0.0158	0.0161	0.0156	0.0075	0.0037
6	0.0032	0.0004	0.0142	-0.0026	0.0120	0.0131	0.0157	0.0109	0.0085	－0．0052
7	0.0071	0.0006	0.0100	± 0.0000	＋0．0026	0.0135	0.0027	0.0058	0.0125	$+0.0068$
8	0.0035	0.0088	0.0107	－0．0131	± 0.0000	0.0137	0.0023	0.0050	0.0145	0.0039
9	0.0112	0.0076	0.0106	0.0097	＋0．0021	0.0085	0.00 .51	0.0037	0.0174	0.0049
10	0.0065	0.0157	0.0079	0.0182	－0．0008	0.0079	0.0050	＋0．0015	0.0184	0.0089
11	-0.0116	＋0．0158	－0．0012	－0．0113	＋0．0036	＋0．0064	＋0．0055	－0．0020	－0．0176	＋0．0125

.

RECORD AND DISCUSSION OF OBSERVATIONS ON ATMOSPHERIC PRESSURE MADE AT POLARIS H0USE.

The observations on atmospheric pressure made at Polaris House from Norember 1, 1872, till June 1, 1873, were conducted precisely in the same manner as previonsly described. The FortinGreen barometer was suspended on the southeastern wall of our hut, protected by a box, the lid of which was only opened when a reading was taken. The cistern of the instrument was 8.5 feet above the sea-level. For further rednction of the readings, referred to $32^{\circ} \mathrm{F}$., the following table was used:

Correction due to 8.5 feet elevation above mean sea-level.

Barom.	-50°	-40°	-30	-20°	-10°	$\pm 0^{\circ}$	$+10^{\circ}$	+20	$+30^{\circ}$	+400
	Incles.	Incthes.	Inches.	Inchers.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
20.6	$+0.017$	+0.016	$+0.013$	+0.012	+0.011	$+0.010$	+0.010	+11.010	+0.009	+0.009
99	0.115	0.016	${ }^{11} 014$	0.012	1. 011	0.010	0.010	0.010	0.010	0.009
29.5	0.018	0.016	0.014	0.013	0.011	0.010	0.110	0.010	0.010	0.010
30.0	0.018	0.017	0.115	0.013	0.112	0.011	0.011	0.010	0.010	0.010
30.5	0.019	0.017	0.015	0.013	0.012	0.011	0.011	0. 011	0.011	0.010
31.0	$+0.019$	$+0.017$	+0.015	$+0.013$	$+0.112$	$+0.011$	+0.011	+0.011	$+0.011$	$+0.010$

The corrected readings will be found recorded hereafter.

Date．	NOVEMBER， 1872.											
Time．	1	2	3	4	5	6	7	8	9	10	11	12
	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inchis．	Inches．	Inches．	Inches．
$0^{\text {b }}$	30.172	30.170	29． 10.5	29．616	29.708	29.783	29.314	29.917	30．$\because 11$	30.250	30.207	30.184
1	30.148	30.155	29．869	29.613	29.808	29．601	29．809	29．93\％	310.20	30.238	30.294	30.193
2	30.177	30.141	29． 8.5	29.599	29.800	29． 698	29.800	29.945	30.883	311． 230	30． 29	30.1 \％
\therefore	30.172	30.102	20.516	99． 617	29．ट11：	291．701	99.801	29.969	30． 233	： 31.207	319.85	30.191
4	$\therefore 0.1 \times$	30.210	29． 8.5	29.642	29， 804	34.715	－3．800	$29.96 \sim$	30． 214	S31． 10	30.263	30.1 －
5	30． 3 ¢	30.076	29． $5 \times$	29.652	29， 814	29.717	39． 286	29． 1196	30.302	：31． 169		30.193
6	30.905	30.185	29． 80	29．658	29.599	29.747	？9．798	29.189	30.298	30.139	30．900	30.190
7	20．216	30.044	29.6	99， 150	29.817	29.25	29.797	29．994	30.84	39． 126	30．	30.1915
8	30.2011	$30.03: 4$	29.84	29.679	3）． 701	90． 2×6	49．805	30.012	30． 299	：31． 103	310． 27	30.194
9	：31． 201	：0． 011	90． 8.5	29，685	29． 761	9！830	99．-13	30.019	30． 310	31． 067	30．日	30． 191
10	30.204	39．9\％	－	39．714	－9．759	－3． 9	29.814	30.040	30．：316	：30． 041	30． 40	30．183
11	：30． 194	29． 3×1	89	29． 710	29．330		99，－1：	30．05：	311.83	30．123：	（3） 91	30.129
Noon．	；30． 213	29.904	29．-16	39．714	29．76；	99．73－	99．－31	30.11511	811． 331	30.0109	311．28：	30.144
$1{ }^{15}$	30．914	29． 93	29． 61.	29． 284	29.717	96． 8111	99． 831	30．119	311.859		30．シャ1	30．1
\because	：30． 230	99． 90	29．792	29． 733	－ 21.715	29．24：	29． 514	30.1120	30.3411	30.037	30.98	311． 11 N
3	30.223	29.944	29.794	39.751	－9．714	寝． 3 B	39．－－ 64	30．123	30， 340	30.144	30． 27.	30.10 .4
4	30.233	29．3m	29．77\％	29， 744	9！ 210%	94．766	39.861	30.116	30.35	：30． 055	30．	30．00\％
5	30.221	29.912	29.345	U9．753	93， 690	99．761	29.81	30.127	30．$: 3$	30． 118	30．262	30.030
6	30.207	29．-901	29．392	U3） 301	90， 6,9	9！ 765	9！）．－7	30．194	30． $2: 1$	31）． 107	30.980	30.005
7	30.205	29．89：	29． 30	24． 780	29． 120	29．768	29．88\％	30.159	30.324	30.119	30.84	29.961
8	30． 2005	29．884	－9．695	－ 0 \％ 5	29． 6101	寝765	99．897	30． 158	30． 324	30.139	30． 239	99.948
9	30.19	29.875	？9． 164	29．7－3	29， 618	－4．733	？！	30.174	：311．305	30.151	30.9 可	29，90：11
10	30．178	29．-75	99． 6.54	91） 388	29．6－ix	49.754	21．$=12$	30.186	30.282	30.154	30.214	49．839
11	30.178	29.807	29． 6334	$3!6.790$	29．6 61	92． 768	－ 903	30．18i；	30.265	： 3.170	30.195	99．mili
Means．．	30． 2004	30．000－	99.7804	29．7019	29．74：6	99．742	99.8363	30.0604	30.2988	30.1196	30．	30.1999
Date．						OVEMB	ER， 1872					
Time．	13	14	15	16	17	18	19	20	21	22	23	24
	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．	Inches．
$0^{\text {b }}$	29.821	29.772	30.115	29.744	29.638	29.678	29.742	29.611	39.718	29.754	29.844	29． ¢ 29
1	29.786	29.818	30.079	99． 756	29．60）	29.676	29.731	29．633	39.719	$29.74{ }^{\circ}$	29． 41%	29.878
2	29.746	29． 41	30.057	29．766	29.611	29.683	29．735	29．64	29.799	29.766	99.82	29．671
3	29.689	29.894	30.027	29.770	29.601	29．681	29.739	29.655	29．722	29.769	29．844	94， 8.3
4	99.673	29．901	29.984	29.757	29.592	29.692	29.702	29.676	09.734	29.770	29.81	99，N－
5	29.670	29.923	29.954	9）． 805	29.597	94． 690	29．71以	29．¢－7．	29．739	29.75	29． $8 \times$	29， 60
6	29.640	29.958	29.908	约． 800	29． 604	29．693	89．703	29． 64%	29.733	29.790	29.881	29，873
7	29.614	29.173	29.859	29.804	29.594	29．742	90．715	29． 1 icic	29.733	99． 7×1	29．893	29.864
$\underset{\sim}{+}$	69．628	29.996	29．826	99． 18	99．602	29.705	？9．685	29．シ\％	90．742	29．71	29.44	99， 853
9	29． 500	30.034	94．801	－20	29.59%	20．713	29.659	29.714	49， 78	－99， 759	29． 839	29．>416
10	29.703	30.014	29.781	29.812	29．569	29．719	－ 3 ）， 657	29.717	29.745	29.779	29．817	29．43
11	29． 610	30.073	29． 743	29． 914	29.59	29.724	29．650	29：714	29.734	29.775	29.867	29.839
Noon．	29．	30.093	29.72	29．798	29．899	29， 38.6	29.643	㫛， 713	－39． 731	29．785	29.909	29． 45
$1^{\text {h }}$	29.550	30.097	29．686	92． 201	29.595	99， 8.53	29.632	29.717	29.741	29.745	29． 519	29.839
$\stackrel{2}{3}$	29.607 29.618	30.133	29．064	21． 781	29．604	29．760	20．621	29.721	29.740	29.802	29.814	29.833
3	29.618	30.146	29．634	99.776	29．14．	29.772	29．61\％	29.721	\％1．735	29．817	29． 299	29．82\％
4	29.646	30.158	29．652	99． 763	39． 0 \％	29.35%	29， 3010	29.724	29.731	29， 817	29．593	89．827
5	\％9．656	30.171	29.631	29． 747	29． 3164	80． 764	＇99．591	29.719	29.72%	29.818	29．885	23.17
6	29.666	30.173	29.611	29.730	29． 610	9！ 9.764	99.591	29.717	29.721	29．89：	29． 85	29.811
7	29．670	30.185	96． 6147	29．312	29.680	99．755	99．506	29．714	29.726	29， 893	29，80：	29.815
8	29．108	30.167	21.667	29.694	29．6 610	90．745	29.590	29.318	92． 740	49．800	29．65	29． 840
9 10	29.727 99.737	30.161 30.169	－3．） 680	29.669	29． 1710	99．745	29.590	29.717	29.737	29．834	29.85	29．802
11	29.737 29.741	30.162 30.133	23． 702	29.656	29.668	99．736	29．592	29.727	29.743	29．${ }^{\text {¢ }} 34$	99．87	29．794
11	29.741	30.133	29.720	29.644	29.671	29.730	29.597	29.724	29．742	29． 41	29.70	29.795
Means．．	29． 6508	30.0429	29．7997	29.7808	29.6263	29． 7247	29.6530	29.6964	29.7335	29．7955	29.8829	29.8415

Date．	NOVEMBER， 1872.						DECEMBER， 1872.					
＇Tince．	2.5	26	¢8	－ 0	29	30	1	＊	3	4	5	6
	Imblus．	Inthes．	Indus．	Indus．	Indus．	Im／us．	Iurhes．	Iurlus．	Inehtrs．	Inchis．	In，	Inches．
$0{ }^{14}$	以！8，	－！	：30．115	：20． 117	30． 3	30， 201	： 210.61	2inc 109		39，19，	？！． 691	－\％\％－
	$\because 9.85$	？ 31.85	31.117	：30．157	（10）	：10．3：3	301.571	：11． 115	㫨．治！	？ 3	39， 710	29． 719
\because	ッ！\％	2！！，witi	30． 10	：30．1fic	：010．3？	：30．$: 14$	30，－tas	：31． 1116	？ 6 ． 14	－ 9 ，bit	？ 21110	O2， 7
3			（30．1：3）	：30．16im	（30） $2 \times$	：30．$: 171$	： 01.5815	：10． 10.3	？ 3 ，16，		？ 3 －111	29．760｜
1	？！1．79	$\because 3$	（30．1：3）	湤．199，	： 31.	30， $3: 1$	311，	311.01%	？！		－$\because 1.75$	
5	－1！ 37.1	为	30．1：	30．1－4）	30，	30．30	：31． a ， 11	－\％9 9 9\％i	2！¢ ¢－．	㫛，湿1	－$\because 9.7$	39．3．01
	？$\because 170$	$\cdots 1$	：30．1：$: 3$	30． 1901	30.23	（：3）． 411	：31）． 511	－！！ 941	？！lime	？	$\because 3.734$	9！2， 310
\％	－1． 273	\％ 29	？ 0.10	\％0．01	30	310． 4110	31）． 2×1	吅，心－	？！侣	搨 H	！！！ $3: 3$	－！\％こ
	20， 812	\cdots	30． $1: 4$	30． 200	30.36	：310． 1114	：11．1－1i	\cdots		\％9．651	3！74：	？ 2110
$!$	צ！\％	$\because 910$	：30．1：311	30．194	：0，290	：31）1－：	$31.1-1$	－ 31.1×8		24．liat	2！1．74！	99． 211
10	－ 29.7	－	30．121	30．1－4i	（a）268	澵，15	311． 150	\cdots	？ 31617		－7\％	？ 3 \％
11	？！\％\％	？！！11：	：10．1013	：20． $1 \times$	：30．	（30．169	：31．109	＊！． $51-$	－！（10\％	？！涼！	－ 3 7is	2！． 10
Norm．		－！）961	：30．1 10	： 0.10	30． 3.06	（3），1：3	：111．411	只 3 2！	？！ 130		？	？9．710
$1{ }^{12}$	？！ 75	－！！！！	$30.10 ;$	：30． $1 \times$	（0）． 20	：30， 10	： 31.10	？ 760	？！（ini．	8！（fenl	$\because!!$－-1	39， 214
\because	49． 311	\cdots	： 3.117	（ia） 15		：31）5．14	： $11.36!$	＊！．75	？！titit	39．10－1	－！ 3 7！	39．214
\％	界，2心！	？ 3 ，1－4	：30． 106	（31）． 194	311．	：30，S0	：31）：	－3． 311	O！（10：		ッ！．ス心	－9． 700
1		\＃31．10：	：31． 114	：31）． 197	30． 20	310． 53.4	： 01.10	29．714	㫛（15．5	？！ 603	ㅂ．79：	3！\％
\％	36． 3 29	3.11 .019	：30，119	：31． 193	30． $2 \rightarrow:$	30， 50	：310，307	$\because!+4.4$	？（6ie	显为为	$\because 110$	－39以
$1{ }^{1}$	－ 310	：311．13：3	：31．193	：30．193	（10） 0^{2}	310，こ心	： 111.875		Q！ 18 T		$\because!1)$	－ 319
7	04，，19	210．0．1	：30．1：31	（3） 10.5	（11）※－3	30， 5 Sos	： 310	？ 3 ． 134		－ 6 6，	$\because(1)$	？！ 111
\checkmark	－ 3 ，－ 111	（ia） 110	：0．10．：3	：010．30：	30． 3	311， 3 ，in	301．23i	？ 3 ． 16		39，	？！M以	㫛 3.31
$!$	99， 61	：30．001	：30．1：3	：30．${ }^{3}$	30． 3011	：in． 514	311． 3119	－ 315	？（3：\％	寝．liall	$\because!$ ，2111	\％9．731
10	－19， 11	：30．11－	30.145	（31）． 310	：30． 310	：31，	：311．1－1	－ 3 ） 16	？3． $3: 1$	30．lim	\％$\because 1 \%$	4．3：3
11	29，－	：310．097	：0．110	30．	30，：11：	（10． 21	30.146	？ 3 ． 644	39．1317	3！lin	昂． 811	29．753
Mrans．	2！ 3.1015	？ 3 ！9 4	20．103）	：3）． 1	30．26：01	30．｜lit	：11． 4099	－9）－M11	－！M Mix：		－！，Tlic	23． $3: 317$
1）ate．	DECEIMBER， 1872.											
Time．	7	\cdots	9	10	11	12	13	11	1．）	16	17	18
（19）	Iurlus．	Inches．	Inchus．	Imbus．	Inches．	Inches．	Iurhes，	Inches．	Imhes．	Itchers．	Inchos．	Intur．
	Q	9!	$\because!\text { (i, }$	$\because(-4)$	39	-!	?			1	？	－3
1	2！ 21	9！． 511	－	？！バが	－¢ 人－	$\because 1$.	－ 3 ，307	2H．dial	－－－－		？！！！！ 4	－！！！－
\because	永洼	照． 517	－ 20.7	？	3！	2！！－5－4	－			？ $3^{3} 11$	？ 3	？！！！
\because	－ハー，		－ $71 \times$	39．	－9．30			？！15x．4	3！－－ 6	O！－ 16	－	－ 31919
4	－	99， 31	－ 3 ， $7: 1$	Bl，	\therefore－ 11	ㄴ．	？ 340	－ $31: 1$	3	只 10	2！ 940	？！9．19
5	9！（ill	㫛号品	39．30	－29，90\％	－！$\times 1.1$	－	ce． 3 ， 6	景70	－		$\because 1.911$	－ 319
6	20， $40:$	－	？！ 7.51	－	$\because 0.17$			品， 76	－9，－－	景	－	－9．3！
i	89， 61	景．	？！J！	B9． 9111	8！）＜10	29，： 011	$\cdots 1101$	？ 30	－3	－	－9．944	
	－9．30	－	恕污1	？9．901	－	？	？ 110	3！$=16$	是为品		$\because 9.906$	49！ 3
	49．79\％	49．	号 7	？ 3 ，－ 1	－3， 759		？ $1: 3$	39，	？ 31.8	39，Min	－99．94\％	\％1．
111	？9，N111	9！	\％3． 316	3！－－：	－3． 749	？！：：	$\cdots!10.4$	－ 10	20．	39，	？！901	－1！！－
Nomi．	99，－10	\＆	31，－112	$\cdots 110$	－31．729	？	29．46	－	2！－以	－11）	－9！944	－19．931
	99，－ 6119	㫛：			？ 31.64			\％	$\because 9.811$	\＆9，	39． 1031	＊1．910
$1{ }^{13}$	－ 29.811%		年，will	然．	？！1114	？！3． 3	曻，心－	\％	29，－\％	－2！	？ 310	？ 3 9－1
3	，$\because 9$		？！	？！1，－年	3！nfor	？130			？9，	－3， 91		\％）90：
1	－19． 2 （i－	30 \％	，\because	（11）	2！， 640 $3!1901$	？10，	－		（1）	8！		？ 3196
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	？3． 210	39．61	－11．	？！Noni	－51，50	里哏il		3！－ $1!$	3！ $3: 1$	－919	3！ 939	？
6			？ 31.11	\cdots	20． 51.	29， 3110	（19， $5 \times$	－	\％1．－3，	븐）	29303	莡，9\％
7	O！（6）		\％！－－－	？1．	？$\because 121$	曻： 3	Sl．Sits	$\therefore 1 \div$	$\cdots 10$	＊！ 910	！！！in	$\text { 39. } 110$
9	？	（e）lifo	品	（1）	？ 417			90， 19	－	？$\because 9.912$	？ 29.981	－
111	？ 3 （1）	39．10．	（1）$\times 1$	为	？1，311	为	99，	－		号	？19．92	a，10，
	4－394			－11．	3！	39，301	39．10	M19	\％	90．314		30． 1048
310	． 2.6	． 5	－ 3 ） 70×1	－31．-8.4	3！． 614	－9， 2×11	？9．4504	$\because 14$	－	99，	20．94：4	－9， 19416

13atr．	JANUARY， 1873.											
Time．	13	14	1.5	16	17	18	19	20	21	22	23	21
	Inthes．	Iurhes，	Turins．	Inthes	Inhlus，	Imflus．	Inchis．	Juches．	Inches．	Inches．	Inchis．	Inchis．
0^{6}	29，5um	\％9．500	－9！974	－ 4 里	8！50\％	－1966	29，估佼	201． $15: 7$	99.457	219， 701	9！ 1 ，＜2\％ 4	29，－8：
1	星页1	29．344	9！号品	9！． 111	2！ 54.2		39． 214.	：m，10．it		ㄹ．）． 70311		39.846
\because	－3，50．t	2！ 517		99．4． 4	－3，now	2！ 0 ． 5 ，m	－9， 301	： 30.0 .44	（2）． 4 （1）	29．720	2）． 840	29．815
；	只号号	39－8：3	－1914	－9，47！	2！．ant	99． 501	29．714	30.046	\％1．843	24． 743	29.818	39， 4.
4	9！ 1 ， 2.4	99，	2！ 195	（9）． 4 ［ 1	畋，505	29． 119	－3，718	$30.14!9$	？ 0 ，sis？	29． 744	29.860	20.841
\square	9！ 9.545	29.59	？ 168	80，50：	20，50，	89． 465	2．9． 716	30.050	29． 2×3	29． 751	29.849	2！．808
i	93． 5.36	29．50－	29．156	99．503	39．605	99．4：	21．700	： 310.0	（19）心44	（29．753	29． s 仿 7	－3．839
\％	C！5： 1	89．600	9！．1：1	－	景． 800	29， 31	29.75	30.116	29．	Q！． 7 76if	29．87：	29．850
＊		29.504	2！ 134	20． 100	29．（i1\％	29． $3: 1$	2．9． 746	29．	29．8．817	9！． 316	29.877	29.83
！	96．54	99． 58.1	9，1：19	－9．501	89，11：	39．${ }^{4}$	29， 75	¢！． 112 T		景！ 370	99．477	－9．s1
$1{ }^{10}$	\％ 510	2！ 569	99．1：4	－！ 490		¢！	\％ 0.81%	20． 9107	2！ 75	89875	2！${ }^{\text {a }}$ N（1）	49． y ¢
11	9！5．50	－19．567	3！1：	景．4－1	？ 3 ． $1: 1$	29．	？ 9.30	49， 93	（9）． 7 ！ 11	29． 7811	99， 84	29．78\％
Nom．	3！．514	8！ 5 ， 0	－1．1 1×1	？ 3 ． 4 ！ 11	O9，bitas	－99，こ\％	＠！，＜\％	\％！！ 118	2！987！	29．875	29，－73	29．765
1^{6}	29.614	29， 204	9！．1：31	6！ 4×1	89．（io）	29．249	29．S－4i	29.914	99．777	29．780	29.86	29． 737
¢	99．519	29， 514	20．1：16	96．4	99． 615		－ 9.915	29．915	צ6．76m	9） 780	9） 86	29．746
3	49.6	29．4！3	？！1－9！	29．49\％	9）．（iat	29.414	29．923		29．764	29．794	$29 .-73$	29.304
1		29．464	cr 1－：	29． 317	－！（i14	99． 478	39．950	（9）． 17	20．76ix		㫛， 76	29．785
5	9！3．830	2！． 4.4		29，51\％	2！．131	29． 504	\％！！ 16.5	29．930	－ 3.31	－	29） 269	99．717
1	39．539	29．425	品只碞	9！，506	29．610	69．54i	8！9．975		20．761	－	2！xit	29.709
7	企．54：	39．40N	㫛枵0	99．517	29．8961	3985	$\because!101$	99，！ 110	94．7．94	－！－N1		29．698
\cdots	\because－5，	29，：30	Q！3014	30．56	99．559	29，lite	29． 175	2！！ 011	9！． 746	－	29．8．8．4	80．6－6
$!$	9！．5．4ti	2！ $34!$	90930	号品：	29， 5 20	29．13：31	89． 919	29， 412	21．73：		29．从 ¢ 64	29． 104
10	29， 546	29，	－${ }^{\text {¢ }}$ ． 31	29．531	29．8．5．	29．600	30.102	－ 11.8 .4		99，E2311	9！$\times 2.8$	29． ta 为
11		？	29．3－5		29．584	29． 18 \％	30．124	29，819	29．790	8！	29.844	29．6m
Means．	－	29． 50.0	99．3164	）． $4!76$	－	． 4	－	畕9，	－ 4.748	4！9， 7383	29.8618	29.7683
Date．				NUAR	1873					BRUAR	Y， 1873	
Time．	25	26	27	28			0	31	1	2	3	4
$0^{\text {b }}$	Inchres． 99． 6 in	Imiths. $\because 1.7 \times 11$	$\begin{gathered} \text { Inches } \\ \text { 3! } \end{gathered}$			hes． 494	hes． ． 412	Imblus． $\because 1.541$	Imrliss， 411.7115	$\begin{gathered} \text { Inrhes. } \\ 2: 310 \end{gathered}$	Inches． と9．：：	Inches． 21）li：x
1	哭，647	？ 4.18	29．	－		479	． 433	30． $52:$	29．693	29：344	－！S SM	29． 168
2	9！．（if0	20．701	9！ 6.6	｜ 1 ？		44 C	400	？ 515	29． 6 （109	29．4－4	9！ 111	20，675
3	星． 12.66	2！．714	3！${ }^{\text {a }}$	－		443	，\％\％	\％ 16		23．207	49.48	29.650
4	94．634	24.704	89，17	，\％		454	．：45	20．nism	21.611 .1	2！． 263	¢！ 9.418	29．6134
5	29．6 4	－ 3 ． 731	景，右	$\underline{\square}$		147	．313	－！1，100	29．599	2！9．929	39， 415	93． 1641
6		－！ 1.74	3！，（\％）	5）		114	．310	31	3！5xiz	等碞1	93． 469	29．60s
7		$\because 2.74$	39， 6	1 ？		4×7	， 211	Q！． 377	29， 514	29．	9！ 4×2	29．504
8	\cdots Un， 6	－ 6 ， 74		－		4：11	1． 40	－	5	29． 244	29．4\％	29． 564
，		？！1， $7: 11$	29． 19	－${ }^{\text {¢ }}$ ！		＋2－	17：	¢9．811	2！ 498	89， 4 4i	䍖． 493	29． 5 \％
10	96． 60	？！．710	36． 6	1 ？		4：3i	1.11%		29 4－5	2！509	29.496	－19．474
11	8！（1）30	－9．710	？ 6 ，	－		4，	17%	为	39． 414	29．8．	29， 514	$\because 19$
Nomin．	9．6．	－！ 7.31	©！1i：	1 ！		$46: 1$	1．143	20．$\times 17$	29．400	－	8！ 5109	29．370
$1^{1 \prime}$	9！ 6115	－！ 7 7．	4．21	－！ 1		1－1	13：	29，	29． 404	29．984	99． 507	－1！330
$\stackrel{9}{2}$	99．631	－ 31.714	\％） 7	1 3！		ה，13：	145	39， 14	20．41：5	8！－ 4	29.519	－9\％
3	99． 615	？！1， 714	39			591	15，	29.830	29.414	99． 29	？5 54	2！94：
5	99．656	¢9．716	39． 8			－15		29.4	S9． 4101	2！ 21313	？3．Sll	29．201
5	29．itio	－1．719	24．7：	？39	Hi ．	din	， 26.3	20．	39.400	29.324	29.510	3！19\％
6	9！）（6is）	29． 18 R	29．7	1 －		58，	：30	39，M14		20． 3	29， 514	－1．119
7		219．15－8	\％！$\%$	1 3		81	，\％3：	？ 0101	39， 30	99， 340	－9！493	29．164
$\stackrel{+}{4}$	易估11	$3!168$	90．75	－	1 2	5\％	．	S9．790	29.304	26．302	？ 19.48	29．135\％
9	㫛的碞	29，10，	20．7			514	． H －	3.756	39：305	29．3．4	29，485	晃， 015
111	29， 618	ツ！11以	＊！ 71	；		7：30		3！ 7 \％ 3	29， 31	39 30	29． $4: 14$	23， 1112
11		－！ 613	39．71	） 29.		（illi	． 5117	－19．73	29：341	29． 205	99.48	UR， 903
Mcans．．	2！ 404	29， 6 （ril	－3．70	bio ？	号	4 F	：101－	29，3480	29，1064	29．0．85	29．4741	29． 317

万 A P

Dato．	FEBRUARY， 1873.											
Time．	5	6	7	8	9	10	11	19	13	11	15	16
	Inrırs．	furhrs．	Thehes．	Tmohes．	Inrles．	7nhlus．	Inches．	Indies．	Turhes．	Jumbs．	Inches，	Inchex．
$11^{1 / 2}$		（3）： 2×11	29， 411	3！．154	：11．	－9！． $7 \mathrm{~m}!$	：30．1200	：30． 175	39． 901	89．130	39.401	99），：－\％
1	－9．103：	290． 3 ：$: 3$	39． 12.2	29，（tin）	：311． 313	U！ 3616	$: 30.119$	30.104	：30． 1113	29， 910.	99．305	99，3i4
\because		39，	－39． 460	O！．15．0）	$\therefore 11$.	49， 750	30.10	S 31.015	30.051	Q9，-20	93.4110	
3）	23．11\％	－9，85\％	23．A－	（3）．（521	311． $3-10$	39，70	（3），297	$30.0 \% 0$	：30． 061	29.850	29． 4110	24.414
4	－9，m\％	－ 9	94． 510	S！，15，	： 11.0 ，	29.314	（3）． 219	$30.10: 13$	30.107%	24．-12	92． 4110	36． 430
\square	$\because 9.045$	－9． 177	30， 5.51	？9． 152	30， 315	99． 210	：30． $3: 30$	30． 011	30.1081	29． 5101	29．409	9！1．444
$1 ;$	－$\because 9.1$	29．125	99．fin	2！． 614	（11）． 2	33，14，	： 010.10	30． $1110:$	830.1019	99， 7.59	94． 412	3 $40 \times$
7	（9）． 010	9！．（17）	Q9． 6100	29， 304	：11）$\because 10$	（4）． 181	30．：271	2！ 9.978	30． 160	29． $2+5$	－19，	2！ 4 4！
i	＂！ 3	$\because 3.16 \%$	39． 1200	2！\％－ 1	311．	24． 120	30，Mix	29．694	31． 111	99．694	99． 384	
$!$	230， $3: 17$	99．027	39． 1744	2！1． 751	311． $2: 4$	99． 183	30． 3 S 4	29． 940	30.121	29． 6631	堂）： 210	9！ 492
10	9！．4．4	99． 010	29．1ms	29． 346	：311，215	CS．bifit	：30． 4113	24．93：	30．1：16	99． 6111	3！ 295	3！1，50，
11	39.479	8x． 190	29，1274	2！1．-24	： 111.81	29，（in－m	30.4112	O！！¢ W	31．19\％	90．50．	29．$\because 41$	－501
Nooii．	？ $3.4-1$		？	－9． $4:$	：in $17!$	96． 7111	：30． 4101		$30.12:$	29．56：	29，\％ 3	2！5，50
$1^{1 / 1}$	29！．570	－29．904	－\％6 600	39，－ 190	：31．16ii；	28.717	： $31.41:$	－3，914	30.130	29． 5419	（4）． 3116	昭，545
\because	94．4．9	189． 117	39．17\％	29，！1：3\％	：31．139	69． 717	：30．391	29.917	30.111	24．9 96	89.308	24． 524
；	2．9．541	29．050	99． 6 江！	93．975	$\therefore 311.10 ;$	89．7：3：	： 010.3146	30.114	310.193	69．4！9－	－3！， 3111	20． 563
4	48！． 5106	29．113	39，6ixt	（i1）． $11: 3$ ；	： 1110.008	84． 77.2	：30， 3	29．941	：31． 1941	99．4！4	6！1．318	－3！503
5	里的是	9！9． 1.46	99．Civi	$\therefore 210.0 .1$	： 111.1148	－9．）S（0）	：30．378	24． 5148	2016． 11.21	29．479	－3）： 315	$\because!1.504$
1	＇里． 516	89.190	99． 1 保：	：31． 11.1	30，10， 1	－M．W－1	：30． 318	919．145	30.115	91.460	2！1． 310	9！，（6）］
7	（3）．5t 50	29． 117	＇89，隹促	：31．314，	29． $11-1$	29！－－¢ 4	30．：34	29.945	30.05	29.444	69．：310	23.619
$\stackrel{H}{4}$	69． $4 \cdot 1$	$\cdots 9$	［89．lifit	：31． 144	－31． $91: 4$	98． 9101	30.319	99， 948	310,1025	931．4：31	24． 311	29.642
$!$	6！．11－	39，：315	29.6150	：31．113：	231，111	38.954	30.84	31． 927	30.103	94．416	9！1，：313	3.9644
111	（1）．41：	？9． 346	－9．13， 0	311.197	09． 11 R	：31． 0101	30． 35.3	3！1．！165	－91． 989	29．415	94．：3：3	29． 1344
11	？ 0.416		29．Aitia	：i1）． $3: 1$	？3．94：3	：00．05： 0	30． $2 \cdot 0$	－4．905	2！！． 961	99． 417	29．3． 346	29．6369
Means．－	29． 34134	？4．161\％	99.61103	$89.3-114$	：31，14：9	90． 793	$: 30.3190$	29.1915	30.0739	29，1020	29.3445	2！5e0
Date．				＊		BRUAF	7， 1873					
Time．	17	18	19	20	21	22	23	24	25	26	27	28
$0^{\text {b }}$	Inchos． ？！．711．5		frohes． $30,: 36$	Jmohes． 30.154	Jurbos． ：3． 10.6	$\begin{aligned} & \text { Inchus. } \\ & : 31,71 \end{aligned}$	Juchur． $\therefore(1,10,25$	Thehes． ：30． $196: 3$	$\begin{aligned} & \text { Inches. } \\ & 3!9,3: 30 \end{aligned}$	Thehers． （9）．r6 1	Tuches． $\therefore 11.1103$	Thches． $30.14 ;$
1	9！1． 740	30.117	30． $3: 1$	：30．1931	：30． 13%	30．730	$\because 6999$	30.1066	89．9R2	2！1．Hit	30.070	30． 109
\because	94． 75.6	30.15	30． 396	：30． 314	$\therefore 0.940$	：30， 211%	$\because 11.675$	30.19	2！ 3.915		20．10－7	：30．0：11
3	99．${ }^{2} 115$	30.159	311.403	310.70	30． 0411	： 31013	？ 9.068	30． 134	3.951	Q！ 9 Sers	： 0.1115	30．Ohix
4	2t，－，\％	：31． 173	30.417	30． $7 \cdots$	：50． 14.3	：31．1－1	－9．93	30.147	－9．9194	29！$x^{2} \times 9$	311.108	：311．145
5	？ $31 . \times 1{ }^{2}$	30.17%	311． 425	30.75 .1	30.95	：311． 14.41	29．947	：30． 154	29． 14.	29，N49	311． 144	：30． 014
6	？4．x－i	$30.1-5$	31.40	310． 719	30.1140	31）． 1175	29.941	30． 150	29． 913	？！！！M	310． 1130	30.004
7	？ 21. 2112	30.10	：10． 443	30.763	：30．943	： 111.50%	34．9124	：31．164	2！1．921 1	－31．912	311． 169	3： 963
	－91． 9117	：51． 199	$\because 31.447$	：30． $37 ⿻$	：30． 1141	： 110.5	2！1915	：30． 16	29．919	－ 91.911	：30， 158	29．931
9	93）． 11.14	$30.311 ;$	$\because 6.464$	：21． 2×66	：0． 313	：30． 5119	3！ 4.419	30.15 .5	－21． 916	201． $91-11$	30.11 K	913． 901
10	29， 90	：31． 214	：30．4＊：	1：0． 204	810． 1139	310.419	8！$\times 25$	30.144	49．90．	？！1．9\％	30.175	29， 276
11	30.001	30.85	31.4%	3：0． 510.4	30． 1113	30.414	O！Mis	30.140	29． 901	291． 913	30.193	89，${ }^{2}$
Nuon．	311.03	31． 5 5	（31． 512	：30．814	20． 1110	30.1015	96， 854	$80.14 \times$	49，x12	69．949	30．164	24．5114
$1^{1 /}$	30． 1102	30.312	311.54	（：0）．－r，	：31．-9.9	： 010.3010	㫛，－54	30.14%	3）． aj	2！！ 9411	311． 210	3！． 3 y
\because	30.1184	30． $2-4$	30， 515	：31． 517	（3）． 714	：311．34	＊9）H0\％	20． 130	29． 579	39．944	30． 011	＋9， 7516
3	： 01.109	：31． 301	：31．574	：10．864	：31），－71	：10， $3: 12$		310．11\％	－3！cil	99． 96	31）． 211	O！ 3 \％
4	： 010.13	$811: 318$	：30．600	30．-3	30．以゙，	\＄0． 314	6！ 9013	：30． 108	29． 5 －	29．972	311． 210	29.711
\square	311.15	：11． 312	30.611	20． 2005	311．-73	（31）9－3	90．	30，10－9	？！，c6i	9！1． $4 \times 1 \mathrm{i}$	30.218	29．7さ！
1	ใ11．16：	：31． $3: 3$	：$\because 1.10 \cdot$	30.9014	（3）－ 219	311． 2 ¢1	91． 940	31.086	2984	30． 11012	301． 9110	29， 71.1
7	：ir．1133	30.313	311． 1.6	［31． 911	：31．-31	： 110.317	99．96\％	30． 117%	？ 31.8	80.1710	30.46	－39． 709
－	？30． 118	80，3：34	30． $13: 31$	30，11\％	30.41	：11． 174	29． 371	230．057	20，	：30．1110	30． 309	94． 719
4	：31． 173	30.315		30，93：	311．-1.5	：31．147	30.107	31．17：3	24，sil	30． 024	30.199	23．718
111	S31． 180	30， 25	：31．（i6）	：30， 041	：i1．Jtix	： 010.11%	：31． 038	30．10：31	－¢！．Eti	30.1441	30.178	94． 5
11	： 11.13	30， 20.5	：31．12：$: 3$	20． 914.3	［i1． 729	20， 171	：30． 060	30.009	29，※\％	30.059	30.179	9！2．34
Means．－	30.1015	30． 8.811	30．59014	30.800	211． 83	：01）14：3	29.942	30.1111	29． 3010	29.9834	30.16 .9	99，$\times 4,06$

Date．	MARCH， 1873.											
Time．	1	2	3	1	5	6	8	8	9	10	11	12
$0^{\text {b }}$	Inchis．	Inches．	Inchps．	Tuches．	Inches．	Inrhes．	Inches．	Im．hes．	Inrhes．	Iuches．	Inches．	Inches．
	29． 69	3！	吅枵	2！ 6	49． 640	29．034	29．109	2！ 291	－！	－	30.1014	311．1015
，	29． 3178	29，－31	29，M6：	－3： 616	99． 507	SE．946	90． $110 ;$	31． 263	2！ 4 4！ 41	29） 901	30.015	30． 1101
\because	24． $8=11$	20．－4，	－	29． 8.96	？	$\bigcirc 9.056$	3－9，	29， 5	$\because!15118$	O！（tail	30.007	30．1189
3	29． 3178	21.845	29． 26	29.503	\％ 523	29． 1176	29．006	2！等示	： 11.4	2！） 975	20．9．99：；	30． 1148
4	29．773	29．-5	29．$\times 16$	9！9． 600	－ 21.511	29．085	$\because 9.112$	2！）3 ？ 1	29，48	2.19	30.000	30． 1163
5	29．7515	29．- －	29． 20	29． 609	2！．503	29.103	29．102	2！，301	2！4－ 4		30.010	30． 1164
6	29．757	29．nibi	29.211	92． 615	29．40， 4	99． 116	－！ 053	29，3：3！	－ 3 ，	\％！mo	昗 90	30．063
7	！！ 7.5	20．-21	9， 844	20．616	－ 469	\％9． 109	29． 117 i	¢）	－ 4 －	29.95	311． 013	30.046
8	$\text { 859. } 759$	－ 419	24． 813	29．be？	21． 434	69． 119	90.075	29．373	9！9． 611	24.939	30.010	30． 1145
9	\％ 25.4	29，－8！	99， 211	29．10\％	2！ 418	29．137	$\bigcirc 9.086$	91，41－	311， 616	9！9．94：	20.001	30．114：
10	31．759	29.80	919．797	23．623	－29．320	99． 126	29． 126	29．422	94． 671	29.934	311.001	30．03\％
11	29.764	29．-7.	39．74	9！）． 626	21）	39． 110	23．154	29． 4 （il	2！ 3.304	8．9．945	－9．903	30．03：
Neor．	30.761	29，883	99． 775	29． 619	29． 217	29.125	29． 160	23．4－1	－ 0.718	20．95	30． 9710	30．03：
$1{ }^{\text {b }}$	29.850		29．754	29．602	－3， 931	$3!1334$	29．1＊5	99． 490	2！M N	2：！ PH	29.971	30． 11112
\cdots	29.304	29． $\begin{gathered}\text { \％}\end{gathered}$	（2）． 340	2）． 616	20． 18	$2!146$	－ 21.205	2！511．	？\because 员江	9！9\％	\％．902	30.1115
3	29． 764	21，$=9$	29．737	29.613	29． 147	29.156	？！1．	21． $51 \times$	？1． 104	？！Mi1	－1．954	30． 1115
4		29，－－	39， 3	99． 610	3． 129	？ 3,161	29． 250	93． 413%	23.944	\cdots	－996	30．01．
5		8！s\％	90.722	29． 625	99． 090	\％9．155	219 \％\％	20． 514	－1．95		－9．93\％	30． 0197
6	2！． 201 29． 3 ： 1	显今心	3！ 36	29.616	2！ $110=11$	2！．13：	－3！ 294	－3，		311． $11: 3$	20．93－5	30．1120
7	$\begin{aligned} & 29.295 \\ & 3!9,-i n) \end{aligned}$	6！x！	39， 3195	29．601	29．058	29.131	29， 324	93， 511	30． 1011	：11．0．10	2！！ 11 \％	30． 11418
\checkmark		29．$=7$	9！ 6×1	29．595	9！0．05	9！． 11×8	21，3i3：	915 5	：311．112）	：3．0．0．3i	？ 3.941	30.1011
9	$\begin{aligned} & 29, \quad 03 \\ & 29,01 \end{aligned}$	\％ 896	8！ 930	2！ 5.590	2！． 037	09.1106	29， 31	29．515	30．13：	30． $10:-7$	9！90，	30． 01 m
10		（9），$\times 10$	？ 2 ，in7	9！ 5162	29． 1143	29． 1149	？ 318	29．541	（21）． 117	30．033	9！1．903	30．10：
11	1		29．64． 5	29． 555	29．045	20，1120	99．305	29.5317	：31． 007	30．0．32	2！1． 931	30．102
Means．．	－9． 5 －	（1）x．	－9，5－5！	29．（6asti	29.390	29.140 C	$\because 1.305$	$4!19: 1$	29.7501	O！9－15	29.14850	30．11：59
Date．	MARCH， 1873.											
Time．	13	11	1.5	16	17	18	19	10	21	22	23	21
$0{ }^{17}$	Imats． ：：110 10	Inches． －！！－-5	Inches． － 9.45	Inches． 29．13：4	Inches． 310． 064	Inches． ：11． 196	Inches． ：ill， 0110	$\begin{aligned} & I m \cdot h e s \\ & : 11 .: 45 \end{aligned}$	Incher． 3in．1：0	Inches． $311.11=$		$\begin{aligned} & \text { Im, hes } \\ & 2!1,20, ~ \end{aligned}$
1	\％11．112	29，	9）45－	？9． 69	30．12－5	：31． 14.	30． 091	： 11.2011	：31，16；	$31.11: 9$	：00． 2 －	2！ 083
4	30． 1143	是，（0）	29． 4167	29．307	30.1906	3i1．13：	30， 140	311． 36	：01． 143	30.154	： 31.8 B ，α	29． 2×17
3	30． 1147	$\cdots 3.817$	？1．1－1	20． $210: 3$	30．1：0	30． $1: 2$	30， 16 s	30． 31.	30． 15%	31）．17	30． 23	S！
4	［311．1051	29.610	39， 419	291． 723	30． 166	：30．1：3：	311． 194	30．：3：3	310．142	：0．1s；	30． $2 \cdot 0$	2！Mrili
5	311． 11.3	24． 129	99， 04	20． 201	30.156	：31）．1：4	： 110,1119	30）． 369	：31．142	31． 210	30.02	29． $84!$
6	311． 11619	2.16 .11	20．31：	29．3019	30．176 ।	：31． 12.3	30.18	：30． 3×1	31．1：3	30， 217	30． 2011	89，心．
7	311.1105	29． 590	319	39．7：1	30.191	30． 101	：31． 3.4	：311． 214	：01． 111	31．	：31． 211	94． 79.9
\％	30． 015 m	29．	2！ 5 最	29.716	20． 10	3in．10：	：10．2010	：311．400	： 21.010	311．	311． 1111	99．754
$!$	30.1144	2星 5	99． 546	Q9．74．7	30． 205	30． 1124	30， 3 （1010	30，：311	311.103	： 11.	：31．17：3	29． 241
111	311． 101	2！！ 5101	30．84！	29． 3 \％	30．$\because 1$	： 110.117	：310． 316	30． 3 ：－1	331.115	311． 8 \％i	：30． 181	29，bion
11	311． 111	29．4 41.	29． 163	31． 700	30．	30．11：3	30． 256	30.81	： 30.053	311．${ }^{\text {erat }}$	3．1\％	－19． 12×2
Kım，	311． 121	24.144	－\％\％	3）－－19	30．${ }^{3}$	：30． 11.0	311．	：31． 23.1	30． 1948	：11．易处	331．09\％	？ 1 1i；0
$1{ }^{1 / 1}$	\％11．12：3	2！ 434	39，	3！$\times 1$	30.8	30.1030	30． 310	：311，3tia	：31． 112		：30． 012	－19． 816
\because	310． 1213	23． 402	2！． 6104	3！－＜－	30.820	319．111）	30． 5	314，in 31	311． 1111.5	：31． 264	311．105	9，
：	311.119 301103	291） 4197	？	29.80	30.314	30． 31013	30，30：	S11．35	$: 110.10: 7$ $: 311$ 0161	311． 30	31， 36	－
4	30． 1103 311120	21． 393	？！ 2.16	为	30． $2 \cdot 4$	30.1112 $30.116: 3$	$30.312,2$ $30 .: 317$		311.1031 311.114	311．3：3	$311.04!$ 310.03 109	－
\cdots	311．121	9）	29．6is）	29， 94.9	30．	30． 29.19 C	30， 3130	\％31． 301	301102	：311． 211	：31．014	291．1：36
\％	311， 045	21：3＊		2！ 317	30.34	30.1003	：110 ： 4	（11）晶	30.1051	：811） 214	30．994	9！1，6：31
1	30.12 .5	29， 407	99．6til	96． 9611	30． 20.1	：31． 110.5	：30， $3: 37$	30． 51	30.10 .215	30． 2×1	29． 917	29．634
11	96． 314	29.413	？！（i－1）	20．010	30． 211	30．10，	：30， 3146	：31． $3:$	$\because 21.1050$	30． 24		39． 607
11 11	－ 21.9310	29， 212	－0．	$\bigcirc 30.0310$	30． 319	219． 1149	ant 312	311．$\because 14$	311.10011 30.096	30.83α 30.891	㫛， 4.5	$\begin{aligned} & 39.616 \\ & 2!615 \end{aligned}$
11	219．910	？ 447		30.104	30，19：	30．11－1	311． 3 \％ 2	311．19，	30． 096	30.891	？ 4.93	2！ 615
Mrans．	30． 01591	9！1） 5318	29.6810	99． 23.317	30．189；	311．06－3	30.259	34． 3 ， 6	31．0203	30.2401	30.1151	29.7211

Date．	MARCH， 1873.							APRIL， 1873.			
＇Time．	25	46	27	28	29	30	31	1	2	3	1
$0^{\text {b }}$	Inches． 09.595	Inches． －3．750	Tuches． －11－ 10	Inches． －ツ！ 590	Inches． osy Eit	firlies． 	fuches． （3） 919	Imbes． ：30．1：30	Inches． ：30．10；10	Inches． ：311． 111%	Juthes． 311.145
1	29，589	30，	29． 790	29，	31． 500	\％6．101	3！ 331	30.116	30.14 .5	30， 1196	30． 210
2	31508	29．811	99． 724	？！． 517	？ 3	29． Cl 11	29， 95	：31． 101	30． 1161	：31． 096	\％11．
3	29． 5 e	29． $5: 3$	29.78		20．40－		－3． 118	（3）． 118	30． 1176	31）． 101	310， 2.4
4	29． $5=0$	29． 89	20．75	99，	？1． 414	29．64：	29． 194	30． 1011	30． $110: 1$	（i1），103	30． 2.1
5	29，5－5	3！，－rit	29． $3: 7$	29） 20	2！1． $410 ;$	99． 664	30.111 .1	： 0 （1） 190	：30．0．a	：31． $1: 1$	30． 3.4
6	29．597	29．	29． 704		90， 31	量！（6）			（11）．11：	（i11．1\％	30.95
7	39，50，	29，\times \％	29.120	\％ 510	？1， $3^{2} 110$	31） 311	2！． $94 ;$	20．0．0．	31． 13	3i1．1：1！	30， 293
8	29.591	29．	29.68	2）． 584	20， 34	－ 0.701		［in． 116 it	：21． $1: 4$	30． 13.9	30．
9	90． 595	29.900	29．64？	23， 364	9！3．312	29． 230	20． 116.5	：31．063	3：1．191	：31）1：13	\％11．40
10	29． 606	39， 9	39．100	－3， 54	91． 415	3 31． $2: 31$	： 0 0． $10 \times$	3a． 10.15	34.104	30． 136	S11．
11	29.612	29． 299	－	8！54－	$\because 4.401$		？ 310.10	：31）． 1046	30.15	20．144	： 010
Noon．	29． 0 他：	99，s．	99． 5 －	291.544	29．41．	寝 361	：31． 104	：21．043	：11．1：3	（31）． 140	31．
$1^{\text {h }}$	30． 10	29.915	29，519		？ 4.43	ッ1．	（il） 111	311． $0: \%$	： 111.143	（11）． 1.4	311． 914
2	29．65\％	29.903	29.174	29． 5113	39．4．1	29，－40\％	3i1． 130	（1）．（1）${ }^{\text {a }}$	（ii）1：3	（31）． 16	P！${ }^{3} 11$
3	20． 46		29． 5 at	－31． 511	？ 471	29．205	：i1．1：3	：11）．0．31	：i1． 141	30． 163	（30．1）
4	21．6－4	29．	39．	23， 511	\％3，	\％！	： 11.15	： $110.10 \cdot 1$	311） 1.15	：30．1－10	$30 . \therefore 110$
\square	景． 700	29． 210		29， $81: 3$	29， 2 ？ 31		：31．1．10	311．029	311）．153	：in．10，	311． 2.7
1	－9． 210	21． 910	？ 3	－ 319,5115	991501	\％ 4 ¢	：30． 14%	$\therefore 210.109$	（31）．15，	：20． 194	：31）900
7	29．715	99．－3t	29．		29．Sin	2！1，－tio	［i1） 146	3i1）． $0: 1$	：210． 144	：311．202	30．
\％	29.711	39，心－：	319．5010	\％ 3117		？1，－－	：ili．1－4	311． 10.9	：31．1：14	30．	2il．2：3
9	20． 24.3	里穴析	29.51	39．493	2！¢，	O！ $21 .-6$	： 11.14 ，	：11）．031	：21．1：3	：31．315	310.94
10	99．763	39，86\％	90． 5	61．405	31.5	$\because 4.4$	：i11． 144	：311． 04%	（30． $1 \times$	36， 2111	30.941
11	39．384	99.844	29.505	29， 470	29.506	99， 915	Si1）．13：	（31），10．15	30,113	30.214	30．94：
Means．．	29.6450	29.578	29．500，	29， 540	39． 4789		：0．1117：	S0，05－5	30．11\％	30.1526	30． 2×11
Date．	APRIL， 1873.										
Time．	5	6	7	8	9	10	11	12	13	11	15
$0^{\text {b }}$	Inches． 30.248	Tuches． 30.471	Inches． 30． $3: 1$	Inches． 30． 25	Inches． 30． 895	Incles． 30． $2: 2$	Inches． $3: 31.30$	Inches． ：31． 649	Inches． 30．：3n	Inches， 30.166	Im／nus． 30． 2113
1	30． $2=0$	30． $4: \%$	30． 330	310． 3 B	30． 20	30． 3 L	301.71	：it．ila	30.38	30． $1: \%$	30．193
2	30.309	30.445	30.334	30．38	30．Sm0	30． 3 （2）	31．7T	：01． 621	30．313	Sil． 196	31）． 190
3	30． $2 \cdot 0$	30．4in	30． 38.1	30． $3=1$	31．	：30． 3 ：9	： 11.801	：31） 351	31．：3， 6	：31． 109	3i1． 205
4	30.345	30． 428	30， 330	20．395	30.203	30． $3: 3$	： 1	30.5	30． 3116	：11），110	：30． 210
5	30.357	30.418	30．330	30． 36	30．	：30． $4: 7$	301．709	（21） 5	：30）：16	［i0）11－1	310． 214
6	30.3 ± 4	30． 101	30． 345	30． 3^{2}	310．9－	30． 446	30，－ 117	［10． $5-1$	20．3：36．	20． 1180	30． 129
7	30.411	30．394	30． $3: 3$	？ 0.401	30.95	2ill． 4.15	511．	30． 510	30． 300°	30．115	30． 30
\％	30.41%	30.387	30， 3	30． 390	30． 82	［i1． 11.6	（11），－（11）	310.54	： 21.24	30.1123	30.196
9	30.406	30.363	30． 2×2	30． 400	（31）	：in． 14	30.741%	30.504	\％ 11.8	34． 1161	30． 19
10	30． 440	30． 3 B 9	31． 4.4	20． 58		30．520	： 11.7	31.80	31， 3	30． $11!18$	31）． 117
11	－30．456	30． 36	30，	30．39：3	310.814	30.544	301.20 .9	310．4！	30， 315	31.1115	3i1． 171
Noon，	－30．168	30.125	30． $3: 34$	30.38	301． 303	30.504	31.7	：31． 40	311．$\because-9$	S11．1 120	30.165
1_{2}^{12}	30.458	30.360	30， 340	30． 317	311．$\because 111$	S0． 515	310．76，	：31． 414		：311． 114	30．16．3
2	30， 500	30.359 30	30， 3136	30.37 ！	30． 314	30.615	311.80	：11．4－	30． 2	3in． 117	30.159
3	30.448 30.502	30，360	30． 3 3， 3	：20． 36%	30.910	30.147	311.754	：31． 413	：310． 2×8	：i11． 140	30.142
4	30.502	30.363	30． 3.49	：30． 3614	311． 914	$30.144{ }^{-1}$	30． 74	：10．4 4－3	310． 297	：11． 164	3i． 143
5	30.508	30．36？	30.3 .0	30． 360	30．$\because=4$		30．729	：30． 414	311． 96	30， 114	\％io．1：3
6	30.507	30.366	30． 307	30． 30	30．$\because 41$	Sll Miti	311．03	：31． 40.9	30.817	30.15	2il． 110
5	30.503	30.359	30， 3.5	311．3．1	30.24	30.6	211． 712	：31． 4111	： 310,253	：31． 1711	：31． 096
$\begin{aligned} & 8 \\ & 0 \end{aligned}$	30， 496	30.3	30． 362	：3，35	30.210	31.710	：31． 649	： 11.8	30．	311． 1×2	30．（1）－1
9	30． 415	30． 341	311． 365	311．${ }^{2}$ ， 3	30.318	30． 2×1	洣，保吅	20．3：10）	311） 30	： 111.	30.1 －
10	30.491 30. 4	30． 24	319.38	30.8	$30 . シ-1 i$	30.7111	：$\because 10.60 \sim 3$	311， 35	30， $1=$	B10． 314	？ 110.110
11	$30.4=0$	30.341	30.373	30.303	310.89	：311． 764	S31． 63	30， $3-1$	\cdots	310． 213	301046
Means．．	30.4303	30．	30． $2+11 i^{\prime}$	301．8723	30． 2493	：11． 540.1	30.757	30．4！4：3	30． 30.84	30.105	30．1．16

Date．	MAY， 1873.										
Time．	10	11	12	$1: 3$	11	15	$1{ }^{6}$	17	18	19	20
	Inchis．	Jumbes．	Iurlus．	Indirs．	Jurlus．	Iurlics．	Imphes．	1 Inches．	Iuhis．	Iurlus．	Imhes．
（1）			［i1） 410	（0）． 4.9	： 11.8 ：	：0．14is	：11．19！	： 11.501	：31． 170	：31． 1115	？ 317%
1	99，N：5	30．23il	：11． 413	31．1：18	： 1110 ：	30．151	：31． 117	：30． 510	哏．1in		－99．97\％
2	－1	？11．Sill	：31．41＊	311．Lini	：311： 2 S	：30．16i：	： 11.4 ． $1: 3$	：31）， 317	231．120	29，！ 1 \％	9！．${ }^{\text {O }} 9$
\because		；14．	311．407	：31．11！	：311．3：	：30．10，	（10．1：1	［31． 515	：31．17：	？	？！Mi1
4	2！．94－	30． 269	：10．4 40	30．15．4	：10．11：	：31． 10.1	31）． $1 \div 1$	30．．10\％	：30． 1.3	30． 1106	（9）． $\mathrm{Sm}_{\text {a }}$
\％	20． 0001	：30．311	30．1：9	（3）． 1.0	： 11.415	30． 16	（10．10：	30． 519	：31．1：16	311.10103	¢！！
ti	20． 113	30． $3 \cdot 1$	34．4．11	：30．1．15	311． 111	（31）． 1611	30．1．0	30． 3.1	：11．1：3	：10．101：	－
7	311．1214	： 10.01	30．11－	30.14.	311． $4: 1$	：31．15： 1	：31．11－1	（30．591	$\therefore 11.11 \times$	310．0．35	9！！！9
8	30． 101	30． 3 \％	20．4511	：10． $1: 15$	：31）． 113	：311．1：1	：in．12：3	$\therefore 0.81$	311．111．	：31． 11.1	？
！	［10． 107	：31． 315	30． 4.15	（1）．以－	311．11：	311．1：11	331．4！1	：30．1！ $1+$	313，110，	30.017	吅！！nio
10	30． 114	30． 35.4	30．4．4，	30．19：	30，1．15	：il） 111	： 31.812	317．17		：＇il． 1101	
11	：30． 119	310． 35	301． 4.0	30．4 41	：31． 117	：31．131	311． 518	：31． 1.01	：31． 1059	3i1．00．i	（3！！！in
Noom．	：10． $1: 6$	： 310.8	：10． 151	31）． 1111	：311．470	S11． 1×1	311． 50.5	310． 5	： 31.1011	：30． 1005	\cdots
1^{11}	：31． 181	30． 0^{213}	：31． 4611	：30， 112	（31）．1－11	：31． 4113	：31． 2 ma	31． 1191	： 111.103	219． 111	？
\because	：30． 161	St， $3=1$	：11． 419	310． 314	：31． 12 ，	：30．1：1\％	：31，Sin	：31． 310	$\therefore 11.103$	29． 14.1	－ 9.95
3	30． 16 m	：30．304	：311． 171	30， 319	：31． 125	20． 40.36	30，ra：	St，：	： 11.10 .11	［20． 100.	29．9
1	：0．191	30． 314	：31． 476	：111．$: 5-1$	：30． 121	：ill 1lil	：11，．sili	311． 318	¢！ 3 ？	29，10\％	2！ 1.96
\％	（30． 191	30.101	311． 4×2	：10．	S10． 116	$\therefore 1612$	：11． 518	： 10.0 ． 3	－11！！118	8！！ 1×2	4！9， 95
1	（311． 311	30． 109	：31． 111	：110．$: 10$	： 310.18	：31．11：	： 11.58	：30． 3114	310．111	9！9．9－4	4！ 1 m：
－	319．9010	：30．404	：31．小	： 10.14%	：31） 171	：30．1：17	： 11.65	：31．${ }^{\text {cha }}$	Sil． 1110	$9!.978$	6！9． 198
－	\％ 10.	34． 4111	：i1．17．，		：31． 1.81	：10．13，	30.80	：11．${ }^{\text {at }}$	3！ 3 ！ 14	9！：17\％	¢！！！\square^{1}
9	：0． 2	30． 411 i	：311．17，	：10．$: 111$	ii）． 1.10	［30．110：3	301）． 515	30．30	［31． 1100	？ 1917	（19）！！！
10	：30． 211 ，	30.117	311．175	：311． 210	：11．1tis	（31）．11：	：01．581	： 11.8	：30． 1111	－ 217	
11	20． 211	：30． 41.	： $111.11 i \mathrm{i}$	：30． 2311	：11． 1.01	：11．131	20． 506	（1）． 3	：31． 1111	？！！！！	49， 911
Mu：11s．．	（3）． 0969	301） 2.51	：31．4．71：	：10． $41: 3$	30.4304	：31，141\％	20．5110	：31． 3	：30．11931	30． 9040	23． 25.91
1）：ita．					MAY	， 1873					
Time．	21	22	28	21	25	26	27	98	28	330	31
	Iurlirs	Inehres．	Im. hrs.	Jur hrs.	Inthris.	Inthre．				Imincs．	
1^{11}		2！ 9.76	2．8． 217	$\therefore 10.011$	2！！！！ 1	4．9．971	：11．1：3	：30．110～	$\because 31.1019$		e9.72i
1	2！1，－21	29．75		30.017	3！1，！17，	－ 4.48	30．1501	30． 1113	8	4！ $11: 3$	3， 7×1
\because	29，s－4；	\％ 3.987		30． 01618	？！ 977	3！1， 510	：31．10	30． 11.6	\％9，	－39．76，	21．－71
：	29．4．0	29． 230	30． 36.1	30.0119	219 97	－！！¢ ¢－，	：n． $1: 2$	30． 1101	显 15	－¢15	$\because 1$.
4	？ 1 ！ $\begin{array}{r}\text { rai }\end{array}$	29．715	2n！ 73.1	：0．0．0） 1	9！！ 176	？！！M	： 31.101	211．116－	？ 3 ，9\％；	S！fity	？1．7F
\because	3！－－：	29．711	9！． 316	：31．0：1	－！！！ 17		：0．1：2	30． 11.7	20．9 $9: 1$	2！ 911	$\because 1.704$
${ }^{1}$	29.8	2！9．74！	9！－－ 67	：31． $0: 1$	29.91	：30． 10.5	（31．130	310． 10.0			＊！1724
7	ソ！ど？	89．9．9	9！．－－\％	：11．0， 17	是！！\％	：211．011i	311．1：1	：311． 11.01		2！M Maxer	（！），rin
r 9	－1．	99． 209		311）（1）	？ 9 ！	S11．019	31.1011	30.111%	－1． 911	？！）hire	？ 1 ，－
\％	2！	9． 3	里，－：	：31，10： 7	91，！ 4 is	30． 1 ハ－	211． 1111	30． 11.8	？！19 $!18$	99，lim	？！，ratis
111	－\％－1\％	49， 7 ，	然，－111	311．198	？！！ 1 \％	： 11.003,	：31． 111	\％ 10.108	－9！！ 110		\％1．4．1
11	3，－ 11	2！ $5 \cdots$	20．－16	：31）． $11-1$	$\cdots 1.95$	：31．01：	：50． $10: 2$	30． 10.4	O！	20． $211{ }^{1}$	\％ray
Noun．	29，	99． 7 － 96	年，－7：	30， 01.8	－1）！ 110%	30.1111	：31． 196	：00．012	4， 6×3		Un，ris
1_{2}	？！－－			：30， 0104	：11． 1117	3in， 10.1	S0． 1199	？110．	－ 4.1	－9．713	2！$\times 61$
3	？	20．lim｜		－	－9！ 508		：010．08i		（1）		－ 81
4	？\％\％－	$\cdots 1$	\％19	¢！！	6）！ 18	：311． 011	Stion 0 ：	20．00：	？！Mrs	39．711	1096
\square	26． 24	勺！ 3 －	？ 3 9\％－	－！	边	（311． 111	：31． 10 \％	－！！！－－	30．415	39．710	：311 17：
13		－9．29	？ 9.1501	O1，	－19． 111	：11．1119	： $31.10=1$		2！ 210		2！-1
7	景， $2-1$	291． 2×3	？9！！	29， $1-3$	？， 4.6	： 2111.1	： 311.040	？ 17	－ 3 ！ 7 ！ 11	\％9．7	29，
！				29， 15	？ 9 ！ 1711	30.113	$30.115!$	$\because 1.11-\cdots$	\％\％\％	9.711	\％9，－11
10	号洨！		－	2！ 569	？ 3.4 ！ $12 ;$	311．1\％1	30． 025	ツ！ 9	6！．751	？9， 30	（1）， 4 ， 1
11		2！1．71－	： 1110	2！！\％	？ 3 ， 171	\％in． 11.1	So．Orit	？！！\％	\％9， 711		
	：！－－：：；	$24.3: 11-$	\％！	：11．1117：	2！！！171	$\because 110121$	20．113－1	30.1131	2！9，－ 6	9！ 3.83	W9．

The following two tables contain the daily and houls means of atmospheric pressure derived from the preceding record：

Daily means of atmospheric pressure at Polaris House．

Date．	$\begin{gathered} \text { Norember, } \\ 1 \end{gathered}$	$\begin{gathered} \text { December, } \\ 1 \approx \% . \end{gathered}$	$\begin{gathered} \text { Jamary } \\ \text { 1~2: } \end{gathered}$	$\begin{gathered} \text { February } \\ 1 \rightarrow 23 \end{gathered}$	Marelı， 1873.	April， 1873.	May，1－8．
	Indirs．	Tuches．	Inchas．	Inches．	Itirlus．	Inches．	Inches．
1	：30． 30004	：11）． 4098	＊9．6092	2！．4inis）	29．3754	30． 15.85	3！ET6 ${ }^{\text {a }}$
2	$30.10111-$	23！－20： 11		21！．205	94． 20.11	$\because 1153$	？！3．8心－ 9
3	S9． 5099	6！（tas？	曻）（3：135	29． 4711	29．7－39	30.1590	29． 7136
4			34． 614	99．3217		310． 2310	3！1，－］（t）
\therefore	919．746	99.762	？！ 6 ． 6946	94． 3404	29，3469	30.4303	（3）． 911×5
i		¢！．7317		9！161\％	29.140 c	30．Ski！	30.0993
3	94.80	－ 4 9． 5130	？ 6.6116	99．616\％	99． 20.5	30． 341 C	30.3193
K	：0．（Hith 4	？！）5！10？	8！． 75.00	30．S－tul	94.42 l	30．3723	30.0733
0	：30．．－\％－－	2！ 3 ． 711 m	？！！． 112 a	30.14 S	29． 7500	30.5493	39． 7175
10	：31． 119	－9！Matl4	：31．0472	9！ 57 \％	29． 1 m	30，54．4．5	30．0960
11	20．－5，	24． 61641	－！！． 9421	30.3110	29． 117 F	30.7502	30.3514
1：	30.09976	21． 8244		－39．0415	$30.10: 31$	：31）． 41933	30.45 .13
13	20．19， 11 c	－ 29.53114	90．5．5：	30． $07: 3$	$30.15 \% 1$	$\because 0.3054$	30． $41 \because 6$
14	：31． 11429	89）－ 0112	39．5050	29．10， 10	29．5hits	：i1）1－2m	： 10.48 .24
15	8！． 21197	－1！パリ\％	94． 3064	－94， 3445	39．65： 0	：10，1．xtic	30． 441%
16	29．7－11－	？！．－5？	3！． 4.76	36． 5120	29．－1：17	3！1，11－4	30.5110
17	？ 6.10610	29.9431	（3）．5，\％ 0	80.0015	：30． $1 \times 1 \%$	69．9376	：30．458
15	$\cdots 9.504$	－ 4.9463	$3!.45-5$	30.8001	：30． 110 －	30.11940	： 0 ，（finil
$1!1$	？ 3 13， 30	id．9\％ 5	99． 5113	30． S － 01 F	30.253	311.306	$2!1.913 .04$
$\cdots 1$	20．13，it	30． 3178	3！．9．n－	30.20010	30.3363	30． 1075	29， 51.91
$\because 1$	？9．691－	$30.11-3$	？！ 7 91：	： 010.8196	30．1526．	30.6892	2U．cisin
－2	39，7：51．7	：119．3135	9！9．775：	30.44% ？	\therefore ：$): 2401$	：31）．6－4	2！． $7: 36$
？	－3！－－－+9	$\because 6.410 .68$	9！．－1， 15	39.410	：31． 1154	（3）．5uti	
$\because 4$	？9．8415	： 311.86	3！760－3	30.1111	$\because 9.3914$	$\therefore 3.1924$	$: 10.0073$
U－1	39． 7917	？ 3 4． 4 ？ 1	？ 9.64511	？！ 9.901	29．6i4．0	30，1118	2！． 9711
\cdots	30． 3514			？ 3 ！！5－ 4	29，8， 17	39.919	：11，04， 1
\％	30． $1 \geq 26$	？9，（then	29． $71+i t$	$30.1651-2$	29．「E0；	セU．	：30． $11: 37$
$\because \sim$	30.181%	80．20： 2	94． 7102	34．Stinf	29． 543%	－！（6）46	30.030 K
$\because!1$	$30.963 . t 5$	$\because 6.161-8$	30．4x－4		29． $47: 3$	29． 13.304	30． 913
：${ }^{1} 1$	31.41847	94．4770	？ 3.3018	－．－．	9！． 7.5	¢！．©－0．	24． 71.51
31		99，5x10	99．745		30.067%		－ $41.811-8$
Means．	34．017	96．850	40． 64.43	29.6017	99.8000	30.9169	330.0478

Hourly merns of atmospheric pressure at Polaris House．

Time．	$\begin{gathered} \text { November, } \\ \text { 1上ty. } \end{gathered}$	$\begin{gathered} \text { December, } \\ 1 \sim 2 . \end{gathered}$	$\begin{gathered} \text { Junuary } \\ 1=2 \cdot 3 . \end{gathered}$	$\begin{gathered} \text { February } \\ 1=3: \end{gathered}$	March，1873．	April， 1873.	May，1ニ゙い。
	Inches．	Tuches．	Turlux．	Inchex．	Inches．	Tnolucs．	Inrles．
0^{18}	29．939R	69，＊－：157	9！．6めら5	29．Nonit	29． 29.0	30． 2185	311．14： $2: 1$
1	20． 15	ツ！8．8．9，	$\because!!$ ， 1120	？！． 9011	99． 170	：3， 2143	311． $11.0-7$
\cdots	29．3：40	ソ！（6．0．21	$\because 1.6$	99．9033	－31．81：14	30． 21.66	311． 1140
3	99．	29． 447	$\cdots 16 \times 10$	8！，90\％\％	99． 7247	：3． $0^{3} 940$	$311.1120 \cdot 3$
4	3！）（\％）－	？ 3.15	\％¢ ，6： 19	－！！！（16）？	99． $3: 15$	30．${ }^{2}$ 186	30． 0441
5				－9！． 317 F	99． 29.54	： 11.305	30． $114!91$
6	99．9317	$\cdots!1.517$	ソ！（1－7：	？！，！oni．，	－39． 395	： 01 ，3－3	Sil）0．54ty
7	29． 1197		6！．6－5	9：9．9062	（9）． 5944	：30． 2.519	30.11 .3011
－	9！1．9：2，	－8！－（il？	？）， 71131	2！． 9104	－！9，3！	：31）．日－5	：31）．（1－5i4
$!$	96． $5: 301$	80． 29%	2\％．大10．cis	－5，40x	$29.3!55$	30． $2 . ? 4$	30.0 .580
10			$\because 3.13048$	99． 3 \％ 1	29． 3 （5\％）	30． 2 （\％\％	： 310008
11		？！－\％ 4	？！！（1）心		29.819 .5	30．30\％	30． 4.51.
Noon．	－ 9.9248	צ！－－ 11.5	－ 21.6991	（99）－－$)^{-5} 1$	90． $3: 114$	30.3119	30． 15.80 c
$1^{\text {h }}$	－！！ 91515		？9．7019－2	29．-1.5	29． 2 ！ 100	30.215%	30，05， 5
\because	9！． 9×14	－	3！ $7119:$	29．-11%	29.3175	：31． 150	30.0167
3	99．9259	2！リ，玉－1m	－！！． $71+1.5$	？ 9 （11422	＇99．－15	30． 2142	：31． 11473
4	96，89R5	9！，人3：99	－9！． 70.5	39． 1115	99．T＊00］	3i1． 916	30.0410
万		69，－tisis	－！ 7 （hi．）	29．9166	$\because 9 .-1: 3$	$\therefore 10 .: 16 i 4$	$30.15 .5+1$
13		3枵，ctill	49， 711%	99．910\％	99.8197	二a）． 216	： 111.145
7		－3！－－¢111	9！． $71 \% 4$	－ 5	39.816 it	：10． 210	：31． 0474
\cdots	8！），（2t！	－3！－－1：39	－29． 704 c	S！9000	29.614		：10． 0440
9	－4．wast	$3!1040$	－3）（6）${ }^{\text {a }}$ ）	－3！！ $104!$	$\because 9.9119$	30.2151	：31．0391
10	$\because 1.9011$	20．6．04	2！（6） 1 ；	－39．900	39，Suma	： 0 ，3141	：39．0451
11	24．E10 4	6！ 8.8411		9.9 .9107	$99,507!$	31，21以	：0，104：3
Means．	29．117：	69.850	29．69\％	49．0117：	24.8000	30.2169	30.0478

Annual fluctution of atmospherie presswe during the winter－hetfigerr．

The analytical elements and expression made use of in the present discussion are as follows：

n	${ }^{1 / 1}$	b_{11}	B_{n}	C_{11}
1	＋0．24tel	＋0．40：307？	0．シャ゙い	E2－36 $36^{\prime \prime}$
2	－0．41544	＋0． 19.1569	0． 1014.5	333 ？ 20.
：	－0． 16070	± 0.00000	0． 16070	2800000

$$
\begin{gathered}
\mathrm{B}=29.9167+0.24536 \sin \left(x+82030^{\prime} 54^{\prime \prime}\right)+0.10145 \sin \left(2 x+333^{\prime} 22^{\prime \prime} 45^{\prime \prime}\right) \\
+0.1607 \sin \left(3 x+270^{\circ} 0^{\prime} 0^{\prime \prime}\right) \\
x=60,120{ }^{\prime} \ldots
\end{gathered}
$$

By means of the above expression the following values were obtained：

Months．	Observed．	Computed．	$\begin{gathered} \text { Dillimere, } \\ \text { O.-C. } \end{gathered}$
Decombry	$\begin{aligned} & \text { Inows. } \\ & 29 .,-5,1 \end{aligned}$	Inthes． $2!, x,-i x \alpha$	$\begin{gathered} \text { Im. lics } \\ +0.1060: 3 \end{gathered}$
Janılary	－		＋0． 1000 l
Frbunar	49．809	－6． 2 C．19	$\pm 0.100 \%$
Marcla	99．－1011	－	－0．000：3
April	30.2109	： 11.	－0． 11060
M1：${ }^{\text {a }}$	310．0．0， 150	： 610.0 .10	－ 10.01001
Mcau．	29．9167	20． 9116	± 0.11010

The maximm of atmospheric pressure during the period under consideration is found to exist in May，the minimam in January．Most likely（if we may judge by the tropical moments of the neighboring stations），the absolute maximum of the year is that of 29.9344 during November， Which month was omitted in the table above given．In regard to the minimmm we feel less certain， as the minimun pressure during the sear occurred at Port Foulke in September and at Van Rens． selaer Harbor in the same month，while at Baffin＇s Bay and Port Kemedy the mouths of lowest pressure duling the year were Jannarg and December，respectively．According to appearance January seems to exlibit the lowest mean pressure at Polaris Monse during the year，unless the minimum should have occurred during the time between June and Norember，which is not at all likely．

If we separate the pressure exerted by the rapor contained in the atmosphere from that ex． erted by the dry air，we get the following result：

	Iuches．	Montlas．	Iuches．	Months．	Inches．
	29．4511	Febrna	29，M－\％	April	30．193：）
	？ 2.6819	March		May	－9．9701
$M_{1} \cdot \mathrm{an}=99$. －ng inches．					

Diernal fluctmatlon of＂tmospherie presswe ruring the reinter－halfyear．
In treating the dimmal fluctuation of atmospheric pressure analyticalls the following expression Was made use of：

$$
\begin{gathered}
\mathrm{B}=30.0109+0.00497 \sin \left(x^{\prime}+27^{\prime 2} 18^{\prime} 20^{\prime \prime}\right)+0.000878 \sin \left(2 x+297^{\circ} 42^{\prime} 0 y^{\prime \prime}\right) \\
+0.00134 \sin \left(3 x+59200^{\prime} 55^{\prime \prime}\right)+0.000383 \sin \left(4 x+164^{\prime \prime} 41^{\prime} 15^{\prime \prime}\right) \\
x=15^{\prime}, 30^{\circ} \ldots .
\end{gathered}
$$

By means of which the following values were obtained :

'Time.	Olmerrert.	Computed.	Difference, 0. - C.	Time.	Ohnirvier.	Computet.	Difference, $0 .-1^{1} .$
	Inclus.	Inches.	Inches.		Inrhes.	Inches.	Inches.
$0^{\text {4 }}$	30.00616	30.0013	$+0.0028$	Nown.	311.0195	30.0140	-0.0015
1	30.0167	:30. 10 mil	+0.0016	$1^{\text {b }}$	30.0116	30.0126	-0.0010
\because	30. $010: 31$	30. 0060	-0.111: !	\because	30.0139	:31. 0192	+0.0011
\because	30. 1月1心:	30.1015	+0.0011	\because	:31). $0141 ;$	30.0147	-0.11411
4	30.00! 16	30.0091	+0.0005	4	30.0171	:30. 11164	+0.0.0807
5	30.0111	:31.0107	+0.0004	5	:30.012i	$30.01: 32$	-0.000:
6	.30.0110	30.0115	+0.0005	6	: 010.01 .86	30.11124	+0.01023
7	30.0119	30.01%	-11. 0000.3	7	:31. (10-5)	30. 1016.5	$\pm 0.1710 \%$
x	$30.01: 34$	30. 01.18	-0.0001	\cdots	311.0044	$30.010 \% 5$	-0.0011
$!$	30.0161	31). 0152	+10.0009	$!$	30.0050	30.0049	$+0.0001$
10	30.0144	30.1163	-0.0019	10	30.0083	30.0059	+0.010.4 4
11	30.117%	30.1176	+0.0001	11	30.0029	30.0068	-0.0039
Mran $=30.010$ inches.							

The ahove values thrown into a curve result in the following diagram:
Diurnal thuctuation of atmospheric pressure during the winter-half-year.

Ou inspecting the above curve re find the absolute maximum of the day to occur at about $10^{\text {h }} 45^{\prime \prime \prime}$ a. m. and the absolute minimum at about $9^{h} \mathrm{p}$. m . Both the computed and observed maxima coincide in regard to time; not so, bowever, with the minima, as the observed minimum occurs about two hours later than the one computed by means of the formula. Besides the absolute maximom, there is a secondary maximum of $30^{i n} .0164$ occuring at about $4^{11} \mathrm{p}$. 1 m . Between the absolute and relative maximam the carve passes throngh a relative minimum of $30{ }^{\prime \prime n} .0126$ at about $1^{\text {h }}$ p. m.; another relative minimam occurs at about 2^{4} a. m. The diumal range during the winterhalf is $0^{i n} .0127$, being somewhat greater than at Port Foulke and somewhat smaller thim at hensselaer Harbor, as made out for the whole year.
$6 \Lambda \mathrm{P}$

Correcting the preceding table，exhibiting the dimrnal Huctuation of atmospheric pressure，for the tension of vapor，we get the following values：

Di＂rnal fluctuation corrected for tension of ropor．

＇lime．	Inches．	＇Time．	Inches．	Time．	Inches．	＇Time．	1uches．
0^{14}	＊9．989	$6{ }^{6}$	91927	Noon．	29． 51069	$6^{\text {b }}$	－3！！！－ 4
1	29， 1×0	7	29．	$1{ }^{10}$		7	29． 3 ）e！
2	－9，916	\cdots	9！，9870	＊	20． 1205	$\dot{\sim}$	99． 1700 x
3	29．9re？	9	¢9．リーズす	3	29． 1 －	9	29． 1×0
4	2．9．9x：3	10	29．9＊）	4	9！9\％14	10	29． 3×15
5	20．945	11	96． 91012	5	b！！9－6\％）	11	29． 1168
Mean $=29.9851$ inclies．							

the mean thos becoming $0^{\prime \prime \prime} .0 \because 58$ smaller than before the separation was effected．
Alter having given the dimmal tluctuation during the winter－balf－jear，a few remarks may be mate regarding the diurnal fluctuation during winter and spring properly．＊

The winter curve shows similar features to that representing the dinnal fluctuation during
 the absohte minimum of 29.773 at abont $10^{\mathrm{h}} \mathrm{p}$ ． m ．Besides the absolute maximum there is a secombary inaximum ol $-3 \cdot " .8630$ ，occurring at abont $4^{\prime \prime} \mathrm{p} . \mathrm{m}$ ．Two secondary minima of $29^{\prime \prime} .8135$ and $29^{1 \prime} .7871$ ，respectivaly，take place at abont noon and 2^{h} a．m．，respectively．The diurnal rauge during this season is $0^{\prime \prime} .1024$ ．

The spring curve is less regular than that representing the dinrnal fluctuation during the preceding season．The absolute maximum of $30^{\prime \prime} .0261$ occurs at about 6^{11} a．m．and the absolute minimum of $30^{\prime n} .0016$ at about $6^{1} 1$ ．m．，the curve thus showing a range of $0^{n} .0245$ ，being $0^{\prime \prime} .0779$ smaller than duriag winter．

The following table contains the maxima and minima of atmospleric pressure as observed during seven months．The readings are corrected both for temperature and elevatiou：

Monthly extremes．

Months．	Maximmm．		Date．	Mininum．		Date．	Range．
	Inches．		h.	Inches．		h.	Inches．
November	30.581	30	$11 \mathrm{~m} \cdot \mathrm{~m}$.	－9，－－	13	$1 \mathrm{p} . \mathrm{m}$	0． 3 Mr
December	30． 5 ，${ }^{\text {c }}$	1	4：1．11．．		19	$1 \mathrm{a} . \mathrm{m}$	1．34i；
January	30.0×3	9	5 p ． m ．	39.101	1.5	Noon．	（1． 96
Febrnary	30.459	$\because 1$	5 \％1． 11.	20． 1×5	5	Midnight．．	1． 1967
March．	311.400	$\because 11$	－ 9.11	S－2． 946	6	1a．m．．．．	1． 454
April	30.827	11	$7 \mathrm{a}, 11 \mathrm{l}$	－21．540	29	5 a．m	1． 287
May．	30．5－1	17	$0 \mathrm{a} . \mathrm{mm}$	？1．603	9	勺p．m．．．	0.978

February shors the greatest and Jauuary the smallest range．In general，the range at Polaris House is smaller than it was foond to be at Port Fonlke and at Rensselaer Harbor during the same seasons，where storms were more frequent thau at our second winter－quarters．

BARIC WIND．ROSE．

To investigate the influence of the wind on the atmospheric pressure，we proceeded exactly as we did in coustructing the thermic wind－rose．

[^18]The following table contains the values thus obtained:

The annlytical elements and expression used in the computation of the wint-rose given above are as follows:

$$
\begin{aligned}
& \mathrm{B}=0+0.040 \sin \left(x+19545^{\prime}\right)+0.013 \sin \left(3 x+342037^{\prime}\right) \\
& +0.008 \sin \left(3 x+3 y 44^{\prime}\right) \\
& x=40^{\circ}, 80^{\circ}, \ldots .
\end{aligned}
$$

It will be seen that, after halancing the resulting average effect for the different directions, all the winds, excent those blowing from E., SW., and W., seem to have a depressing effert. Taking, however, into consileration the fact that the series of observations is rather shom and that some of the winds are of rare ocenrence, the above results camot be very reliable.

The following table, derived directly from the table giving the hourly means of atmospheric pressure, may be used to rednce homly barometric readings taken at or near Polaris House to the mean atmospheric pressure of the das:
('orrection to be applice to any hourly obsermention takin at I'olaris INouse to obtain the mean barometria: pressure of the day.

'Time.	November.	Deccmber.	Jauuary.	February.	March.	April.	Nay.
	Inches.	Juches.	Inches.	Inchos.	Inches.	Inches.	Inches.
$0{ }^{4}$	-11.0059	+0.0.20\%	+11.0128	f 11.11100	+0. 11050	-0.01111	+11.0041
1	0.0051	0.101 s 5	-0.1019\%	0.0061	-0.11171	+10. 100:20	0.0091
2	1. 110168	11. 0159	+0.01: 0	0.0934	-10.0194	0.0018	11.0051
3	1.0110	0. 1103	0.0063	0.0015	+0.0153	- -11.10170	1. 0086
4	1.0115	0.10015	(1. 1110.41	+0.0009	0. 1 mma	-0.00017	+0.01037
5	0.0140	0. 1105	0. 1101514	-0.0004	0.0046	0.0056	- 1.10010
6	-0.01935	0.0053	0. 11181	+0. 11010	0.0065	0.0113	O. 110104
7	+0.0045	+0.0046	+0.0128	$+0.0010$	0.0056	0.0110	$0.110 \sim 2$
8	-0.0149	- 10.0049	-0.0147	-0.11:	0. 000.2 ';	0. 1 108:	O. 10076
9	1. 0189	0.0157	-0.0105	0. 11.515	O. 1035	-0.003:3	0. 111073
10	19.0148	0.0135	+0.00110	-0.1025	$0.11: 345$	+0.111:4	$0.1104!1$
11	0.10124	(1. 1117	+0.0105	+0.0097	0.11055	-0. 11020	O. 11038
Noon.	0.0076	(1.0135	- 1.01003	0.0121	0. 110501;	-0. 110 c	1. 11036
$1{ }^{\text {b }}$	0.0073	0.1119%	0.0049	0.1111	0.11100	+10. 10110	-0.0070
3	0.0042	0.0167	0.0070	0.0060	+0.1105	0. 00011	+0.0011
3	-0.0107	0.0136	- 0.0062	+0.0010	-0.11159	0.11102	0.0005
4	+0.0184	0.0139	0.0099	$-0.11001: 3$	+0. 1200	11. 11100	+0.0018 -0.006%
5	0.0197	0.0183	0.011:	-0.0004	-0.0124	0.0003	-0.0063 +0.0006
6	0.0197	0.0154	0. 10059	+0. 11110	0. 00097	0. 10.1010318	$\begin{array}{r} +0.0006 \\ 0.19004 \end{array}$
8	1.0190 0.0173	-0.0031 +0.0131	0.11071 -0.0114	0.111147 0.1119%	0.1016% 0.1114	1. 01006 0.01020	0.190\%
9	0. 0.0 ± 1	+0.0131	+0.015\%	1. 010023	0.11918	0.01115	0.11007
10	0.0161	0.0186	0.1009\%	+0.0064	0.1310115	0.1119	0. 110%
11	+0.0178	+0.0159	+11.010\%	-0.0035	- 11.01115	+0.0047	+0.0010

.

WINDS.

RECORD AND DISCUSSION OF WINDS OBSERVED AT POLARIS BAY.

INTRODUCTORY.

If we are not mistaken, the Polaris Expedition was the first to bring back a continuous series of anemometric observations from the arctie regions, furnishing thus more accurate results than have hitherto been obtained by the common method of estimating the force of the wind.

We were smpplied with three anemometers (Robinson's), of which two were made by James Green at New York, and the other lss Casella of Loudon. Besides these instruments, we had tro small Casella current-meters, frequeutly nsed in hospitals to measure the amonnt of air passing to or from the wards.

One of the anemometers was mounted near the observatory on a pole abont six feet high; and a glance at the ground-plan of the obsercators, given nuder the chapter "Temperature of the Air", will give all the explanation that will be needed in regard to its position. Like the rest of the obserrations, those on the wind were made hourls; in erery justance the indication of the dial of the anemometer was noted, and also the velocity of the wind at the moment of observation determined. The latter was done by observiog how mneh the index of the dial advanced during a certain interral of time, or by counting the number of revolutions performed by the cups say during ten or fifteen seconds, assuming that the arms wonld have to revolve fire hundred times to show a difference of one mile in the dial-reading. In some instances, Casella's poeket-instrument was used.

In order to give some itea of the winds during September and October, for whieh period of time the regular record is lost, we insert three daily observations for the former month that were saved.

The column headed "Dir." gires the direction of the wind;
The one headed "Yel." gires the velocity at the time of observation; and
The column headed "Dist.", the distance traveled during the last twenty-four hours.
The hours of obserration are: $7^{1 \mathrm{~L}}$ a. m., 4^{41} p. m., and 11^{11} p. m.
The winds for October were taken from the log-book. The time of observation is not stated there, nor were the velocities measured. The force was given according to Beaufort's seale, and was conrerted into miles afterward. The regular hourly observations began Norember 6, 1si1, and were continued until we left Polaris Bas. The direction of the wind was recorded from eight points of the compass. No wind-rane was used ; the direction being derived from fixed points on shore, the bearings of which bad been determined.

The first column of the hourly series contains the direction of the wind; the second, the velocity at the time of observation; and the third, the distance traveled during the last bour.

SEPTEMBER, 1871.

Day．	NOVEMBER， 1871.														
	6.			7			8.			9.			10.		
Hour．	Dir．	Vu．	Dist．	Dir．	Vel．	Dist．	Dir．	Ye］．	Dist．	Dir．	YeI．	Dist．	Dir．	Vel．	Dist．
$0^{\text {b }}$				SIV	2.0	4． 6	0	0.0	0.5	E	4.0	6.1	13	3.0	3.5
1				SWr	0.0	1.4	0	0.0	1． k	E	4.0	6.4	NH：	$\therefore 0$	4.0
\because				0	0.0	0．2	NE	4.0	4.2	E	$\therefore 0$	3.1	N1	10.0	5.6
3				11	0.0	$\because 0$	E	4.10	6.1	1	\cdots	5.1	E	$\because 3.0$	4.5
4				${ }^{0}$	0.0	1.8	E	7.0	5.0	F	5． 0	4.5	E	1.0	7.8
\because				NE	$\because .0$	4.0	E	$\therefore 0$	4.4	1	： 3,0	6.5	E	110．5	13． 7
1				NE	4．0	6.3	E	4.1	4． 11	E	114.0	5.0	E	14.5	16.0
7				SE	6.11	4.4	E	4． 0	6.1	L	：3． 5	5.7	NE	19.0	16． 1
8				E	4.0	B． 0	E	6.11	11.1	0	0.0	1． 0	NH	21.0	13．1
9	W	－． 0	11.1	E	5.0	：3．1i	NE	11.0	s．2	0	11.0	1． 4	NH	$\because 11.0$	17.9
10	W	12．5	9.11	1	4.0	： 3	E	（i． 0	3.9	N	$\because 0$	1）． 9	NE	？： 0	25， 3
11	W	4.11	$\therefore 5$	1	2，11	2． 11	E	1.0	3.7	11	13.11	2.5	NE	21.0	3：
Noon．	11	11.11	？	E	3.0	4．：3	SE	1.0	4． 4	SE	：1， 0	3.6	NE	20．5	：01． 3
1^{11}	W	5.11	7.1	1	5． 0	$\because: 3$	L	4.11	$\therefore 0$	SE	$\therefore 0$	0， 8	NH，	3	？ 0
\because	SIV	4.15	4．1	E	3.11	\because	E	1．11	5.5	以	1．1）	4.5	N13	\because	27.3
3	515	4.18	3.7	H	$\because 0$	$\because:$	E	3.11	32	S	5． 0	6.5	NH	20，\％	$\because 0.0$
4	sily	4．0	14．6	J	3.0	$\therefore 9$	${ }^{1}$	1.0	1.0	1	1．1）	5.5	N1：	$\because 6,11$	27.2
\therefore	sil	11．11	$\therefore 0$	3	4.0	2.0	E	6．11	$\therefore 1$	1	1.0	$\therefore 5$	NE	29.11	次5
1	SW	14．13	6． 2	E	$\because 0$	4.5	$1)$	0.0	4.5	SE	5． 0	$\because 5$	NH	（1）： 11	：11，0
\％	SW	9， 11	6， 2	E	4， 0	3.7	0	0.0	4.9	SL	$\therefore 3.0$	1．：	NE	3：3．11	： 1.5
\checkmark	SW	3， 11	3.9	NE	3.11	0.19	E	5.10	7．：	1	0． 0	11.6	NE	26.5	：11．0
1	0	0.0	10.5	0	0.0	5.4	E	6.0	3.1	E	3.0	\because.	NE	$\because 6$	$\because 8.0$
${ }^{10}$	sily	0，5，	9.1	NE	6.11	？ 3	E	$\therefore 10$	5.1	E	$\because 0$	3.1	NE	吅	－ 4
11	sW	（1．5）	$\because 4$	NE	8.0	1.0	E	3.0	0.11	E	3.0	$\because 1 ;$	NE	－\％	？
 Mans			$\begin{gathered} -1 \\ \therefore .1 \end{gathered}$			78.1 3.2			106.9 1.5			$\square .0$ $\therefore .5$			$4!5,5$ 20,7
11.10	NOVEMBER， 1871.														
	11.			12.			13.			11.			15.		
1 Honr．	1lir．	Vrl．	Dint．	Dir．	Yel．	Dist．	Wir．	Vel．	lint．	Dir．	Vr．	Dist．	Dir．	Vir．	1 list．
11^{16}	NE	$\because 4.11$－		NE	14.11	14.9	Ne	$1 \because 0$	17． 2	1	0.11	\cdots	NH：	13．11	9.6
1	NE	24.10	$\because 7.0$	NE	12.1	1：3．9	NE	！1． 0	17．2	H	¢． 0	11.7	NH	5.0	（i， 5
\because	N：	26	？	AE	10.11	S．${ }^{\text {r }}$	NE	11.0	21.6	NE	$\because 1.0$	1：8	NL	3.10	11．\because
\％	XE	こ－．11	$1: 1.0$	NE	$\therefore .11$	7． 1	NE	14.0	17.6	Nut	17.5	18．7	NE	10.1	10．${ }^{\text {a }}$
1	NE	1－11	2－0	1	6． 11	21．9	NE	19.0	10． 5	Nu	15．0	15． 5	NH	13.0	10.4
t	NE	20．11	哭： 3	NE	\％－5．10	4i．	NE	－． 5	4，is	N	16.0	9.3	NH	135	10.4
1	入E	19.0	2－2 4	NE	：31．0	26	NH	3.0	14，4	Nid	5.5	$1 \because .7$	Nに	13.0	11.6
＜	NH	－3：0	$\cdots{ }^{2} .19$	NE	\％ 310	$\because 8.1$	NE	1：． 0	16， 0	NL：	24．11	17.7	NE	1：\％	10．0
H	NE	$\because 4.11$	$\cdots \cdot 1$	NE	3：3． 0	31， 8	NH	14.0	U11． fi	NE	23．0	1－． 1	NE	$\therefore!$	16，
$!$	人E	$\because 4.10$	\％	NE	40． 2	40.19	NE	$1 \% .0$	13，	NH	$\therefore 5$	$\because 6$	NE	11．\％	1\％．2
111	NB	34.11	$\because 7.0$	NH	2isio	45	NE	$\because 0$	4.15	N 10	$\because 0$	$\because 6.7$	NE	8．1	1． 6
11	NE	21.0	14.7	NE	4.50	为，	E	4.0	$\because 0$	NE	4．9．0	？	NE	3.7	\cdots
Nıun．	NE	12．11	1：3．3	NE	31.5	：3．9	L	$\therefore 0$	5.1	NE	：27．5	碞， 1	NE	5.11	9.3
1^{11}	NE	10.0	19.5	NE	36.11	1＊＊	E	$\therefore 0$	5． 6	NE	9．5	$\because 1.11$	NH	1.7	6.4
\because	NH	$1 \because 0$	1－9	NE	13，0	6 6，	$1:$	11.0	5.1	NE	2．1．0	$\because 4$	NE	4.4	11．1
3	NH	？	26．6	N E	ris	14.7	NL	2.0	7，	NE	26．0	$\because 4.5$	NE	7.5	7.8
4	NH	$\because+10$	综，5	F2	6． 5	15.7	I：	（6．0	5.1	NE	－1．11	：11．11	NE	1．0	3.1
\square	N10	24.11	$\because 1.5$	N4	21.5	$\because 10$	NH	3.7	18， 1	NE	$\because 2$	$\because 1.9$	N1：	5． 0	12.1
13	NE	2－0	3！ 4	NE	\cdots	$\because 1.5$	NH	14.0	16． 3	N］	2R． 5		Ne	5.5	3.5
7	N4	27．0	$1-1$	NE	$\because 0$	13．11	NE	$1 \therefore 0$	15．	NE	$\because 5.5$	$\because 2.4$	NR	3.5	？
4	NH	14．0	－4． 1	1 L	$\because 11$	1.15	NH	$\therefore 0$	11，5	NE	$\because 11$	$\because 4.1$	N：	4.6	9.8
$\stackrel{9}{11}$	N10	2：．0	$\because 1$	11	11.10	7， 6	H	5． 0	41.5	NE	？ 0	31.4	NE	9.5	111.7
111	NE		1＋ 1	NH	14.0	！． 6	E	\cdots	$\therefore \because$	NE	1：1．0	17.3	$\cdots \mathrm{N}$	7.0	1.7
11	NE	20.0	14．： 7	NE	$1 \because 0$	11.0	E	（i． 0	$\therefore 1$	N心	15.0	1？3	NE	4．：	9.9
SıIn¢	530.0$\cdots ? .1$					$4 \% 5.1$20.3			wil，\％			514.9			$\because 14.3$
Mrithes								10.9			$\stackrel{6}{2} .5$			c． 5	

Day．	DECEMBER， 1871.														
		6.		$\%$				8.		9.			10.		
Hanr．	1）ir．	Yi．l．	Dist．	Dir．	Vil．	1）icl．	Dir．	Vrl．	Dist．	Jic．	Vrl．	Hist．	Bir．	Vel．	ITist．
0^{11}	STV	$\because 0$	澋	NE	9.0	7.1	NW	1.11	1.11	0	0.0	3.4	11	11.11	4，I
1	NW	淕11	： 3	NH	（1．） 11	5． K	NW	1.11	3.5	12	$\because 0$	$\therefore \%$	S゙以	2.11	13．11
2	NIV	： 11.6	： 21.0	NE	5.11	（1） 0	sW	： 311	3.5	NE		1.1	SW	5．11	4.8
\because	W	－ 4	27.4	1	11.11	3：\because	NE	f． H	： 16	E	1．1）	1．${ }^{\text {r }}$	心以	！．11	\cdots
4	N	36	W以	NH	\therefore	只：	NE	Q．1：	1． 1	L	1.11	1．：	W	1． i	1.11
5	W	（i1）． 11	： 5	11	0.0	11.9	NL	1.4		13	0.5	1.16	N	\％．5	$\because 5$
\％	W	S－5	20． 3	11	0.10	1．：	0	13.0	11.9	12	9.11	11.8	N＇W	3.11	1.1
T	Sil	$\therefore 0$	9． 11	L	10.5	11.11	F	1．5	1.9	1	0.0	$\because .1$	0	0.17	$\because,{ }^{2}$
\cdots	Sil	$1 \because 5$	21.7	NE	11． 5	11.5	0	13.1	$1 .!$	NE	1.5	\％．1	N H^{+}	3.11	Sn
$!$	sily	7.0	7．	11	0.0	1． 3	E	0.5	1.15	12	$\because 11$	\because	E	3.5	1.0
10	Sli	200	16.3	11	（1．） 10	10.6	E	4．5	$\because: 3$	NE	\cdots	： $2 \cdot$	11	0.0	$\because 1$
11	Sil	15． 0	11.0	11	11.11	3.0	E	4.5	2． 5	SW	3.1	$\because .5$	NH	3.1	$\because 11$
Nomer．	NW	15．0	13． 1	Nill	1.0	$1 . \because$	L	4.5	11.9	1	：$\%$	1.3	NW	1.11	5.16
1^{14}	ふW	11.0	9.7	0	10． 0	$\therefore .0$	$1)$＇	0.11	？ 5	1	1.11	3.4	1	0.0	1.6
\because	NW	15.0	11.0	11	0.0	1．${ }^{2}$	E	311	1.5	E	5.11	： i （	0	11.0	0.7
3	SW	12.6	$8{ }^{8}$	Nill	1． 0	$\because 4$	11	（1．11	$\therefore 0$	13	$\because 0$	$5 \cdot$	$1)$	0.0	11.3
4	SW	9.1	4.8	0	19.1	4.6	$1)$	11． 11	1．5	J	19．11	－ 4	11	0.0	$\because .4$
\square	0	1.0	3.0	S	4.11	3.5	E	1.0	3.0	E	5.11	1．3	E	3.0	1.0
1	11	0.11	3.5	11	0.0	$\because \cdot$	F	1.11	1.1	E	1．5	\cdots	E	4.5	\cdots
7	NE	4.3	2.9	818	（i）．	1.17	H	1.11	$\because 9$	Sily	19.5	5.1	H	5	$\because 1$
\checkmark	NE	4.4	5． 1	11	11.1	只：	1	3.10	4． 16	Silt	2.1	4.7	11	0.0	1．－
$!$	NE	4． 5	7．5	i	2.5	$4 . \because$	Nil	4． 15	$\because 9$	Sil	$\because .0$	1.4	${ }^{1}$	0.0	0.4
10	NH：	9.11	（1．）	0	0.0	？．5	E	3.	B． 5	0	11.11	3.10	E	2.2	4． 1
11	NE	$\therefore 5$	8.5	N	6.8	4.0	E	$\therefore 0$	1．\because	SW	9.0	4.7	H	3.2	1.9
Simis． Meins．			363.5 $1 \% 1$			74.1 3.1			55.4 8.4 8.3			75.1 3.1			61.7 $\stackrel{3}{2} .1$
Day．	DECEMBER， 1871.														
	11.			12.			13.			14.			15.		
Hforr．	Dir．	Vd．	Dist．	Dir．	Tr．］．	Dist．	Dir．	Ye］．	Dist．	Dir．	Yel．	Dist．	Dir．	Ve］．	Dist．
0^{17}	0	0.0	0.2	NE	17．0	12.4	NE	7.0	：3！	0	0.0	1.6	E	9.0	$r .4$
1	0	0.0	0.1	NH：	11.5	15．\because	15	4.5	4.7	E	1.5	9.4	E	3.0	r
\because	${ }^{1}$	0.0	显，	NE	1．1．5	14.2	E	3.0	3.3	E	2.5	6． 1	E	4.5	（i． 3
：	SW	1.5	1．9	NH	13.0	14.1	H	3.0	7.1	E	6.0	3.5	NE	10.11	33.7
4	SW	$\because 0$	ii． 1	N：	11.0	11．5	1	6.0	13．19	E	$\therefore 0$	4.5	NE	21.0	17．，
5	L	\therefore	14.9	NE	10.0	13.1	E	1.5	1．4	E	0.5	4.3	NE	9.0	23， 1
1	E^{*}	1－6	12.5	NE	8.5	13.1	E	7.0	$\because 11$	E	3.5	¢． 0	E	12.5	24.1
7	HE	$\therefore .0$	7.8	NE	12.0	9．	H	1.5	1.3	E	8	4.7	E	17.5	17．3
4	E	5.5	3.6	NL	10.0	14．0	0	0.0	0.11	E	4.5	4.0	W	13．7	37.3
！	E	3.35	9.9	NE	35	4． 4	NE	1． 5	7.1	NE	4.0	$5 . R$	E	2－5， 5	82
10	E	11.0	16.4	E	4.0	3.1	E	1.5	2.	E	5.5	4.1	N	2－0	30.1
11	E	$1 * 0$	11．：	1	4.0	3.15	E	1.5	6.1	E	4.0	4.1	NE	32.0	31.9
Noon．	N	11.5	10.3	1	4． 0	$4 . \sim$	E	1.5	3.5	E	4． 0	5.4	NE	33． 0	： 14.3
1	N以	1：3．5	边：	L	4.5	6.1	E	1.5	3.0	E	7.0	4.6	NE	99．0	23.5
\because	NE	昭5	29	E	5.0	2.1	E	3.5	$\therefore 1$	E	5.0	6.4	E	24.0	21.6
：	NH	20.0	26	E	$\therefore 0$	6.3	F	3.0	3.7	F	5.0	4.8	E	1×0	12.7
4	NH	$\because .0$	？	E	5.0	5． 7	E	3.5	4.4	1	5.0	4.6	NE	18.0	$1 \sim 0$
5	NH	26.0	？T． 2	1	5.5	5.1		6.5	8.4	F	2.	2.3	E	1\％．0	15．9
15	NH	20.0	19.0	F	5.2	\％． 1	N1：	¢． 0	1i． 9	E	2．	2.3	NE	$1 \% 0$	14．6
7	N14	19.0	19.3	1	5	6.1	NE	6.5	5，W	0	0.0	1．$¢$	E	15.0	13.1
$\stackrel{\square}{4}$	NE	1－．0	12． ij^{1}	E	5.8	3.8	NH	6． 0	0.7	E	2.0	6.5	N1：	14．4	11.5
$!$	NH	$\because 1.0$	$1 \times .:$	1：	4.11	5.1	0	0.0	0.5	E	11．8	4.4	NE	1：3．5	12.9
111	NE	115．0	$17 .!$	E	4．0	4.2	E	0.5	0.15	0	0.0	2.1	NE	13.5	15．is
11	NE	18.0	17．2	13	4.5	4.7	W	0.5	3.1	E	2.0	9.4	NE	17.5	14.9
Sums． Neans．			345.11 14.4			1.7 .8 7.8			89.11 3.7			107.7 4.5			$4-8.7$ 20.4

Dis．	DECEMBER， 1871.														
		26.		88.			28.			29.			30.		
Homr．	Dir．	Vel．	List．	Dir．	Med．	Dist．	Dir．	Tel．	Dist．	Dir．	Vel．	1）ist．	Dir．		Dist．
()1	NE	15.0	$9 .-$	E	3.0	4.9	0	0.0	2.0	N13	24.0	26.0	E	125	12.1
1	AL	12．11	6.4 ，	J	5.11	4.3	SE	5．11	4.6	NH	19，0	14.0	E	12.5	\bigcirc
2	0	0.11	7.6	14	5． 01	6.2	NE	（3． 5	6.51	NH	6.5	5.3	J	$1 \because .1$	3.4
：	N l	4.11	7.5	NE	4.11	3.5	NF	6.5	6.9	\％	5．5	4．	1	5	5.7
4	E	4.5	r． 4	NE	2.5	3.2	NE	7.8	7.0	NL	6.4	5.11	E	4.11	\checkmark
5	E	（i，${ }^{\text {a }}$	11.4	E	3.0	3.5	NE	$\therefore 0$	5.8	N1	$\therefore 5$	$6 .: 3$	SE	5． 0	9.4
i	$1:$	13：11	$1: 5$	E	4.0	7.1	E	$\because .8$	$\because .0$	NE	（i． 6	4.9	NE	1 n .5	13． W
7	E	11.5	9.5	E	！ 1.0	$\therefore .7$	E	2.5	6． 5	NE	4.5	$\therefore .4$	N1	12.11	11.3
H	$1:$	4.5	1． 51	I；	9.5	7.15	E	7．5	$\because .6$	NE	6i． 7	6.5	NE	11.5	10，5
9	N15	3.0	1 $\because 2$	L	2.5	7． 1	0	11.0	\therefore	NE	7.11	4.9	E	10．${ }^{\text {d }}$	10.1
111	N1：	14.0	1 $\because 6$	NE	7.11	7.11	E	5.0	3.7	NE	5.0	5.6	L	10.0	$\cdots 0$
11	NL	14.11	15．－	E	7：	4． 2	E	4.5	$\therefore 7$	N10	5． 5	4． 5	E	10.5	$!19$
N（\％1）	AE	12.11	$\because:$	E	3.11	5． 2	S	$\therefore .5$	$\because .7$	H：	3.0	6.3	J	\cdots	9.9
$1{ }^{11}$	N1	$\therefore 0$	：\because	E	4.16	4． 4	S	3.11	4.0	0	0.0	2.3	E	$1 \because 0$	
2	1	$\therefore 11$	！ 3	1	4.5	7.0	S	3.11	－0	SL	5.0	17.7	E	$1 \because 0$	11.4
：	E	5.3	6.4	1	5． 0	$\therefore 9$	N0，	$\because \sim .11$	3i． 4	12	－． 0	$\therefore 1$	E	11.5	14．！
4	H	$\therefore 1$	6，if	1	7.0	8.5	NF	43．19	：\％． 1	J	？．11	4.1	E	14．x	10．19
\therefore	NL	5.17	$\therefore 3$	H^{3}	－5，	6.9	N1：	36.5	$\because 2$	J	5.11	7.1	J	7.0	5.4
（i）	E	4.11	4．$: ~!~!~$	NE	7.11	6.3	NE	97． 2	$1 * 5$	N	9.0	10．2	E	3.3	6.1
7	12	4.0	$\therefore \therefore$	F，	7.0	6.1	Nせ	16．8	1 $\because 2$	NW	10.0	$\therefore 7$	上	4． 2	（3．）
－	1	4． 0	（i． 01	E	（i． 5	3.4	NE	7.0	11.0	NW	10.0	5.3	${ }^{1}$	0.11	$\because \cdot{ }^{4}$
$!$	\because	7．	5.5	F	4， 11	3.9	NE	15.0	15．4	SW	$\therefore 2$	7．	I	4． 5	13.1
111	E	$\because 0$	0.9	N：	6， 8.8	1.3	NE	15， 5	$\cdots 11.8$	13	11． 6	12．5	13	13，0	7.8
11	1	0.0	1.9	SL	7.2	4.1	NE	16．11	117.3	3	12． 5	11.9	E	2.5	1.6
Sumes．			1×1.7			1：9．r			20\％s			$1 \times .4$			217.5
Mreidm			7.7			5.8			11.1			5.0			$!!1$
Day．	DECEMBER， 1871.							JANUARY， 1872.				－			
	3⿴⿱冂一⿱一一厶儿。			1.			2.			3.			4.		
Honr．	Dir．	Yel．	Uist．	Dir．	1．Dist．		Dir．	Vel．	Dist．	Dir，	VM．	Dist．	Dir．	Vel．	1）ist．
0 l	N：	$\therefore 5$	11.5	E	6.5	C． 4	T	3.0	3.6	NE	$\therefore 0$	F．：$:$	0	0.0	0.4
1	NE	13．．	3.1	E	4.5	4． 4	13	2.0	4.5	NS	15.0	10.2	0	0.0	1．\times
\because	E	5． 0	1.6	E	4．\because	4.0	E	7.1	6.6	NE：	$1 \because 9$	H． 3	I	7.5	5.2
：	NH	8	1．6	E	4.0	3.6	NE	6.11	5.5	N1：	6．0	1．i．4	N15	8.0	\％．9
4	N：	$\therefore 0$	？－	SL	3.5	8.7	N1	6.0	6． 2	NE	10．0	＜． 8	NE	9.5	111.6
\square	NL	$\because 5$	4．5．	E	3.5	3． 6	N12	6.5	6.2	NE	4.6	11.1	N上	11.9	13 r
3	N1：	1.5	1.9	E	4． 0	5.7	N：	0.5	1.6	N	01.4	24． 7	NE	13.0	14.4
7	N1：	2.1	5． 0	S	5.5	5.4	N1	\％．5	\therefore	N	2， x	31.6	N	16.5	9.9
－	E	111．5	10.5	J	5． 0	2.6	NF	4． 0	6.9	N	31．5	2.5	S	6.0	4.6
9	E	！ 1.8	9.0	E	2.0	5．	0	0.11	1.6	N	21.6	41.0	0	0.0	3.9
10	E	$\because 11$	$\because .6$	－	4.11	3． 2	11	10．0	4.1	NE	23.0	25.9	S	3.0	1.9
11	E	$\therefore 0$	4.8	N	3.0	2.1	0	0.0	1.3	NE	21.0	32.6	S	2.0	2.5
Nunt．	E	4.5	6．－	11	11.0	？	L	2.0	3.4	NE	$\therefore 0$	\％4． 5	E	2.0	2.1
${ }^{11}$	F	1% \％	9.9	E	$\therefore 0$	$\because 15$	0	0.0	11.7	NE	35.0	24.7	0	0.0	1.2
\because	1	$\therefore 11$	（i． 3	F	$\therefore 0$	$\because 0!$	NE	12.0	11． 1	NE	32.0	\cdots	0	0.0	1.2
＂	Fi	－11	1.7	12	\cdots	4.5 i	0	0.0	$\stackrel{2}{2} .2$	NH	2：． 5	30.8	S	1．0	0．9
4	E	1．${ }^{1}$	3.8	I	3． 2	5．9	0	0.0	5.4	NE	2－0	39.0	0	0.0	2，
\％	\％	0． 0	4． 4	14	3．1）	5.5	E	20	1.8	NE	30， 0	7.3	E	4.0	\cdots
1	E	\therefore B	4.9	1	6.5	4．\because	E	1.0	7． 6	1	4.11	3.7	E	3.5	\therefore A－
\％	E	5.7	$\because 3$	$1:$	5.0 ：	1．4．	NE	15．1）	1.7	E	4.0	7．	E	4.0	4.9
1	E	$\because 3$	： 1	F	只11	4． 31	NE	2.0	$\therefore .6$	E	$\checkmark 0$	$1 \because$	E	4.9	3.9
10	W	$\therefore 2$	4． 1	1	$\stackrel{3}{5}$	\％．：	NE	3.0	$\because 1$	L	12.0	9.1	SE	2.19	3． 9
111	1	5.0 5.0	$\begin{array}{r}5.5 \\ \hline .1\end{array}$	I	5.0	7.11	NH	2.2	8.7	E	6.0	5.0	E	4.0	5， 3
11	1.	6.0	7． 1	$1{ }^{\text {d }}$	8.0	4． 6	NE	2.5	2.3	F．	4.0	1.7	E	4.11	3.1
Sunke			129， 5			103． 4			111－． 2						111．\times
Meaus．			5.3			4.3			4.5			12.6			4.7

Day．		JANUARY， 1872.													
	15．			16.			18．			18.			19.		
Hour．	Tir．	Yel．	IIst．	Dir．	Vel．	Dist．	Dir．	Vrl	Dist．	Dir．	Yel．	Llist．	Dir．	Vel．	Dist．
0^{1}	NE	16.5	13．$:$	SH	1.0	2.11	${ }^{6}$	11.0	1.5	${ }^{1}$	0.0	11.0	E	3.0	3.9
1	NE	12.5	1．）． 3	StV	$\because .5$	3.6	E	3.0	\because	11	0.0	11.7	E	4.0	$8 . x$
\cdots	\E	17.5	17.9	E	3.5	4． 2	E	11．5）	1 $\because 2$	E	3.1	$\because 6$	E	： 5	5.9
3	NE	17.5	$1 ? 1$	I	4.0	3.7	E	6.0	3.3	E	3． 2	？ 3	E	13.0	4.7
4	NE	120）	13． 1	J	$\therefore .6$	5．${ }^{\text {a }}$	1	$\therefore \stackrel{3}{ }$	5． 4	L	4.0	3.5	L	5． 5	5.1
5	H	1ヵ5	1.6	SE	8.0	7.7	E	4.9	4.6	E	5． 0	1.9	L	5.7	6． $2 \cdot$
i	NE	5.11	1．$: 3$	E	7.3	5.9	1	7.0	5.2	13	0.0	$\because 1$	E	7.5	5.4
7	E	9.6	7.4	H	f． 0	4.4	1	5． 5	$\because .6$	E	$\because .0$	4.2	E	5．5	5． 0
\％	E	\bigcirc	5.3	E	5． 0	5． 5	SL	2.0	3.3	L	4.4	$\therefore 1 ;$	E	1.0	8.1
0	E	$\because 0$	1.6	$\therefore \mathrm{S}$	5.5	4.3	E	4.5	3．${ }^{\text {c }}$	0	0.0	0.1	E	8.5	4．：
10	E	1.0	10.0	1	5.0	$\therefore \times$	E	4.0	4.5	${ }^{1}$	0.0	$\because .0$	1	5.0	7.4
11	11	0.0	4.7	E	2.0	2.0	E	4． 5	4.3	E	$\because 0$	6.1	E	7.5	4.9
Noon．	E	5.0	13.3	0	0.0	1.9	E	5.5	34	E	5． 0	5.1	E	5	5.5
$]^{1+}$	13	4.0	5． 0	E	$\because .4$	2.7	E	4.1	1.3	E	5.5	5.0	E	5	4．${ }^{\text {H }}$
$\stackrel{\square}{-}$	E	5.0	5.1	E	4	\％．${ }^{\prime}$	0	11.0	6.4	E	5． 0	4.7	L	5.0	5.0
3	12	5， 0	：3． 9	J	4.3	1.0	E	6.0	4.3	1	8.01	\％．9	L	4.11	5.5
4	11	0.11	1.7	1	1.0	2．：	＂	（1．0	2.0	E	B． 0	4.7	E	li． 11	4.11
$!$	SIL	20	2.3	E	？ 2	3.1	E	3.11	1.6	E	5.0	4.0	E	4.11	4.6
（i）	SH	10.0	12．0	$\underline{1}$	只0	3.4	1	1.0	2． 1	E	1．11	\pm	L	6.5	7.0
7	－1\％	10.0	3.1	E	8.5	5.7	E	1.11	\because	E	5． 0	4.1	E	$\therefore 0$	4.9
－	SW	7.10	5.0	F	4.5	4．5	0	0.11	1.1	E	2． 0	4.51	E	5.0	？． 3
！	－IV	3.0	\because	E	4.0	4.0	L	1.11	0.5	1 L	7．0	3.5	1	1.5	5.9
10	SW	3.0	3， 5	0	0.0	1.0	0	0.11	10.0	E	2． 0	3.3	E	1.11	6．${ }^{2}$
11	SW	3.5	20	N	1.0	！． 0	E	1.0	8	E	is． 1	4.7	E	$\therefore \therefore$	1.3
Sums Means．			16．5． 5			85， 5			90.5			－1． 7			121．5
			6.9			3.6			3.5			3．：			5.1
Day．	JANUARY， 1872.														
	20.			91.			62．			23.			21.		
Honr．	Dir．	Tel．	Dist．	Dir．	Tel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．，Dist．		Dir．	Vel．Dist．	
0 b		$\underline{9} 5$	1.9	W	F． 0	7.2	NE	20	3.0	E	15.5	16.9	N13	1． 5	55
1	E	0.5	1.0	SW	10.0	14.9	NE	3.5	2.2	N	14． W	15，	NE	5.0	4.0
2	11	0.01	1.7	SW	19.3	12.4	TV	3.5	fi． 11	NE	12.5	27.8	0	（1．0	4.01
3	E	1.0	$\because 7$	SW	210.11	110．	SW	3.0	6． 3	NE	紫， 0	19.3	NE	1.0	2.0
4	SIY	7．11	10.6	SW	1：3 3	9.5	SW	3． X	3.6	NE	17.11	14.4	N1	3.0	3．9
5	SW	14．9	Ci． 0	STV	$1 \times .5$	9.9	SN	180	11.3	NE	12．0	16．\because	NE	3.11	3.3
6	SW	12.3	U10	SIV	5.0	$\times .4$	－15	7.0	9.3	0	0.0	2.1	0	0.11	2.8
7	IV	$\cdots \cdot 1$	16.9	SW	10．0	8.2	SIV	10.0	16．5	0	1i． 0	11．	SE	5.19	4.9
－	－11	20.5	14．7	s11	5.0	7.4	S．${ }^{5}$	19.0	11.3	11	0.0	0.11	－E	1.0	11．${ }^{1}$
11	A ${ }^{\text {H }}$	20， 51	17.1	STV	10.0	12.4	siv	7.0	10.9	0	0.0	$\because 0$ ।	1	1.19	1.0
11	－11	15． 11	17.6	SW	16．5	11.2	8.1	10.0	15.0	E	$\bigcirc 0$	5．10	E	5.11	5，${ }^{2}$
11	SII	185	17.12	814	12．3	10.5	SW	13.5	17.0	E	5.0	1.5	E	5.11	4.9
Neonr．	SIV	1－\because	19.	IV	$3 . \geq$	3.	－W	$1 * 0$	12.9	E	1.3	5.1	E	4.19	5.2
$1{ }^{\text {b }}$	SIT	1－．6	13．3	s	5.7	4.7	sw	13.5	7.6	E	5.2	5． 4	E	4．${ }^{\text {a }}$	5.1
\because	sw	12.0	13．${ }^{\text {\％}}$	SW	4.5	13，－	－19	80	11.4	E	4．	4.6	E	5.2	6.9
：	5 SH	$1 \sim$	1． 1	N11	7.0	4.6	SiV	19.1	$\times 4$	E	5.0	5.2	E	\％．11	5.9
4	Sil	11.0	11.9	NW	4.0	$4 . \times$	－W	6．11	4.5	1	6.2	$\therefore 1$	E	－6．11	4.0
5	SIV	$1 \because 0$	13.7	SW	6.0	5．2	－17	5.11	9.3	E	7.6	5.1	E	4.0	6.0
6	AIV	14．5	13． 2	SIV	6.2	5.5	SW	$\therefore 0$	5． 4	E	5.2	$\therefore .1$	E	5.	$\therefore 4$
7	Sty	7.2	4.7	S11	5.15	5.4	S 11	6.0	7． 1	E	4.3	4． 51	E	3.5	7.9
1	－	11.4	2．	IV	1．$:$	ㄹ．2	SIV	7.4	$\therefore 19$	E	4.2	4.9	E	F．	1．7 7
10	W	11.6 0.0	0.6	W	$\because 11$	3.3	SW	4.0	5.9	1	6.5	5.91	E	7．：	9.7
11	$\stackrel{0}{1{ }^{\text {r }}}$	0．0	$5 \cdot 3$	IT		O．－	SW	11． 2	9.7	NE	5.0	1.9	E	4．	6.7
		\cdots	7.1	Siv	0.5	只吕	SW	11.0	15.9	0	0.0	1.6	L	（i． 0	16.3
smons． Nばいに，		$\begin{array}{r} 2.7 \\ 10.7 \end{array}$				172．1			为号：			123．6			1 11.5
		7．9			9.4			7.4			5.1				

FEBRUARY， 1872.

		4.			5.			6.			$\%$			8.	
Honir．	Dir．	Ye］．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	IIf．	Vel．	Dist．	Pir．	Yel．	Dist．
10^{14}	E	$\therefore 0$	$\therefore 1$	E	： 5	4.9	0	0.11	1．	F	$\therefore 11$	4． 3	F	8.5	6．： 3
1	E	2.5	3， 1	E	5.11	4.8	E	1.0	1． 2	E	4． 5	4.9	L	0.5	7．
2	E	2.5	f． 0	E	4．5	5.11	E	0.5	$\because \because$	E	5.1	$1 . \because$	NE	！ 1.0	17.4
3	0	（t． 11	了．	E	3.0	7.9	1	$\because 11$	只 0	E	5.0	$\therefore 1$	0	（1）．0	\％．15
4	1	$\therefore .11$	1.8	E	2． 0	4.15	E	： 31	2.1	F	\therefore	2.8	E	$1 \because 5$	15，\times
：	E	1.5	$\cdots 4$	E	4.11	3.1	12	$\because 0$	0． 2	$1:$	$\therefore .0$	$\therefore 6$	NE	19.0	11.11
i	E	8.0	\because	E	3.5	$\therefore 2$	11	11.10	0.5	1	3.5	！2，	NH	2：\％	6！ 11
7	1	$\because 10$	8.5	E	4.0	3.1	SE	2.0	$\because 1$	1	3.11	$\therefore 4$	NH	11.13	11.9
8	1	5.11	5,3	E	4.0	4． 2	$\therefore \mathrm{B}$	$\because 8$	4．$:$	1	3．5	4.1	E	11.11	$1 \because 7$
9	E	5.0	4.7	E	4.0	$\therefore \mathrm{B}$	NH	3.11	1．	13	3， 11	3.7	E	$1 \because 0$	10，${ }^{\text {a }}$
10	1	5． 01	3.16	E	7.11	5.1	SE	1.11	11.10	S	4．11	$\because 5$	L	10.11	9.15
11	1	1． 11	1.9	1	5.0	4.11	0	（1．）	17． 19	S1：	3.11	（3．5）	NL	5． 11	＊－
Nomen．	E	$\because 11$	$4: 3$	E	4.0	$\because 1$	E	1.11	$\therefore 0$	SE	4.11	11.8	SE	\therefore	13．2
1^{14}	E	1.11	4．9	E	： 0	3.6	13	3.0	5．${ }^{5}$	0	（1．11	1.7	E	6.0	4．5
\because	12	E． 11	3.9	E	3.0	4.4	1	6.0	3.4	13	S． 11	$\because 11$	心以	$\therefore 0$	4.3
3	E	1． 0	4.11	1	1.5	4．－	L	3.0	4.9	S	$\because 0$	$\therefore 3$	E	4.5	4.7
4	L	4.0	$\therefore 2$	E	4.5	4.1	E	5.11	5． 0	NE	5． 0	$\because 0$	E	4.5	1.9
\％	E	： 0	4． 1	E	4.5	4.7	$\underline{\square}$	5.5	¢． 0	11	0.0	1．$:$	11	9． 0	1.8
19	E	$\therefore 0$	$\therefore!$	F	5.11	$4 . \%$	E	4．5	1．8	－	1.0	1.1	11	0.0	5.5
，	E	$\therefore .11$	4．！	E	4．5	4.7	11	0.19	1．！	$1)$	0.0	1.1	1	13.0	4.0
8	12	$\therefore 0$	1.1	I	5． 11	\％$\%$	E	2.11	吅：3	11	9． 11	$\because .7$	I	4.0	6.2
9	E	\therefore	$\therefore .6$	Stir	3.5	4．：3	E	2.11	J．5	\E	3． 0	15.11	$1:$	6.0	1．4
10	1	8.5	4.3	12	1．0	0.2	0	0.0	4.9	NF	2.5	4．1；	1	10.0	3.7
11	E	4.5	4.1	11	（1）．1）	1．\because	E	\therefore	$\therefore 0$	NL	4.4	3． 2	SE	3.5	$\because .0$
Sums ．			Fel 1			极， 9			1i4．！			\％s．i			10\％3
Ntwhis			$\therefore .7$			4.1			16.9			3．\because			83

FEBRUARY， 1872.
Das．

FEBRUARY, 1872.
10:

Day．	MARCH， 1872.														
	5.			6.			\％．			8.			9.		
Hour．	Dir．	Yel．	Dist．	Dir．	Yel．	Dist．	Dir．	Vel．	Dist．	Dir．	Yel．	Dist．	Dir．	Yel，	Dist．
$0^{\text {h }}$	SW	4.0	4.3	SII	14.0	$1-4$	NE	16.5	17.9	NE	$\because 6.0$	24.7	E	6.0	4.5
1	SW	4.11	3.1	NW	？－5	211．8	NE	16.0	$1 \because$	NE	¢－5． 5	织11	E	$\because .0$	3.4
2	SW	3.0	0.6	Sll	90.5	15.4	NE	32.5	19.4	NE	29.5	ソ，3	E	5.0	1.7
3	sW	3.11	3.0	Sll	16．	21．3	NE	21.1	21．3	NE	8	Q：3 1	0	0.0	1.9
4	NW	3.0	7．3	SW	：31． 0	17．${ }^{\text {\％}}$	NE	21.11	13.5	NE	$\because 50$	？ 6	E	1．5	0.3
\square	SII	7．i	5.3	SW	150	19.4	NE	12：	15．5	N1：	21.5	$\because 5$	0	0.0	0.1
6	SW	5.0	7.11	NW	$1 \because 0$	13.7	NE	1．9．0	15.0	NE	9．3， 0	39.9	0	0.0	2．${ }^{\text {a }}$
7	NH5	$\therefore 0$	5.11	SW	14.5	10.9	NE	15， 5	13， 8	NE	94.0	$\because 0.9$	E	3.5	0.4
＊	SW	5.5	5.9	NW	10.0	$\bigcirc 5$	N：	14.0	13.5	NE	？2．0	11i． 5	E	$\because 0$	3.6
9	815	6.0	万． 2	NW	8.5	7.9	NE	12.0	19.5	NE	16，3	15， 3	0	0.0	9.1
10	SIT	$\therefore 0$	6.7	NW	$\cdots 0$	5，	NE	20.0	13.7	NE	17．7	14．2	E	3.0	3.5
11	SW	1.0	6.4	N	5.0	5.2	NE	1：0	16.9 ｜	NE	12.0	8.5	1	0.0	0.9
Noon．	SW	6.11	111． 5	NE	14.0	7.1	NE	1 B	1%.	0	0.11	5.3	0	0.11	0.0
$\mathbf{1}^{\text {h }}$	SW	12.0	11.9	NE	90．0	23.8	N1：	17.8	18．1	E	1i． 0	3.4	11	0.11	0.8
\because	SW	14.0	11．2	NE	124．0	$\because 6.0$	NE	1－． 5	19．1	E	2.0	4.6	0	0.11	1.3
3	SW	10.0	晏， 3	NE	？		NE	18.2	32.5	NE	6．1）	3.7	s	1.11	1.1
4	SW	11.0	8.0	NE	24．0	23.6	N	$\because 4.0$	2． 5.5	11	0.11	4.5	St	1．4	5.2
5	SW	7.0	$1 \because .9$	NE	－ 3.0	23：9	NL	21.0	26.7	E	4.0	$5 .: 3$	E	6.11	6． 6
6	SW	15.0	1×4	NE	1105	21.4	N1：	26.0	25． 1	E	1i． 0	5.7	E	6． 0	4.3
7	SW	17.0	12.6	NE	180	16.6	NE	2．） 0	$\because 2$	NE	6.11	4.9	E	0.5	2.6
8	NII	？ 0	1～．	NE	16.0	15.7	NE	200	$\because 6$	NE	4.0	3.5	NE	4.5	5.4
9	SII	20.5	20.17	NE	15．5	1：3．7	NE	26.0	giing	NE	3.5	0.3	NE	6.0	7.1
10	SIT	$1 \sim 0$	311：	NE	12．0	1：3．4	NE	$\because 7.5$	21．7	11	0.11	\cdots	N Ne	8.0	$\times .9$
11	SII	20.5	$1 \% .1$	NE	15，0	15.7	NE：	2r．0	25.5	E	3.0	6． 2	NE	9．$:$	7.7
Sinms．． Means．			238.4 9.9			396.9 16.5			44.9 20.3			290.2 8.7			8.9 3.4
Diş．	MARCH， 1872.														
	10.			11.			12.			13.			14.		
Hour．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Yel．	Dist．	Dir．	Vel．	Dist．
$0^{\text {b }}$	NE	10.0	15．5	NE	33，\％	85． 9	NE	15．0	28．0	E	5.5	5.7	E	5.0	6.3
1	NE	12.0	11． 2	NE	36.5	35.3	NE	31i． 0	$\because 1.1$	E	5． 0	7．4	E	5.0	6.3
\because	NE	12.0	$\therefore 1$	NE	35． 0	29．2	NE	17.0	24.9	E	7.5	7.9	E	C． 11	6.1
3	NE	11.1	$1 \because .2$	NE	30.5	30．	NE	\cdots	44.4	E	7.0	5，\％	E	6.11	2.2
\pm	NE	12.4	6.9	NL	30． 51	9，5． 11	NE	$4 \therefore 2$	40.7	E	6． 6	5.8	E	9.0	0.4
5	NE	82	14.9	NE	25．11	21， 7	NE	36.5	41.5	E	6.5	5.4	0	0.0	0.4
$1{ }^{1}$	NE	13．5	17.3	NE	－21．11	31.5	NE	： 5	310.3	E	6.2	5.6	0	0.0	0.6
7	NE	$1-11$	11.6	NE	＋ 20.0	24.8	NE	（in） 0	4.2	E	15．8	7.1	0	0.11	0.3
$\underset{y}{*}$	N12	$1 \because .0$	9.5	NE	U3．5	$\because 4.5$	NE	$4 \times .0$	546.4	E	4.5	$\because .7$	0	0.11	0.6
$!$	N12	10.0	$1 \because 5$	N゙12	2－0	$\because 1.9$	NE	500	$4!.5$	H		3.3	1	0.11	1.1
10	NE	$1 \because 2$	17． 11	N1：	21.5	1－9	入上	S1．${ }^{\text {a }}$	： 8 \％	E	3.5	5.9	0	0.0	1.6
11	NE	17．$\%$	\％． 1	NE	｜15．11	11.9	NE	35.5	$4+6$	STH	4． 0	\％	E	1.0	0.3
Nomi．	NE	27． 5	26.4	NE	$1 * 0$	18．0	NE	4．0．0	46.9	0	0.0	1.5	$\stackrel{0}{0}$	0.0	1.3
1^{16}	NE	？－n，	： 3.4	NE	12.11	10． 1	NE	44.5	42.5	0	－0．0	0.7	NH^{+}	2.0	1.6
\because	N1：	\＃4．5	湤\％	SE	13．0	13：5	NE	4×0	405	1	－ 0.0	3.9	0	0.0	1.3
3	NE	（2．11	36.0	E	10.11	13.0	Y E	$4 \because \therefore$	41.8	E	4．0	5.3	0	0.11	0.1
4	NE	：3．0	33.	SE	15． 0	12.6	NE	－ 40.0	41.4	E	14.0	$\cdots 1$	0	0.1	1.7
5	NL	33.7	35．	E	$\therefore 0$	11.6	\E	－ 0	36.9	SE	$\therefore .0$	6． 5	11	1.0	1.5
6	NE	3in． 0	35． 1	SL	13． 0	$14 . \because$	1	20．0	14．2	E	6.0	1． 4	NW	8.11	1.7
7	NE	$\therefore \mathrm{B} 0$	3， 6	SE	15．0	21.3	S1：	10．0	$1 \because 3$	E	10.0	7.0	0	0.0	1.2
\square 9	NH	35．0	36.4	N N	20．5	？	NE	120	14.7	E	$\therefore .4$	7．${ }^{5}$	E	1.0	0.9
9 10	NE	： 27.0	36.7	N1：	30．0	Oi1） 4	1	10.5	10.5	E	6．5	7.5	${ }^{1}$	13.0 0.0	0.0
10	N13	36.5	36． 3	NE	30.5	$3{ }^{3}$	E	10.0	8．$\%$	SE	7.6	（i．${ }^{1}$	${ }^{1}$	0.0	0.9
11	NE	：3．7． 0	35，6	NE	31． 0	25.9	F		5.2	E		6． 2	0	0.0	0.2
Sums．． Meams．			575.1			5：36． 1			729.0			131．5			：28． 4
			$\because 4.0$			U）：			，32\％			5.5			1.6

3 W

Daş．	MARCH， 1872.														
	25.			26.			2\％．			28.			29.		
Hour．	Dir．	Yel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Yel．	Dist．	Dir．	Ve］．	Dist．
0	VE	0.5	0.12	E	3.7	4.3	E	$\because 11$	9．	0	0.10	11.4	¢E	3.11	3．$=$
1	NE	0.5	11.3	E	4.11	3.6	0	11.0	2.11	11	0.0	0.	S1：	$\therefore 0$	0．$=$
\because	11	0.9	$\therefore 6$	E	3.11	\because	E	3.0	1.3	11	0.0	11.9	0	0.0	11.2
3	E	6.5	11.6	E	$\because 0$	0．6	E	$\because 19$	1.0	0	0.0	10	9	0.0	$\because \because$
t	E	7．0	1．9	0	0.0	0.9	E	$\because 11$	$\because 15$	0	10.0	0.0	E	3.0	1.9
5	\bigcirc	1.0	3.7	SE	1． 5	1．9	E	3.11	$\because i$	1	0.11	11.1	E	1.11	1.0
6	$\therefore \mathrm{E}$	3.0	1.5	11	1． 0	2.1	0	0.11	11.2	11	0.11	0.4	0	11.11	1.3
7	0	0.0	3．－	E	2.0	$\because .1$	1	0.11	1.0	E	1.0	11.6	－E	1.0	1.5
－	E	3.0	2.6	E	$\because 11$	号	E	$\because 11$	0.7	0	0.0	10.0	0	0.0	11.3
$!$	0	0.0	3.1	E	－． 0	2.4	U	0.11	0.11	＂	0.0	${ }^{1} .1$	0	0.11	1.0
10	E	$\because 5$	1.9	E	4.5	$\because .1$	1	0.0	11.1	1	0.0	11.1	SE	$\because 0$	1．6i
11	\cdots	$\because 0$	9.3	0	1．11	11.4	11	0.0	11.3	0	0.11	$1{ }^{1} .1$	1	0.0	0.6
Noun．	11	1.0	0.9	s	1.0	11.4	W	3.11	1.6	0	0.11	11.0	19	0.0	0.1
1 ＂	E	30	4 －	0	0.0	0.1	U	0.11	11.4	0	0.0	1.1	${ }^{1}$	11.0	1.2
\because	E	5． 11	3.	0	13.0	1.4	E	1.11	11.1	0	0.0	11.4	L	$\because 0$	11.4
3	E	1.0	\bigcirc	11	0.0	（1． 6	1	0.0	0.0	0	0.0	0.0	11	0.0	1.6
4	W	3.0	$\because 11$	St	1.11	？：	0	\bigcirc	$\because 3$	0	11.0	\because	SE	20	$\because 1$
5	0	0.0	1.6	SE	$\because \cdot 0$	\therefore	\therefore	$\because .0$	0.1	0	11.0	3.5	－E	1.	$\because 1$
6	12	2.1	0.1	－	4.0	4.7	1）	0.0	0.0	$1 ;$	$\because 0$	$\because 7$	\therefore E	2．2	$\therefore 3$
7	11	0.0	0.5	E	5.11	5.7	${ }^{1}$	0.11	10.1	E	3．11	0.1	－ $\mathrm{E}^{\text {c }}$	4.6	3.6
－	E	2.0	$\because:$	E	5.0	3.1	11	0.11	0.11	E	3.0	？ 6	\therefore E	4.4	$\because 11$
9	E	$\because .0$	8.4	E	\％ 5	3.1	0	0.0	$0 .-$	SE	1.0	3． 1	11	0.0	3.7
111	E	$\because .0$	2.1	E	3.0	8.7	0	0.0	0.9	11	0.0	1．2	SE	B．${ }^{\text {a }}$	6.4
11	E	3.5	3.5	E	2.6	$\because 5$	0	0.11	0.1	（1）	0.0	$\because 9$	－E	$\therefore \because$	$\because \cdot:$
Sums．			64.0			$\therefore .9$			19．			$\cdots 6$			H． 9
sleats．			$\because 7$			2.3			$0 .=$			11.9			1.9
Wis．	MARCH， 1872.						APRIL， 1872.								
	30.			31.			1.			2.			3.		
Hour．	Dir．	Tel．	List．	Dir．	Vel．	Dist．	Dir．	Vel．	Uist．	Dif．	Vel．	Dist．	Dir．	Yel．	Dist．
$0 h$133456670910	0	0.0	1.2	0	0.0	0.3	$\triangle \mathrm{E}$	3.1	3.5	0	0.0	11．5	11	0.0	3.
	－1：	$\because 0$	3.5	＂	0.0	0.5	$\therefore \mathrm{E}$	3．	4.1	\because	1.0	1.4	E	$\therefore 1$	$\because 6$
	E	－ 5	3.7	－E	1.0	1． 1	－E	4．2	$\because: 3$	NE	$\because .1$	3.6	0	0.0	2.5
	E	3.0	3.1	S	1.0	1.11	－ E	1.11	$\because=$	NE	3.0	3.1	E	3.3	3.5
	E	5.0	$\because .7$	11	13.0	U． 10	$-\mathrm{E}$	4.11	$\because 1$	NE	3.0	0.5	0	4． 0	1.9
	E	2.0	4．：3	0	（1，0）	${ }^{11}$.	－1	1.6	1.7	0	1.0	2.3	0	（1．0）	11.1
	-1.	6.0	4.9	0	11， 11	（1．） 11	-1.	$\because 4$	4． 4	E	$\because .0$	搨	0	0.11	0.5
	－	5． 0	$\because 3$	11	0.0	11.9	－ E	$\because 0$	U．－	11	11.0	3.2	0	1.0	0.0
	E	3.0	3．$\%$	－ E	2.11	$\because 6$	0	11.0	3.7	SE：	5． 0	2.6	${ }^{\prime}$	0.0	0.0
	E	5.0	3.11	－E	1.0	19．	Nir	$\therefore 0$	$\therefore \div$	0	0.0	2.7	11	0.0	1.3
	－E	4.0	2.5	13	0.0	$\because 11$	NW	4.0	1.9	－E	$\because 0$	U． E	$\therefore \mathrm{E}$	3.0	\cdots
$\underset{\substack{\text { coon．} \\ \mathbf{1}^{\text {b }}}}{ }$	11	（1．0	$0 .: 3$	\bigcirc	4.0	\％．ti	NW．	4.11	$\because 1.0$	0	1.11	1.11	1	0.0	1． 21
	11	0.0	19.19	－	$\because .0$	2.1	NII	$\because 11$	1．4	E	\because	3.0	11	0.0	0.19
	11	\cdots	1.9	－E	$\because 0$	\because	$\xrightarrow{0}$	1.11	$\because \cdot 3$	E	3.10	3.1	0	（1．）	$\because 0$
！	SE	$\because 0$	1.6	$\therefore \mathrm{E}$	$\because 11$	$\because-$	NW	4.0	3.5	$\mathrm{E}^{\text {E }}$	3.0	$\because 7$	E	$\because 0$	3.4
	－E	1.5	$\because 11$	－	5.11	3.6	NT	\therefore ，${ }^{\text {a }}$	4.3	入E	5.0	S． 0	E	4.0	2.9
3181	－	2． 0	1．：	－E	3.11	1．－	NIT	4．${ }^{\text {2 }}$	5.5	－E	5.19	$\therefore 6$	E	3.0	1.11
\square	NII	1.11	0.4	－1：	2.9	$\because 11$	NT0	6.11	5.19	－ E	3． 0	0.5	E	4.0	4.6
	NW	11.3	1． 3	11	11.0	$\because \because$	NH	5.0	$\therefore 7$	0	11． 11	1.9	E	4.0	$\pm .6$
$\stackrel{6}{7}$	\ir	$\because 0$	1.5	\cdots	$\because 0$	$\because 5$	NW	3.5	\therefore－	E	2． 0	$\because 5$	EE	130	$\therefore 6$
－	0	O．19	U． 0	－	3.0	1．：	NW	4.11	3.9	E	3， 0	$\because 1$	SE	\cdots	4.9
10	11	0.11	11． 6	0	0.0	（1，3	0	O． 0	11.3	E	$\because 0$	\because	E	4.8	5.3
	11	0.01 0.11	0.3	E	$\because 11$	$\because 6$	）	0.0	1.0	SE	3.0	1.7	E	4． 6	4.2
11	11	0.11	11.2	－E	1． 0	$\because 4$	11	1．0，	11.4	E	$\therefore 0$	1.1	E	5．\because	4．：
Surs．			47.5			：3－．：			211． 2			只？			的边
M 1 ＋alis			1.9			$1 . \because$			$\because 9$			\because			$\because .6$

APRIL， 1872.

APRIL， 1872.
Day．

		3.			10.			11．			12.			13.	
Honr．	Dir．	Val．	Jint．	I）ir．	Yal．	］int．	lir．	V川．	I）ist．	lir．	Vrl．	Dist．	INir．	V川．	Irist．
$0)^{\text {h }}$	$N W$	1．：	11．${ }^{\text {K }}$	1）	11.19	1）．11	11	0.10	11.11	1	1i． 0	1．1	$1)$	0.11	1． 1
1	$N 11$	$1 . \%$	11． 2	$1)$	11.10	（1．）	$1)$	（1．1）${ }^{1}$	$11 ?$	H	3． 11	\because	1	0.0	0.0
4	$1)$	11.11	$\because \because$	11	11.11	1.1	E	$\therefore \mathrm{A}$	4.11	F	3.11	1．${ }^{\text {i }}$	（）	10.10	$\therefore 1$
\because	1	11.11	0.11	0	0.0 ，	1）． 2	1	4． 1	5． 19	H	1．11	1.11	N	$\therefore 0$	3.5
4	11	11． 11	10．11	11	11． 111	$\cdots 1$	11	11.10	$\because \because$	E	1.11	1.1	1	4.0	4． 6
5	11	11．1）	0.10	1	［． 11	4． 3	11	11.11	11.10	11	11．11	11.11	E	5． 10	51.2
6	11	11．1）	11.11	N4．	3.0	\because ，	$1)$	11.10	11.10	11	1． 11	0.11	$1:$	4.7	2.1
7	11	11． 11	11.11	心	1． 0	$\because \cdot$	11	11．0	11． 3	f \％	ii． 10	0.19	E	2． 2	0，1）
6	$1)$	13，11	0.11	\cdots	1．11	\because	11	11.0	11.11	11	11.11	$\because 11$	1	1）． 11	1，$:$
$!$	11	11.11	0.10	H	4．11	\％． 9	ぐ心	$\therefore 0$	$\because 7$	心小	$\because 11$	11.1	0	11.11	11.1
10	11	0.11	0.1	SH	$\therefore 2$	\therefore ：\because	ぐっ	$\because .11$	$\because 5$	二irs	1.0	1．α	0	0， 11	1.3
11	11	0.11	0.10	E	1． 61	11.7	心゙心	$\because 0$	$\because \because$	心灾	11.5	1.1	SH\％	1． 0	1.2
Noon，	11	0.11	11.0	11	19.11	1.1	0	10.0	（1）．${ }^{\text {a }}$	0	0.11	0.1	NW	$\because 0$	1.4
$1^{\text {b }}$	11	O． 0	（1． 11	11	（1．）	11.6	0	11.0	3.1	11	11.11	10.10	W	\％． 11	$\because:$
\because	1	11． 0	1.10	E	1．${ }^{\text {a }}$	2.15	1	411	$\therefore 1$	11	0．0）	0.11	（）	（1）， 11	11．－
3	1	0．0）	0.11	1	$\therefore 1 ;$	11． 3	1	$\therefore 0$	5． 1 i	Sis	11.3	1.1	W	1.19	2.16
4	0	1． 19	1． 7	1）	0.11	11.11	NE	li，M	$\therefore 7$	1）	0.11	O． K	W	4.19	1.0
\％	J	3.10	$\because 0$	1）	11.11	11． 3	$N \mathrm{~N}$	5． 2	1．1	1）	0.11	（1．） 10	W	1.11	5． 1
i）	11	11.11	1．1	11	11.0	（1． 11	0	11．1）	$\because f i$	11	11.19	$\because 0$	W	4，1）	\cdots
7	E	$\because 11$	11．\because	11	0.10	1.7	E	（i．1）	7．11	1	11.1	1.1	NH	1.0	1.9
＊	11	11.11	11．\because		2.10	11，r	H	1i，is	$\because .7$	I	$\because 0$	$\because 6$	11	0.0	（0． 1
9	$1)$	11.11	11．1）	$1)$	0.0	11． 11	11	0．11	11.2	人E	3	2，1	11	11.11	（1．）
10	11	11.0	11．11	$1)$	1．1）	（1）． 1 ）	11	0.11	0.6	I	1.0	$\therefore 1.4$	11	19.11	$1 .:$
11	0	1.0	11． 3	（1）	（1） 10	（1）． 2	E	1，11	$\therefore 1$	$1:$	1．9	11.11	NH	4.6	$4 . \%$
Silntu－			10． 1			$\because 1.1$			$\therefore 1.9$						Fi． 1
			11.4			1．\because			$\because 1$			1.4 1.4			8．2

APRIL, 1872

Day.	MAY, 1872.														
		13.		15.			16.			17.			18.		
Hour.	Dir.	Yel.	Dist.	Dir.	Vel.	Dist.	Dir.	Tel.	Dist.	Dir.	Vel.	Dist.	Dir.	Pri.	Dist.
$0^{\text {b }}$	SW	8.5	1. 9	SIV	4. 5	0.3	9	0.0	0.3	0	0.0	1.4	E	4.10	3.9
1	SIV	9.0	$\therefore 4$	0	0.0	\because	11	0.0	0.6	0	0.11	4.11	E	4. 0	4.7
\because	SW	3.0	8.9	SW	3.11	$\bigcirc .4$	Sill	1.0	4.0	SE	4.0	5.8	E	5.11	5.0
3	Nil	9.0	r.s.	Sll	5. 0	(i. 6	SW	3.0	3.0	F.	5.0	0.1	E	5. 0	4.11
4	Stl	8.11	c. 4	SW	6.5	0.9	SU	3.0	只:	0	0.11	0.4	E	4.0	4.5
5	sw	$\boxed{8} 0$	$\therefore 1 ;$	SIT	9.0	11.4	Sll	2.0	2.6	0	11.0	0. F	E	4.5	4.2
1 i	SW	8.5	5. 4	SHT	\% \%	13.7	Slt	$\bigcirc .11$	5. 1	0	11.0	4. 4	0	0.0	0.9
7	SW	4.5	11.4	SIV	15.0	12.0	SW	5.5	5.7	SE	4.11	5.4	11	0.0	0.2
α	SHT	6.5	10.3	StV	20.0	14.0	SW	5.5	7.:	SE	5.5	5.2	0	0.0	1.9
9	NII	9.0	- 1	SW	$1 \because .5$	$1 \because 1$	sil	6.11	8.	S	5.0	4.4	E	1.5	11.8
10	SW	4.5	5.6	SW	$1 \% .0$	9.	SW	9.0	9.5	0	0.0	7.5	0	0.0	2.4
11	Str	13.11	5. ${ }^{6}$	NW	- 0	-. 0	sil	9.0	11.7	SW	8.0	9.9	\checkmark	$\because .0$	2.5
Noon.	SW	5.11	19,0	SW	$\because .1$	7. 5	swr	12.0	11. \because	sil	10.11	8.1	N	$\because 2$	1.6
$1^{\text {4, }}$	SII	6. 11	5.11	SW	¢. 0	7.7	SIT	10.11	10.3	SW	\bigcirc	8. 5	S	2.0	$\because 3$
2	SW	511	3.1	Sill	$\therefore 0$	9.3	SW	10.0	11.4	Silw	$\therefore 0$	8.3	S	3.0	1.5
3	SW	3.0	3.15	Sily	10.5	9.2	sily	12.0	11.4	SW	\%. 0	7.3	11	0.0	0.4
4	s	2.10	0. 2	SW	9.5	-6 6	SW	11.5	15.5	SW	6.5	$\because 0$	0	0.0	0.9
5	0	0.11	0.3	SW	r. 0	10. 1	SIV	4, 0	7.9	W	2.0	3.1	SE	$\because .0$	0.3
6	11	0.11	0.4	SW	8.0	7.3	SW	- 0	¢. 1	NW	2.0	0.7	11	0.0	1.3
7	0	1.0	0.19	SW	14.5		sil	¢. 0	5.7	0	0.0	$0 . \%$	SE	0.5	1.6
\checkmark	11	0.11	8.5	SW	7.0	1i.)	SW	6.0	5. 4	11	0.0	1.4	SE	1.0	2.3
9	SIT	2.5	2.7	SW	$\checkmark .5$	13,	SW	5.0	3.7	SE	3.0	1.6	SE	2.0	2.5
10	sw	2.5	4. 1	Sil	6.0	$4 . \therefore$	sil	4.0	8.	0	0.0	2.4	SE	2.0	0.7
11	SW	3.0	4.8	SW	2.0	0.6	Sil	8.0	2.4	E	3.0	3.3	SE	1.0	0.9
Sums. . Means.			124.9 5.3			19.2 4.3			15.5 6.4			9.3 3.9			50.0 2.1
Day.	MAY, 1872.														
	19.			20.			21.			22.			23.		
Mour.	Dir.	Yel.	Dist.	Dir.	Vel.	Dist.	Dir.	Vel.	Dist.	Dir.	Vel.	Dist.	Dir.	Vel.	Dist.
0^{4}	SE	$\because .0$	2.1	S1	5.11	3.5	$\therefore \mathrm{E}$	3.0	9.6	NE	18.0	7.3	NE	9.0	11.2
1	SE	$\because 0$	0.5	SE	4.0	3.3	10	0.0	0.2	NE	16.5	27.7	NE	10.5	10.9
\because	0	0.0	2.3	SE	3.11	¢, 6	0	11. 0	2.2	NE	17.0	21.9	NE	10.5	12.2
3	SE	2.0	3.4	SE	5.5	3.19	SE	2.0	3.7	NE	20.13	17.3	NE	10.5	14.7
4	E	\because	3.3	SE	1. 0	0.7	SE	2.0	11.5	Ne	15.5	9.7	NE	15.0	9.7
$\%$	SE	2.5	1.8	U1	0.10	1.5	0	0.0	1.8	NE	5.5	5.3	NE	2-0	2. 4
6	SL	$\because .0$	11.:	11	0.0	11.4	AE	2.0	1.5	0	0.0	3.6	NE	, 3.5	23.1
7	S	1.9	0. 9	0	0.0	0.5	-	1.5	1. 0	SWV	5. 0	3.1	NE	2. 2.5	26.0
9	SE SE	0.5 1.0	1.1	$\stackrel{0}{6}$	0.0	0. 2	0	0.0	1.6	SW	2.0	$\because .4$	NE	25. 0	13.7
10	${ }_{0}^{\text {SE }}$	1.0 0.0	0.4 0.4	W	0. 5	1.7	${ }^{0}$	0.0	$\bigcirc 1$	${ }_{0}$	0.0	0.5	NE	15.5	23.1
11	11	9.0	3.0	1	1.5	1.1	Wis	2.0 4.11	3.9	${ }_{\text {NW }}$	0.0	2.4	NE	\%00	20.2
Noon.	NW	4.0	3.1	0	0.0	11.3	Niv	4.0 2.0	3.7 3.4	NW	4.11 4.0	4.2 $\times 20$	NE	20.5	24.0 30.3
$1^{\text {b }}$	N11	3.0	$\because 4$	0	0.11	11.9	NW	2.0	3.	${ }_{0}$	1.0 10.0	2.0 4.0	NE	25.5	30.3 97.2
\because	NW	0.5	0.9	E	!. 0	38	NW	3.5	7.0	0	0.0	4.6	NE	-20	26.1
3	$\stackrel{0}{0}$	(1. 0	1.1	E	3.0	$\therefore 5$	¢E	13.0	亿.	N	5.0	1.6	NE	25.5	20.9
4	NW	1.0	10.9	E	3.0	3	NE	14.\%	12.9	19	0.0	1.4	NE	18.5	16.0
5	${ }^{0}$	0.0	0.5	E	3.0	2,	NE	12.0	14.*	E	$\stackrel{2}{ } 2$	0.5	NE	15.5	11.6
\because	0	(1. 0	0.2	$\stackrel{0}{8}$	1. 11	$\therefore 6$	NE	16.5	15. 4	0	0.0	0.3	NE	$\therefore 0$	\because
$\overline{7}$	11	0.0 0.0	0.11	SE	3.11	3.3	NE	1*.0	21.5	0	0.0	1.5	0	0.0	2.7
- ${ }^{\text {a }}$	0 SE	0.0 8.0	1.3	S	3.10	4.4	NE	21.5	1 1. 6	NE	8.0	5. 6	NE	5.0	2.3
111	SE	8.0	\cdots	S	5.0	4. 4	NE	1 1-. 0	18.9	NE	5.0	$\bigcirc .1$	NE	1.0	2.3
111 11	SE	3.0 2.4	$\stackrel{2.9}{4.5}$	$\mathrm{SE}_{\text {S }}$	4. 0	4.5	NE	20.0	20.3	NE	9.5	7.15	NW	0.5	0.6
11	St	2.4	4.5	SE	3.:	3. ${ }^{\text {i }}$	NE	20.0	$1 \cdots 4$	NE	5.0	8.6	0	0.0	1.1
Simms Means.			39.5			$5 \% .6$			1×2						376.2
			1.6			2.4			7.6			6. 2			15.7

4 W

Day．	JUNE， 1872.														
	3.			4.			5.			6.			7.		
Hour．	Dir．	Ve］．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Yel.	llist，
$0^{\text {b }}$	0	0.0	1.4	F	4．0	2.1	0	0.0	1.9	0	0.0	4.0	SW	2.0	1.5
1	（1）	0.0	2.4	1	3， 0	2.11	11	0.11	1．\because	1	：3． 0	万． 1	SE	$\because .9$	2.1
2	W ${ }^{\top}$	$\therefore 0$	2.1	$1)$	0.0	4.1	0	0.0	0.9	E	4.0	5．$:$	N WV	$\therefore .1$	$\because 3$
3	0	0.0	3.8	W	4.0	3.1	11	1.0	3． 3	1	5.10	6． 2	B	$\therefore 1$	0.1
4	NW	4.0	7.5	E	3.0	0.5	W	3.0	2．－	1	（i． 0	4．：3	11	11.1	0.3
5	NW	7.5	5.4	E	11.5	0，\times	W	3.0	－ 4.1	E	4.5	2.1	1	0.0	2． 2
6	W	5． 0	10．：	${ }^{1}$	0， 11	0.9	SW	4.0	－ 36	E	3.0	1．：	SL	$\therefore 0$	$\because 2$
7	W	11．0	9.4	1	0.0	1.9	W	2.5	3．：	0	（1．0）	3．：3	1	（1．0）	（1，－
8	W	0.5	5.9	W	2.5	11.4	W	3.0	4.7	E	：i． 0	$\because 3$	11	11.0	0， C
9	W	6.0	3.9	0	0.0	0.5	NUT	5．0	7.1	H	$\because 0$	1．！	\because	（1．）1	11.3
10	0	0.11	1．：	0	0． 0	0.1	NUT		7．\because	1	$\because 0$	2.15	SL	0.5	1，${ }^{\text {\％}}$
11	11	11.0	1.0	11	（1． 11	0.5	N W	7.0	6．5	NW	4.0	4.3	0	11.0	2．：
Noon．	0	（1． 0	1． 4	11	13.11	0.11	NE	$\therefore 10$	4.5	NiV	6.5	4.1	NW	4.0	1.6
$1^{\text {b }}$	W	$\because .0$	0.9	0	0.0	1.11	NH5	$\because 0$	4.0	＂	0.0	：3． 1	NW	$\therefore 5$	$\because 4$
2	SW	3.1	0.7	W	2． 11	$\because 0$	N ${ }^{\text {N }}$	4.11	－ 1.5	NW	3.0	3	${ }^{1}$	11.0	1．4
3	0	0.0	2.	－	$\because 11$	0.2	11	11.11	U． 4	N：	$\therefore .11$	1．：$:$	NW	2.0	1.1
4	W	只 11	1.0	0	0.111	1.5	SE	2.0	：3．3	11	1.0	4.5	11	0.0	1.4
5	W	2.11	$\therefore .0$	S	2.0	10.6	S	4， 11	\cdots	N	4.0	1． 5	K	$\xrightarrow{3} 0$	$\therefore 0$
13	W	$\stackrel{3}{2}$	$\because .0$	0	0.11	2.5	11	0.0	3.9	11	${ }^{11} .0$	0．3	S12	30	5． 1
7	E	3.0	1.9	E	6． 0	2.1	SH	4.0	2.0	11	1.0	0.5	$\bigcirc \mathrm{SE}$	4.10	\because
8	0	0.0	3． 1	Sll	$\because 0$	3.4	SW	1.0	$\because 9$	（1）	0.11	0.3	S12	$\therefore .0$	4.5
9	E	5.0	2.0	W	1.11	2.8	E	？ 11	0.3	$1)$	0.0	1.7	SE	2.0	4.5
10	${ }^{\prime}$	0.0	8.7	0	11.10	0.7 ，	1	（1．0	4．9	NW	11． 1.	0.4	811	8．${ }^{\text {a }} 0$	10． 5
11	E	4.11	3.9	${ }^{\prime}$	10.0	2.2	sil	（i．） 0	$\because 9$	sil	1.0	$\because .7$	W	5.0	5.1
Sums．．			－．5，			41．1			\％．， 0			5\％． 1			61.0
Means			$\therefore 3$			1.9			3.1			\because			2.5
Day．	JUNE， 1872.														
	8.			9.			10.			11.			12.		
Hour．	Dir．	Vel．	Dist．	Dir．	Yel．	Dist．	Dir．	Tel．	Dist．	Dir．	Vel．	Dist．	Dir．	Ycl，	Dist．
$0^{\text {b }}$	SW	5.0	3.9	11	0， 0	3.6	N	3.5	1． 6	SW	9.6	10.6	N	3.0	1.6
1	S	4.11	9.3	W	1.11	54	sE	2.11	1.9	SW	14.4	11.4	N	1.0	3.6
\％	SW	$\because 0$	3.1	Sily	1． 0	10．\because	1 V	1．1）	1.8	Sil	（1．）	10．$: 3$	S	4.0	3.9
3	NW	1．2	7． 1	Sily	12.0	13．：	0	0.0	0.7	sil	9.6	6.4	s	4.0	4.7
4	N11	0.5	$\because .9$	SIW	14.4	13．．	0	0.0	1.7	SW	7．\because	15.4	5	5.0	5.4
5	sw	1.11	3.3	siv	12.0	区． 3	$1)$	0.0	E． 11	SIT	14.11	6.4	心	5， 5	4．${ }^{\text {a }}$
6	SW	2，5	4． 7	Sily	12.0	10.0	NE	1．0	$1 \because 0$	SW	1 $\because 0$.	10.7	S	5.0	5.2
7	SIV	4.11	0.9	SW	1.0	4.9	NE	14．5	17.10	SW	13． 2	10．：	－	5． 0	4.1
$\dot{8}$	0	0.0	0.5	sil	3.6	8	NE	家． 11	231． 0	S15	9，6	9.1	SW	$4 . \mathrm{H}$	5） 0
9	0	（1． 0	1． 8	W	4.0	4.15	NE	20.19	20．\％	SLV	8.4	9.6	Kw	4． H	6.1
10	${ }^{0}$	（1． 0	4． 19	W	4.0	\cdots	NE	24.0	17.5	SW	9.15	9.4	SH	7.2	5.7
11	SE	4.1	3．ij	IV	7.0	9.7	NE	1：3）	16.9	SW	19.0	10.4	SW	7%	5.9
Noon．	E	4.11	4． 4	SW	－． 0	4.2	NE	1 N 0	5.6	SW	10.0	10.0	8 V	1．0	5， 5
$1{ }^{\text {b }}$	E	4.0	$\cdots 3$	SW	4.0	5.8	N	2.0	$\because .6$	sur	10.0	－．${ }^{3}$	SW	1．0）	5.3
\because	E	3.1	3.5	SW	$\cdots .11$	\％ 0	SE	只．11	7.6	sil	8.0	9.4	SW	1． 0	4.1
3	E	关：	$\because 3$	SW	$\therefore 11$	5.6	SE	1i．0	6.5	sil	10.0	10.11	SH	4.0	3.9
4	N	2.0	1．	W	3． 0	1.4	－119	11.5	9.8	Sil	10.0	9.9	sw	4.0	1.6
5	0	11.0	1．3	0	0.0	1.1	W	8.0	4.0	－以	10.11	号	0	0.0	0．6
6	0	0.0	$\because 0$	sw	40	11.3	W	4.11	3.8	¢以	10．5	10.0	11	0.0	0.7
7	S	$\because 11$	O．R	0	0.11	0.41	sw	4.0	1.1	SW	9.5	9.4	11	0.0	0.4
$\stackrel{+}{*}$	0	0.0	0.3	s	2.0	1.0	Siv	7.0	5.	SW	9.5	78	11	0.0	0.9
9	0	0.1	1．2	SL	2.0	$\because 1$	－W	50	7． 1	－iv	5	3.7	SE	2.0	0.9
10	W	4.11	3.6	SE	2.1	\because	sily	－011	$\bigcirc 0$	SW	8	6.5	11	0.0	0.9
11	SW	5． 11	5.4	SE	3.5	3.3	SW	8.11	93	S	6.0	2.0	0	0.0	2.0
Sinms．．			74.3												32.9
Meatus．			3.1			$\therefore 6$			8．1			215.6 8.9			3.5

Day．	AUGUST， 1872.														
	2.		Dist．	3.			4.			5.			6.		
Hour．	Dir．	Yel．		Dir．	Yel．	Dist．	Dir．	Yel．	Dist．	Dir．	Vel．	Thist．	Dir．	Vel．	Dist．
0^{4}	S	1.5	1.3	0	0.0	2.1	N	2.0	0.4	NE	1． 0	5． 11	NE	3.0	1.2
1	SW	0.5	2.5	NWT	3.0	1.0	SW	0.5	$0 .: 3$	NE	3.11	3.16	NH	4.0	1.7
2	sW	1.0	1.4	1	11． 11	4.8	SW	1． 0	11.1	F，	3.0	$3 \cdot$	NE	0.5	1.4
3	10	0.11	1.7	NE	5． 0	（1．13	SW	0.5	0.8	SE	5． 11	$\because 2$	NH	0． 5	\because
4	N	1.5	1．8	NE	H． 0	9． 3	siv	1.0	1． 3	E	3． 11	9.7	SW	（i．） 1	3.4
5	NW	1.5	1.4	NE	¢ 5	6.5	NS	2.0	4． 1	S15	3.0	$\because 5$	－15	4.5	5.3
6	W	1.0	1．3	NE	li． 0	7.7	S	4.5	$\therefore 0$	SE	1.0	1．N	W	$\because 0$	2.5
7	W	1.0	1.	Nゃ	5	7.4	s	2.5	3.0	S	2.5	\because	W	2.0	2.1
¢	SW	1.5	2.1	E	$\checkmark 5$	6.1	8	2.5	$\because .2$	心E	$\because 0$	$\because 3$	SIV	3.5	1．：
$!$	$1{ }^{1}$	1.0	3.5	心12	5． 0	1.1	SE	$\because 0$	0．8	L	3.5	4．5	19	0.0	1． 2
10	Nily	2．5	8．	E	$\because .0$	3.1	11	0.0	0.9	心6	1.0	1．5	11	11.0	1，
11	Hill	2.5	4.8	0	0.0	1.3	W	0.5	0.9	0	0.0	¢． 4	E	1.5	1.3
Nuon．	sw	4.0	5.3	sw	11.5	1.0	W	1.17	1． 5	NW	4.11	$\because 7$	SH	4.0	2.3
$1^{11^{1}}$	SW	5.0	4.4	SW	1.0	1．I	1	11.0	0.5	Sll	6.11	4．－	S	11.5	3.2
\because	Siv	6.0	4.0	N	2.0	1.5	$1)$	0.0	0.8	SW	11． 5	1.3	SU	6． 11	2.9
：	Sly	： 610	：2． 2	SW	1.0	11.9	11	11.0	1.4	ふ\％	2.0	2.3	SE	－1． 0	4.0
4	W	$\because 0$	$\because:$	Sily	1.0	$11 . \mathrm{r}$	$1:$	2.0	$\therefore 1$	E	3.0		SE	4.5	5.0
5	W	$\because .0$	4.7	sll	1.0	11.8	N	3.0	1.9	SW	2.11	2.11	SE	（i， 11	4.6
$1 i$	心以	3.1	4.5	s11	11.5	1.11	S	1.0	$\because 0$	心	4.0	\because	SE	4.5	7.9
7	NW	4.01	5.4	N	2.0	1．：	SE	\because	1.3	SE	$\therefore 11$	4.7	H15	6． 0	3.0
\cdots	sil	4.5	$\therefore \mathrm{O}$	NW	1.0	2.4	S	$\because 10$	$\because 1$	SW	1.0	1.1	SW	3.5	4.3
！	W	4.11	5．	N	$\because .0$	： 6	E	$\because .0$	¢．1	W	？	0.5	SIV	$\because 10$	4.3
10	IV	5.11	！	NH	8.5	2.4	NE	1.5	2.3	11	0.0	\because	SW	6.0	4.6
11	$\times 15$	35	2.6	N	3.0	1.7	\therefore	4.5	$\therefore .19$	W	3.	2.4	SW	4.0	4． 6
Sı1ms－			7：39			76.4			39．3			63． 11			74.7
Means．			$\therefore 1$			3.3			1.6			＊．6			3.1
Day．	AUGUST， 1872.														
	$\%$			8.			9.			10.			11.		
Honr．	Dir．｜Vel．		Dist．	Dir．	Yel．	Dist．	Dir．	V．l．	Dist．	Dir．	Vel．	Dist．	Dic．	Yel．	List．
0^{12}	SW	6.0	5.4	W	3.0	1.3	S	3.0	¢． 0	11	0.0	11.5	0	0.11	0.3
1	SW	6． 0	3.0	0	0.0	4.5	SE	5.0	6.0	NW	$1 .:$	2.4	1	0.11	11.2
？	א川	5.0		sW	3.0	0.9	N	7．0	6．${ }^{\text {a }}$	NW	1．${ }^{2}$	1．\because	$1)$	0.0	0.3
3	Sll	6.0	3.2	0	10.10	3.1	SE	5.11	3	NW	1． 3	U． 8	1	0.0	0.4
4	sw	4.0	4． 5	11	0.0	3.0	SE	4.5	4.5	0	0.0	0． 7	11	0.0	0.3
5	IV	4.11	$\stackrel{6}{2} .7$	SE	4.0	3.5	SL	4.5	5.6	NW	1.0	1.6	NW	2.0	0.9
6	NW	$\because 0$	\because	11	11.0	1.5	N：	6.0	5.1	N	\％，11	2.1	1	0.0	0.8
7	W	9.0	2	SE	$\because 0$	2.1	SE	4.5	3.	N	$\because .0$	1.9	0	0.0	0.7
8	SW	3.0	$\therefore .8$	11	0.0	2.3	SE	5.0	3.7	NW	2．11	3.1	11	0.11	0.5
9	STV	3.5	5.8	SW	3.0	3.6	s	3.5	2.7	W	2.5	3.4	0	0.0	0.11
111	SIV	（i．） 1	¢9	SII	5.5	1.4	SE	3.0	4.1	W	4.5	2．9	0	0.0	0.9
11	SW	10.5	$\bigcirc 9$	0	O． 0	1.7	E	2.0	3.1	IV	2.5	2.9	0	0.0	0.7
Nown．	STr	4.0	7.4	SW	11.5	1.9	SE	4.0	3.6	W	3.0	8.1	11	0.11	0.3
$\stackrel{1}{12}^{\text {a }}$	Siv	8.0 8.0	7.5	9	1.0	4.3	SE	1.8	感	NW	3． 11	4.4	STV	30	1.7
\％	SW	8.0 1110	$7 . \mathrm{K}$	0	0．11	34	SE	$\because 4$	\cdots	NW	6.11	\％．9	W	5.0	4．${ }^{\text {人 }}$ ，
：	SIV	111． 0	6.5	$8{ }^{1}$	0.5	1.9	人E	$\because 4$	2.4	N15	2.4	3.4	W	0.11	$1 .: 3$
4	SW	1.0	5.9	si	\％． 0	\because	S	$\therefore 0$	3.4	NV	1.11	0.8	W	0.5	1.8
$\stackrel{\square}{5}$	IV	4． 0	5.19	SF：	$\because 0$	$\therefore 10$	¢ E	5． 0	3.5	NW	1.4	1.7	S	3.0	4.4
6	SW	5． 0	$2 \cdot$	Stis	8.0	$\because 5$	SE	1.0	3.2	0	0.0	2.9	s	5.11	4．${ }^{1}$
7	W	1.5	$\because 4$	SL	4.11	3.2	心E	$\therefore 20$	$\because 2$	W	2.11	6．\because	SE	3．11	1.4
1	W	$\because 0$	1.9	\cdots	3.0	\because	SE	$\because 0$	3.8	SE	5.0	1.11	SE	1.0	0.4
19	SIV	1.5	2.3	SE	2． 0	1.7	11	0.0	$\because 6$	SE	5.5	3 B	0	11.11	0． 2
10	SW	3.0	1.6	S12	4.5	2.9	SE	1.5	0.8	1	0.0	1． 2	$1)$	0.11	1.1
11	SW	1.0	$\because .1$	SE	1.4	3.2	SE	1.0	$\because .0$	11	0.0	11.2	SL	1.0	0.4
Sums．．			104． 0			55.4			E3． 0			5：3． 1			29.1
Means．			4.3			2.4			3.5			2．2			1.2

5 W

In treating the preeeding obserrations analytieally，the usual assumption was marle that the winds recorded within a eertain period（a mouth or a year）were，like so many forces in a horizontal plane，aeting simultaneously upou one point，which is the station of the observer．

If we add all the relocities of the same direction，we obtain the following condensed monthly and anman results：

Month．	Lirection and relneity of wind．							
	N	NL	E	SE	S	SW	W	NIV
Jamary．	185．7	20， 0^{2}	1117．4	295	20） 01	20．3	44.8	1.4
February	333． 0	4．8i\％．11	11×1.9	131.3	突：	1：313，！	8.9	213.
March．	5． 11	1：213：	211：0 0	511.18	3.0	－54， 0	10．：	44.1
April．	6，	1512．3	－in． 4	337.9	11.0	（65s．0	：3． 0	245.3
Mily	11.11		114.4	1620	22． 11	1205， 4	811.7	：1919， 1
June	10．13，	21019．11	！ 0	121.0	313． 7	1\％：4．2	153．0	い11．
July	1594．3	1142：3	S\％． 4	152.6	711.3	1310.5	119.11	：311．${ }^{2}$
Allgost	－4：3	\therefore こ\％． 7	04.3	$\because 2: \because$	10：3．${ }^{\text {；}}$	971.7	110：	101．
Suptember	二小， 11	11970	50.11	31.11	$\therefore 0$	2：31．0	49.0	4.0
uretober．	Q110．01	：15． 0	11.0	0.11	106.0	2：30	0.0	0.0
Novembr	ii． 11	4103.1	152：3．4	95.3	11． 0	1030． 1.	$\because 1.11$	19． 0
December	200.2	3481.7	1\％17． 1	140.7	50.3	154×3	29． 1	95．2
Spring	11．	11450． 4	16128	941， 5	37.11	：（1）17．4	17.9	609.9
＇umuter．	2199，	3－0， 0	4！！3， 3	56， 5	4×11	\therefore－ 19.4	\％保亘	7n－ 1
Antunit	2414.11	En：3． 1	1153． 4	1993	111．0．	1024．2	10.0	4.0
Winter．	วンフ．9	10610.9	$3 \mathrm{So-6}, 4$	499.7	210．5	3091.5	心．	310.4
Y＇ar	2：00：5	29．01． 4	Ti．3．0	2161.3	7：3．5	11712.5	609.9	1692． 4

The winds blowing from N，NE，E，SE，S，SW，W，and NW produce a motion of the imaginary point at the station of the observer in the directions $\mathrm{S}, \mathrm{SW}, \mathrm{W}, \mathrm{NW}, \mathrm{N}, \mathrm{NE}, \mathrm{E}$ ，and SE，respeetivels．

By resolving the winds from the directions SH，NW，NE，and SE into their rectangular components，and observing that－

$$
\sin 4.5=\cos 4.50=0.707
$$

we obtain the resultants for North，South，East，and West：

$$
\begin{aligned}
& \left.R_{: ~}=\mathrm{N}+\mathrm{S}^{(\mathrm{SE}}+\mathrm{SW}\right) 0.71 \pi, \\
& I_{n}=\mathrm{S}+\because \because(\mathrm{NE}+N W) 0 . \pi \% \text {, } \\
& \left.R_{\mathrm{E}}=\mathrm{E}+\underline{(N W}+\mathrm{SW}\right) 0.7(1, \\
& J_{n}=\mathrm{W}+\because(\mathrm{NE}+\mathrm{SE}) 0 . \sigma \pi .
\end{aligned}
$$

By applying these formula，we obtain－

Montb．	$N ;$	R_{5}	$R_{\text {E }}$	Rw	Reduced to direc	wo principal ious．	Resulting direction aud force of wind．
Jannary	980.0	134is	1964．0	20－0．6	$R_{s}=10: 4.2$	$R_{W}=116.6$	$1040.7 \mathrm{~N} \mathrm{O}^{2} 26^{\prime} \mathrm{E}$
Crornary	1335． 0		1292． 11	2300！ 7	$R_{5}=200 \cdot 0.11$	$R_{W}=1145 \%$	
Mareh	75\％． 7	44 ¢ 6	112\％．	4763.6	$1 \mathrm{l}_{5}=364.9$		5170.9 N 444212
April．	70！ 2	196\％．7	147， 3	$1: 120.1$	l－	$\operatorname{Tr}=76.9$	53.3 N \％10W
3 yay	13507	31\％1．	1的年， 1	11944： 3	M＝768	$\cdots w=3 \%$	
Jane	1233.6	10＊）	1：3ヵら，	16935	$R=$ T．ai． 1	$R w=316.3$	－14．5 N
July	264\％－	110i． 1	1210.5	10，－	$\Gamma_{S}=1.836$	LE $=15.5$	1544.5 S 57 W
Alugint	140， 4	4：－ 0	115－． 0	$4-13.5$	$R=974.4$		11＊， 3 S $34 \quad 34$ W
S ¢ituminer	24， 3	－3：	$\because 115.1$	142.7	$S^{\prime}=161$.	$R E=1 i \% .4$	17\％3 S 3.3 W
Oetober	216.3	221.6	16．：	$\because 186$	$I^{\prime}=110 \cdot 3$	似 $=199 .:$	
Nowemher	－111． 7	3260	？ 301.7			$R_{w}=1153.5$	260．7
December	140：3 3	－5．36．7	3419.1	2045．7	$T_{i s}=1133.4$	$h \mathrm{w}=128.6$	1140.9 N 6 \％E
Spring	2849.6	7731， 8	4207.3	8106.0	$R_{\text {S }}=4922.2$	$R_{W}=3009.7$	$6979.1 \mathrm{~N}: 30 \mathrm{or:} \mathrm{E}$
Summer	「2\％			\％ 311.9	$\mu=175.11$	$M_{12}=.511 .6$	
Antuma	1263：	3\％\％．9	2－34． 1	\％19．5	$M_{s}=94096$	$h_{w}=1104$	
Winter	342014	7819．9	（3645， 0	70920	$I_{5}=4110.5$	hw $=130.0$	4394.0 N 2111 E
Year．	13012.1	32388.4	17129.1	29995.1	$R \mathrm{~s}=9766,3$	$h=5806.3$	11392.7 N 40 l

The values contained in the last columu of the preceding table are the resulting relocities and directions of the winds for the different months, seasons, and for the whole year. The directions are, as needs bardly to be mentioned, those from which the winds are blowing. If, therefore, at the station of the observer, a free point is imagined to be snbjected to the simultaneons action of all the winds blowing during the year, it would move with the velocity of 11392.7 miles per hour in a direction $\mathrm{S} 40^{\circ} \mathrm{W}$.

From January to June, the direction oscillates between NE and N; being almost exactly NE in March and nearly N in January and April, having a tendency to veer a little toward the west during the latter month. During July, August, and September, the curent is from SW; and in October, November, and December from NE.

The last horizontal column of our first table contains the sums of the relocities of the winds from the eight principal directions, as observed during the year. In order to obtain the mean annual velocities, these sums have to be dirided by the number of observations for each direction, as shown in the following table:

Directions.	N	NE	E	SE	S	SW	W	NW
Sum of velocities	3203. 5	29501.4	7651.9	2161.3	7:3.5	117125	609.9	1692.4
Number of observations	- 243	1783	1494	5.68	206	11.50	213	254
Mean velocity.	.. 13.18	17.76	5.12	3.80	3.56	10.18	$\because .86$	7.72

The number of observations during the whole sear is therefore $=5901$, and, cousequently, the annual mean velocity of the resulting direction $=\frac{11392.7}{5901}=1.95$ miles per hour.

In the annexed diagram, the observed velocities of the wind are represented by a continuous, and the mean relocities by a dotted, curve.

DURATION OF STORMS.

The folloting reeord contains an enumeration of the storms experienced at Polaris Bay. In the first colnmn, the date will be fonnd; in the second, the direction of the wind; in the third, the duration of the storm; and in the one followiug next, the maximum relocity of the wind. The cclumn headed "Remarks" contains a short summary of the barometric oscillations, the changes of temperature, relative humidity, ete.

Date.				Remarks.
$1871 .$ November 1:3	NE	How's. 1.1	Miles. 45	Barometer fell about 0.4 inch; relative humidity varsing from 82 to 73 ; uo great change of temperature; heavy suow-drift; sky clear.
November 1	NE	(?)	52	This storm was the severest experienced at Polaris Bay; but unfortunately the record is not complete, as it was utterly impossilule to reach the anemometer after $10^{\text {h }}$ a. m., November 20, when the record ends. The duration of the storm capoot be determined very well on account of the loss of some of the docnments relating to this sulbject, but probably it was not less than eighty hours. A great portion of the ice filling Robeson strait and Hall's Basiu at the time was set adrift. Oscillation of the barometer about 0.2 inch; temperature falling from $+1=0$ to -180.1 ; relative humidity decreasing from si to 46 ; sky overcast.
November	SH	13	44	Barometer rose abont 1 inch, oscillating between 29.27 and 30.20 ; temperature rising from - 1 : to $+10^{\circ}$; sky clouds.
December 16, 17	NE	19	33	Barometer rose abont 0.3 inch; temperature pretty steady at — 17 ; relative lumidity rising first from 61 to $7:$, decreasing theu to 33.
	NE	4	43	Barometer falling about 0.09 inch; relative homidity dcereasing; cloudy.
Jannary 3 .	NE	\checkmark	39	Oscillation of barometer sma! ; temperature rising from - 17 to -15°; relative humidity increasing at the leginning of storm from 40 to 55 , decreasing theu to 33 ; cloudy.
Janmary 10	NE	19	41	13arometer rising about 0.1 inch; temperature falling from - 23 to -26°; relative humidity rising from 27 to 63.
January 11, $12 \ldots \ldots$.	NE	23	41.	Barometer fell 0.1 inch; temperature falling from - 0^{-}- to -31^{-}; relatife linmidity decreasing from 44 to 22 ; partly overcast.
Jannars 14..........	NE	()	36	Barometer rising about 0.1 inch; no change of temperature, which keeps at about - 25 ; relative humidity falling from 45 to 33 ; clear.
Janoary 31 to Feloruary 2.	NE	4.5	50	Barometer rising from 29.64 inches to 29.87 iuches; considerable change of temperature, thermometer falling from -4° to -24°; relative humidity variable-decided decrease at the end of the storm from 70 to 40 ; weather fair.
February 11, 10.	NE	16	48	Barouneter fell abont 10.05 inch; temperature falling from --. to -18°; relative hamidity decreasing from 74 to 41 : clearing towards the eud of the storm.

DURATION OF STORMS-Continued.

Date.	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Remarks.
$\begin{gathered} 1872 . \\ \text { Feluruary } 18,19,20 \ldots . \end{gathered}$	SW, NE	Hours. 48	Mites. 54	From the 17 to to the 18 th, the bavometer fell abont 1 iuch. When the storm set in from the SW, the barometer stood at 2.9 s 3 , falling slightly at the beginning, risivg again till $1^{\text {h }}$ p. m. (19th). At $6^{\text {b }}$ a. m. on the same das, the wind veered through W to NW , and began to blow from NE at noon, increasing rapidly in velocity. Daring the time it was blowing from SW, the temperature was rising, falling during the NE wind. Sky mostly overcast.
February ${ }^{2}$	NE	20	40	Barometer pretty steady at 30.14; oscillation stuall.
February 29.	NE	22	58	Barometer not mach affected; temperature falling from - 18° to $-3 \%^{\circ}$.
March 10	NE	18	37	Barometer rising slightly (0.2 inch) .
March 12	NE	16	59	Barometer rose 0.2 inch.
March 20, 21, ソ2-......	NE	52	$4{ }^{2}$	Barometer rose 0.5 inch; temperature falling from - 111° to -30°; relative humidity decreasing slightly.
May 4,5..............	NE	20	43	Barometer not much affected; temperature fell from +50 to $-9^{\text {c.3 }}$.
May 10,11............	NE	31	42	Barometer not much affected.
June 21.	NE	30	49	Barometer fell 0.3 inch.
June 27, $28 . \ldots$.	NE	22	43	Barometer fell 0.3 iuch.
July 24.	N	20	51	Barometer hardly affected.

As will be seen from the preceding table, there are twenty-one storms on record, nineteen of which blew from NE, two from SW, and one from N. January was the stormiest montli the number of storms being tive. In July, there is but one on record. In October, we have four instances when the estimated velocity of the wind was considered to be forts miles per bour ; but, as the velocity was based on estimation only, no use was made of the values giren, because, in instances when the temperature of the air is rising, the observer is very apt to underrate the velocits, and vice verst, as an examination of both Kane's, Hayes', and McClintock's obserrations will show.

RECORD AND DISCUSSION OF WINDS OBSERVED AT POLARIS HOUSE.

The anemometer used at Polaris House was the same as mentioned before, and the observations were made in the same manner as described abore. The instrument was mounted about 20 yards from the water's edge, $5 \frac{1}{2}$ feet above the ground, and the winds had free access to it.

As the headings of the different columns of the following rccord are the same as before, no further explanation will be needed.

Day．	NOVEMBER， 1872.														
	1.			2.			3.			4.			5.		
1Iour．	Dir．	Tel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel，	Dist．	Dir．	Yel．	Dist．
$0^{\text {l }}$	N	20.5	0.0	0	0.0	0.7	SW	22.0	20.8	SW	22.5	24.9	0	0.0	$0 . \mathrm{H}$
1	N	23． 6	16． 1	0	0.0	0.7	SW	19.5	2． 4.6	S＇	18.0	16．\％	0	0.0	0.1
\cdots	N	20.0	1－． 7	0	0.0	0.4	sw	20.4	17．6	SW	15．2	16． 8	0	11.0	0.2
3	N	$1-5$	19.1	0	0.0	0.11	SW	20.5	18.7	S	14． 6	18． 1	NE	7.0	4.3
4	N	20.5	164	0	0.0	0．1） 1	SW	16.3	15.4	SIV	18.3	¢！ 9	NE	6． 4	7.4
5	N	27.5	19.3	0	0.0	0.2	SW	8.0	1．3 3	S	7.4	9.1	NE	7.3	3.5
6	N	23.5	17.5	0	0.0	0.1	－15	4.5	6． 5	S	9.0	11.6	NE	． 1	11.1
7	N	19.4	20．7	SW	8.5	4.11	SIV	2.3	3.8	0	10．0	2.5	NE	10.0	11，4
H	N	$\because 3.2$	19.1	NW	14．2	6.3	SWr	8.0	9.0	0	0.0	2． 2	NE	9.3	7． 1
9	N		17.9	SW	$\because 0.0$	19.0	Sll	10.3	11.5	0	0.0	1．	NL	14.6	17．4
10	N	21.0	12.1	sw	30.5	17．${ }^{2}$	sW	1上． 7	？ 26	0	0.0	0.8	NE	10.4	11.7
11	N	19.4	13．0	RW	17.4	（2）． 7	SW	15.0	9.9	0	17． 0	0.0	NE	13， 0	15.4
Noon．	N	18.1	$1 \leq .3$	SW	26.5	㫛3	SW	10.3	17．3	0	0.0	0.0	NE	12.7	12．is
$1{ }^{4}$	N	17.0	14.1	SW	$\because 4.0$	81． 7	W	1：0	12． 5	0	0.0	0.0	NE	13． 1	11．2
\％	N	15	15．5	SW	86.3	311． 7	S	18.4	$\because 4.5$	$1)$	0.0	0.0	NE	15．0	11.18
3	N	$\because 1.3$	17.1	SUV	33.7	20．4	SW	12.1	13．3	0	$(1.0$	0.0	NE	10.4	13,1
4	N	9.6	10.7	SW	21.2	12.6	SW	14．2	13.1	1	0.0	0.0	NE	$13: 2$	$1 \because .1$
5	N	16．\because	13． 1	Sll	17.5	18． 7	SW	7.5	9.	0	1）． 0	0.11	NE	12.2	11.6
13	N	11.2	12.3	SIV	23， 2	16．2	SIT	9.0	$\checkmark .9$	0	0.0	0.0	NE	3.0	11.1
7	N	10.0	10．5	SIV	2.2	23.6	SNT	14．：	13：	0	0.0	0.0	NE	7．${ }^{\text {\％}}$	$\times .1$
\checkmark	N	：3． 0	$3 . \alpha$	SW	14.6	17.0	ぶ	3.11	10.1	0	0.0	0.11	E	12：2	10.2
9	11	0.0	1．${ }^{2}$	SW	21．${ }^{\text {2 }}$	17.2	S	16．8	11.4	E	3.0	0.8	H	12．2	11.4
10	0	11． 0	1.9	S	21.2	29．0	S＇	14.2	$15 . \mathrm{s}$	E	2.0	2.1	L	14.6	13．2
11	0	0.0	2.6	SW	18：	17.4	s	$\because 1.6$	16．5	E	$\because .0$	2.0	E	7.5	\times
Sims． Means			319.8 13.3			$\begin{array}{r} 333.8 \\ 13.9 \end{array}$			331.7 13.8			132.8 5.5			234.6 9.8
Diy．	NOVEMBER， 1872.														
	6.			$\%$ 。			8.			9.			10.		
Hour．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．
$0^{\text {b }}$	E	8.8	11．2	0	$0.0 \quad 0.0$		0	0.0	0.1	NH	11.3	10.4	NE	20.3	21.6
1	1	10．2	10.1	0	0.0	0.0	13	0.0	0.0	NE	16.5	15.6	NE	15． 0	10．9
		5.0	7.4	0	0.0	0.11	11	0.0	0.0	NE	14.4	13.4	NE	10.4	
3	E	2.5	5.5	0	11.0	0.11	0	0.0	0.2	NE	9.8	10.5	NE	14.8	11.4
4	E	8.3	¢． 6	0	0.0	0.0	0	0.0	0.5	NE	16.4	14.3	NE	10.7	9.8
5	E	4.7	5.9	0	0.0	0.2	0	0.0	0.1	NE	20.1	16．3	NE	11.0	11.5
（ ${ }^{\text {a }}$	E	4.5	5.9	0	0.0	0.0	0	0.0	0.2	NE	23.5	20.3	NE	9.2	11.2
7	E	6.0	6.9	0	0.0	0.1	0	0.9	0.7	NE	1－． 2	16．1	NE	14.6	15.4
8	0	11.0	2.1	0	0.0	0.0	N	4.2	4.8	NE	17.3	21.5	NE	14.1	13.4
9	0	0.0	0.6	0	0.0	0.1	N	4.5	2.7	NE	18.6	21.3	NE	13.8	193
10	0	11.0	0.0	0	0.0	0.0	NE	6.3	7.4	NE	20.3	17.3	NE	15.0	12.6
11	0	0.0	0.0	0	0.0	1.7	NE	$\times .0$	7.6	N1：	24.9	23.5	NE	1＊．6	17.7
Noon，	0	1． 0	0.0	NE	1.5	1.7	N	6.5	7.5	NE	24.0	22.4	NE	23.7	23.9
1_{6}^{14}	0 0	0.0	0.0	0	11.0	0.4	N	6.1	5.3	NE	18.3	16．9	NE	13.9	14．4
\cdots	0	1． 0	0.0	0	0.0	0.0	N	7.8	12.3	NE	14.1	12.9	NE	15． 4	13．${ }^{\text {c }}$
3	0	0．0	0． 0	0	0.11	0.0	N	6.2	77	NE	15.0	16.2	NE	16.7	15.0
4	0	11． 0	0.0	0	0.0	1.8	NE	4.0	5.0	NE	15． 2	15.7	NE	20.6	9.2
5	0	1． 0	0.0	E	30	1.0	0	0.0	5.0	NE	20.6	18.6	NE	14.0	15.4
6 7	0 F	0.0 3.0	0.0	0	11.0	0.51	NE	8.0	8.5	NE	20.6	19.7	NE	1＊2	18.5
7		3.0	0.0	0	0.0	0.0	NE	12.6	11.1	NE	18.5	15.4	NE	$1 \mathrm{S}$.	12.7
R 9	$\stackrel{\mathrm{E}}{\mathrm{E}}$	6． 0	3． 8	0	0.0	0.0	N゙E	10.3	9.1	NE	14.2	16.0	NE	14.0	15.3
	E	9．5	4.8	0	11． 0	0.0	NE	10.2	11.3	NE	$1 \times .2$	15.4	NE	14.0	14.2
10 11		11.11 11.0	0.5 0.0	0	11． 0	0.0	NE	10.2	10.3	NE	15.2	14.9	NR	17.8	16． 1
Sums．．Meaus．		11.0	0.0	0	11.0	0.0 ।	NE	$1 \therefore 6$	10.9	NE	11.5	12.2	NE	17.8	17.7
						7.4			118.0			395.1			$34 \% .5$
			3.0			0.3			4.9			16.5			14.5

6 w

		IANUARY， 1873.					FEBRUARY， 1873.								
	30.			81.			1.			2.			3.		
Hotre	Lis．	Vel．	Dist，	I）	Vel．	$11=1$.	Dir．	Tel．	IS． C ．	Dir．	Tel．	I＇int．	Dir．	Vel．	Liot．
0	－E	13．11	4.3	\cdots	14.1	$-.0$	I	12．11	14．3	NE	$\because 1.6$	？	IE	15.6	$1:$
1	E	1．i． 4	－ 4	－ 11	-4	11.5	－	$-.4$	13.0	－	？1，	1－5	SE	14.4	1－\％
\because	－	1－！	13%	－15	9.6	11.3	\cdots	$10 .=$	11.5	入E	21.4	1：1． 5	－	1\％：	13， 1
3	－	15． 6	14．${ }^{1}$	－	24.11	150	N	$1 \therefore 16$	15．5	「E	$\because 1.4$	$\because 1.3$	－	11．$=$	$1 \therefore=$
\pm	－E	$1 \cdot .1$	17.3	－	3） 4	$1 \therefore-$	30	111，\％	$\because{ }^{\circ}$	ご	19：	11． 5	－	14.4	11.3
5	L	14.11	1.3	－	$1: 11$	$1 \because 3$	\！	2．19	11.3	$\triangle 1$	24.0	$1 \pm$	SE	$\because \because$	$4.1 ;$
$1:$	$\therefore \mathrm{E}$	1－1	1－2	－	$1-.11$	$1-1$	\E	$\because 34$	49.5	－ E	$\because 4.0$	家，	SE	13.0	7.3
i	E	14.4	16． f	－	$1 \because 0$	1：3	CE	$\because 4$	$\because 1.15$	－	$\because 1.4$	$\because 7$	或	10.5	11.9
	F\％	11：\because	$\because 1.3$	－	12.0	11．4	NE	1．1：	－！ 1	N：	1．1：	$\because 1.1$	SE	$\because 4$	－ 5
3	\therefore	11！	1． 10	－E	$\because 6$	11．：	SE	$\because 1 ;$	19.2	NE	$\because 1.6$	21.6	（1）	Q． 19	3.4
1.1	S	いい，	15.0	$-\mathrm{E}$	$-\frac{1}{4}$	$1 \cdots \cdots$	NE	\because	$\because 3.4$	NE	$\because 4$	－ 3	SE	\％．1i	4.9
11	SE	$\because 1.4$	$1 \because .7$	E	11.0	1\％．7	ミド	$\because 1.4$	11： 1	\E	$\because 4$	$\because 1$.	$\bigcirc \mathrm{L}$	11！－	11.5
Smon．	SE	1．$=$	$1-.1$	－	$\because 3$	9.17	NE	－2－	24.3	NE	$\because \therefore$－	$13: 3$	S12	11.0	11.9
$1{ }^{14}$	SE	2！ 0	17.0	－E＇	$=4$	11．－	VE	\because	号	\E	？ 2	$\square 17$	51	1\％\％	12：－
\because	－	$\because 11$	17．：	\because	$\because \because$	$\therefore \because$	NE	$\therefore 1$	－ 5	NE	－	$\because 2$	－	－2	\％：
3	NE	$116=$	41.0	$-\Sigma$	$7 \because$	\cdots	NE	21.6	－1．3	－ E	21.6	2． 1	Y1：	$11 . \%$	1－
\pm	NE	$1 \because 1$	$11 . \%$	－	4.	$\because 7$	VE	$\because 4.4$	：3：	－	1 \because ，	13.1	SE	14.4	$1 \because 11$
\because	SE	3.6	111．${ }^{\text {a }}$	－ i^{-}	-4	4.	St	$\because=$	－35	－E	$\because 4$.	1\％-	\1\％	$1-1$	1\％－
1	\E	$\because 4$	6． 0	－	$\therefore 4$	\bigcirc	SE	31．：	$\because .9$	NE	1－．11	$1 \cdot \therefore$	NE	1：13	14． i
\％	＊	U1． 0	1．${ }^{\text {a }}$	－E	1i． 11	6．1）	VE	1：．0	$\bigcirc 1.4$	IE	120	\because	IE	1－11	1\％， 1
，	1	11．0	1.4	$-\mathrm{E}$	-4	$\therefore \square$	－ E	$1-.0$	1－9	NE	$\because 1.11$	$\because 1$.	NE	14.	14．1）
！	0	0.0	11.3	－	$\because 1$	5.5	$\therefore \mathrm{E}$	$\because 4.0$	$\because 1.5$	$\therefore \mathrm{E}$	$\because 4.1$	－	－E	\％ri	11.4
19	9	11.0	0.0	NE	$1 \because 0$	3.6	－ E	$\because 1.6$	1－2，6	NE	12.0	7	\E	$\because 1$	$11 . \%$
11	0	11.0	11.0	SE	12.6	14．\％	SE	$\because 4.0$	$\because 2$	NE	14.4	11．\％	\E	14.4	12%
			$\because 4$			$\because 4.4$			4－4．$=$			40.0			$\because-.9$
Means．			11.4			10．\because			－			14．3			$1 \because 0$
D．5．	FEBRUARY， 1873.														
	1.			5.			6.			$\%$			5.		
Hour．	Dir．	Vel．	Li，at．	Dir．	Vel．	Di．．	Lir．	Vel．	L！ot．	Dir．	Tel．		Lir．	Vel．	Irist．
$0{ }^{\text {b }}$	NE	$1^{1 \prime}$ ，$=$	11.1	NE	2． 2.11	\％it	NE	1．\because	2.8	0	11.19	1． 1	0	9． 0	11． 3
1	NE	3．${ }^{1}$	3.8	YE	$\because 4$	$\because 1$	SE	$\because 11$	\because	1）	0.10	U． 1	！	11.0	0.0
3	－E	1．：	11． 6	NE	$\because 1.4$	－	0	［1］．1）	1．：	11	11.0	11．\because	IE	$\therefore 6$	1.11
3	0	0.0	$\because 0$	NE	？－	－	U	0．11	$1 \therefore \%$	0	11.0	11.1	E．	$\because 4$	5.1
4	${ }^{1}$	0.11	1．11	VE	21.6	－1：	19	11.0	$\because 1$	11	11.1	11.7	SE	1．	$\because 7$
\cdots	19	13．1）	11.2	YE	31.6	？1． 2	0	11.9	1.11	11	O． 11	1311	56	$\therefore 6$	6.1
$1{ }^{17}$	$\stackrel{1}{1}$	0.0	U．19	－	3． $\mathrm{b}^{\text {b }}$	11．\％	SE	-4	4．\because	$!$	11．11	11.11	ベセ	$4 .=$	i． 1
\％	§	1＂．	11.	\E	1.1	1 $\because: 3$	SE	4.	万． 1	4	11.0	11.1	！	U．19	$1 . \therefore$
\％	St	120	14．9	\＆E	4，	$\because 4$	NE	13.9	－． 1	11	1.09	19．01	\because	11.0	1．：
111	NE	21．4	1－11	NE	$\because 4$	4．$\frac{1}{4}$	－18	$\therefore \because$	11．3	${ }^{1}$	\cdots	－ 11.11	NE	1．	$1: \because$
11	SE	（1）	＂4．11	\E	1． 11	$\because .1$	－	t．－	4． 7	11 11	0.0 11.11	11．11	11	！11 11	＂11：
Sinn．	京	2164	为	1	11.11	0.10	XE	4．0	7	11	11.1	11.11	4	U．＂	1．1
${ }^{16}$	NE	3110	$\because 4.11$	0	0.9	U． 1	NE	6.1	\cdots	19	11.11	1.11	i）	0.10	$1 . \therefore$
	NE	\because	$\therefore \because$	＂	$\because .0$	11．\because	－	1．\because	$\because \because$	4	11.19	$11 . ?$	0	0.11	11.4
3	VE	\because－	－1．		U． 0	0．13	S\％	1．\because	1．\quad \％	＂	1．19	11．1）	11	19．0	$12, \because$
4	NE	シー，	：11． 1	－1．	$\because 4$	3.8	＂	11．11	（1）， 1 ；	－16	1．11	－：	11	18.10	11． 11
5	\E	$\because 1.0$	$\because 3.9$	－1．	$\therefore 11$	\bigcirc	\cdots	11．1	1． 2	－\cdot	U．；	9.1	－	$1 \because 0$	4． 5
\％	NE	： 30	－－	-1.	100	\because	＂	0，0	12.2		11.0	\because	3	14.4	14.4
；	NE	30.11	\bigcirc	－	1．\because	7.9	11	11.11	11.8	4	11.11	1.1	－ 7	$\because!$	31.7
1	VE	$4{ }^{\prime \prime}$ ）	21\％	－	4.	3.1	11	11.11	（1）．$\frac{1}{2}$	＂	0.0	1.11	-11	31．	$\because 1$
111	NE	$\because 4.0$	\％	－	$\because 4$	11.1	＂	0.11	13.	0	＂1）	0.1	－10	$\because 1$.	3－1：
111	NE	3.4 $\cdots 4.0$	\％	－	1．\because	3%	＂	0．11	11． 1	19	＂．＂	11． 11	－	31．	\cdots ？
11	SE	$\because 4.0$	－－	ME	$\because 4$	15．4	＂	0.11	11． 11	1.	11． 19	！11	\cdots	1：－1	
3leau．			414． 1			景： 1			74．11			$\because 0$			010．0
			1f．$=$			！1： 3			$\therefore 1$			1.19			$=.3$

i w

FEBRUARY， 1873.

	9.			10.			11.			$1{ }^{1}$			13.		
IIour．	Dir．	Vel．	Dist．	Dir．	Tel．	1）int．	Dir．	Yel．	Dint．	Dir．	Tel．	Dist．	Dir．	Yel．	Dist．
$0{ }^{\text {b }}$	NW	11．－	$\because-5$	N1	1＊．0	11.8	NE	$\because .4$	6.5	NE	8.4	13．11	NE	$\because 11.5$	13，${ }^{\text {a }}$
1	－16	14． 4	16.5	N0	311	13． 2	E	（1．） 11	4． 7	NE	15．i	！ 19	NE	\％1， 1	16.11
9	Sil	12．0	14.8	NE	$\because 1.15$	$1-4$	E	（i． 11	\therefore	NH	1－． 19	12.4	NE	1.0	14． $2 \cdot$
3	－ 11	12.0	12.5	NE	14.4	16．，	11	1）． 11	\because	N1	r． 4	12.11	N	1 1i．e	1：3， 1
4	Sil	2． 6	9.9	NL	15.6	14.4	N	Un，	䞨号	NE	111．	19． 1	NE	\％ns	15．5
\therefore	sil	1i． 0	10.9	NE	10． 2	14． i	W	$\because 4.0$	1－1	NE	20．	211.1	N14	$\because 1.11$	20.4
（i）	－14	4．：	2．	N1：	138	11.4	E	1．\because	6.5	NE	\％．	11．\because	\cdots	1！\because	1！．I
7	心W	7．	4.5	NE	1－．11	11.6	0	11.11	$\therefore 5$	NF	30.11	210.1	NE：	16．）	13.9
H	Nil	3.6	4.5	N15	1×0	1\％	SIT	1i． 11	5.11	NE	？ 8	？${ }^{3}$ ？	NE	29.4	
9	11	11.1	2.11	N2	11．$\%$	111.3	sい	7．${ }^{\text {c }}$	9， 11	N14	氿， 6	20． 3	$N \mathrm{E}$	$\because 4.0$	15.7
10	E	4.10	11.4	NE	15． 17	15.4	S	4，in	5.11	NB	31.4	21.7	NE	1－6． 6	11．！
11	1	7．	10．－	N1：	15．6	14．4	－	1.0	ゼ？	NE	119．	12.5	NE	14.4	1：3， 0
Nimer．	1	4．－	$\therefore 13$	\1：	10．r	15．，	心	1．11	－$: 3$	NE	1－0	14.7	NE	16．${ }^{\text {c }}$	21.3
1^{11}	1	0.0	\because	NE	1－91	1．．．	N	4.8	（1i． 4	NE	12．0	17．11	NE	10． E	12． 1
\because	NE	1．9 0	－1i	N0，	1－． 0	16.	s	8.6	（i． 9	Nも	$\therefore 4$	11.0	NE	$10 . \underline{2}$	11.7
3	NE	3.10	10．$\%$	N1：	$\because 1.0$	$\because 1.0$	11	11． 11	4.11	NE	9.17	$1 \sim 15$	NE	11.4	15．2
4	12	1．	4.2	NE	$\because 4.0$	？	0	19.19	11． 4	NE	1－11	19.3	NE	$1 \div 0$	19．x
－	NE	6.0	8.2	NE	1×0	W！	NE	6.0	$\because x$	NE	1－0	16.6	NE	－4．0	－1． 4
（i）	NE	$1 \because 0$	12．1	NE	1－0 0	？1，	1）	11.11	1，－	NE	I 4.1	15.1	NE	$1 \therefore 0$	13， 1
\％	NE	$1 \because .11$	11.7	NE	1.4	19.5	0	0.0	117	NE	14.4	1\％， 11	NE	$1 \because 0$	13.1
b	NE	$1-.11$	15.7	入1：	12.0	16.9	NL	1．\because	1.0	－ E	14． 4	1．5．1i	NE	14.4	15，5
9	N1	9.6	12.6	NE	$1 \geq 19$	$1 \therefore 1$	11	11.1	11． 5	N1	$\cdots 111$	11.4	NE	$\because 1.10$	219， 1 i
10	N＇：	1－1i	14． 2	NE	15． 6	11，3	NE	9.16	$\stackrel{\sim}{4} .5$	NH	12．01	11.2	N13	$\because 1.11$	2．0
11	NE	$\because 4.0$	20．	XE	9.6	11． S	NE	1＊．0	13，	NE	1201	19.6	NE	24.0	2足
Sums．．			255.4 -10.6			400． 11			157． 6.5			414.5 17.3			400． 16.7
Day．	FEBRUARY， 1873.														
	14.			15.		16.				1% 。			18.		
ITour．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Ye］．	Dist．	Dir．	Tel．	Lint．	Dir．	Yel．	Dist．
00^{16}	NE	$\because 4.0$	85．0	N1：	19．8	24．1	NE	9.6	1．1． 2	NE	21.0	17.3	NE	10．－	7．3
1	NE	1－． 0	17.5	NE	22．	？11．\because	NE	111.	11.0	N：	1．${ }^{\text {d }}$	17．3	NE	9．${ }^{1}$	12， 0
\because	NE	$\because 11$	21.1	NE	120	17．4	NH	11．8	11.4	NE	12.0	17.9	NE	10．${ }^{\text {W }}$	13.7
3	NF	20.4	197	NE	1－． 0	17.5	X15	19．2	14.4	NH	$1 \sim .11$	116.9	NE	11．$\frac{1}{4}$	11．01
4	NE	19．\because	只：	NE	$1 \because 0$	17.3	IE	1－． 0	$\because 1,9$	12	$\therefore 4$	11．4	NE	15.6	12．$: 3$
5	NE	$\because 7$	23.6	N13	16.8	13．${ }^{2}$	N1：	$\because 1.6$	143	さE	36	9． 51	NE	14.4	$1 \therefore 3$
（i）	NE	24.0	？	入も	14.4	16．－	N1：	132	1－， 6	KE	19．6	$\bigcirc 4$	N N	1＊．0	15.4
7	N1；	18.0	11.6	\cdots	13． 6	15．2	NE	1－． 10	13.6	0	（1）．11	11．4	NE	9.6	$\therefore 6$
8	NE	1－11	17．．	NE	15，6	14．${ }^{-}$	NL	1－0	20． 1	0	11.0	1.7	N゙	9.1	9.7
9 10	NE	$\because 4.11$	－12， 11	N13	11%	1 $\because 2$	NE	$19 . \%$	$\because 0.15$	NE	111．	-4	N1：	4．：	12．4
111	NE	$\because 8$	紫：	NE	$1 \div 0$	13．9	N15	21.4 ，	13，$;$	NH	$1.5,6$	13， 7	NE	1．\because	4.4
11	NE	吅	\because	NE	11i，${ }^{\text {a }}$	1\％．0	NE	211.4	12.5	NE	（1） 11	-5	NE	4.8	3．：
Nomer，	NE	23．${ }^{\text {c }}$	－	NE	150	17.7	$\therefore \mathrm{A}$	21.6	± 1.9	0	0， 0	$\therefore .9$	NE	3．6	5． 3
1	NE	12.0	12．9	Ne	15.6	$17 \cdot 3$	NL	wi．$=$	16．19	0	110	0.7	NE	4．－	7， F
\because	NE	1！ 9	1．5． 1	Nも	15.6	15．\％	NH	19\％	13． 4	$N \mathrm{E}$	8.4	7.4	11	0， 0	5．
；	N1：	$\because 4.0$	19.1	N以	$\because 1.6$	$\because 4.11$	Nセ	$\because 4.0$	？	NE	1． 2	$\because \because$	NE	： 6	4.5
5	NF	120	14.9	NE	$\because 4.0$	34.4	NL	31.0	24.01	0	11.1	0.19	0	0.0	6.6
5	NE	1－0	11i． 19	NE	$1 \cdots 0$	1－7	X1\％	$1 \div 0$	20，	XL	4.	519	0	0.0	11.5
\％	N120	14．4	1－7	NE	1×0	19.8	NE	1×11	$12 \cdot 6$	0	0.11	19.	1	0.0	3． 9
α	N12	1180	12， 11	NH	1 c 11	12,9	NE	$\because 4.11$	1 24.9	0	11.11	11.0	NE	（i．） 11	1i． $1 ;$
$\stackrel{8}{9}$	N1：	$\because 4.0$	$\because 1.7$	NE	18.1	12.3	N E	1－．11	$\because 1.4$	1）	10.0	1.0	N13	13．11	6， 8
	NE	发．0	哭． 9	NE	$1-0$	19.7	NE	12．0	\％ 1.6	NE	4.	5.0	N1\％	4．${ }^{\text {a }}$	31.1
11	NE	1000	24.1 19.9	NH NE	12．09	－11．2	N：	1＊01	14.9	NL	4.8	4.5	NE	4．\times	\％． 4
1	－	15	19．：	\triangle ¢	$1 \because 0$	16.1	SE	－3i．4	30．3	0	0.0	3.1	NL	$1 \because 0$	6.7
Sums．． Means．			469.4 15.6			4.3 .1 $1-4$			4.2 .9 17.9			176.7 3.4			200.3 $\times .3$

Das．	MARCH， 1873.														
	11.			12.			13.			1.1			15.		
Hour．	Dir．	Vel．	İこt．	Dir．	Yel．	Dist．	Dir．	Tel．	Lrat．	Dir．	Yel．	Dist．	Dir．	Tel．	Diot．
$0^{\text {b }}$	0	11.0	0.1	STI	8.4	0.4	0	0.11	1.1	NE	13．2	13.2	11	0.0	0.1
1	11	0， 11	0.1	SIT	6.11	7.7	NE	1． 2	3.11	NE	？－	$1 \because .9$	0	0.0	0.7
\because	0	0.0	10.2	－W	4.5	5.7	$1)$	10.0	1.7	NO	$\because 1.1 i$	\％1．9	${ }^{1}$	0.0	U．1）
3	0	0.0	1.0	\bigcirc	4.8	4.6	0	0.0	1.5	XE	\because－	？$: 1$	19	U． 0	0.1
4	0	11.0	1.0	11	0.11	6． 3	0	0.10	11． 11	$\therefore \mathrm{L}$	19，\because	－31． 5	0	1）． 0	0.11
\therefore	0	11.0	0.7	11	0.11	1.8	0	11.1	11.7	NE	1－11	15．－	＂	0.0	0.19
$1 i$	0	0.0	0.1	$\times 14$	1．：	1．7	11	11.1	11.1	NE	19：	14．：	19	0， 0	0.0
7	0	11.0	0.1	0	10.11	0.4	NE	1． 3	1.6	NE	311.4	21． 1	$1)$	0.0	0.11
\because	0	0.0	0.1	19	0．1）	0.3	11	0.11	$\because \because$	\E	211.4	1！！	19	0.0	11.10
！	0	0.0	（1，\therefore	11	0.0	0.0	11	0.10	11.3	NE	27.6	\cdots	0	11.0	0.0
10	0	11.0	11.3	1	0.10	（1）， 0	11	0.11	0.1	NE	30， 0	3 4	0	19.0	${ }^{11} .1$
11	0	11.0	0.1	（1）	0.0	1.0	0	0.10	U． 1	入E	1－．11	为	u	11.0	19.1
Noon．	0	11.0	0.1	$1)$	0.11	0．－	11	0.11	0.0	\therefore 人	16.9	17．5	11	11.0	0． 0
$1^{\text {b }}$	19	11.0	1）． 2	11	11． 0	0.2	4	0.10	0.1	NE	15． 15	1：3． 1	11	11.0	0.0
\because	0	1）． 0	（1． 1	11	0.11	（1． 1	0	0.0	0.0	NE	14． 4	15， 3	11	1.11	11.10
3	0	13.0	0． 1	11	0.11	（1） 1	0	1）． 0	0.10	NE	14.4	14．9	0	13.0	0.0
4	11	11.0	0.9	（1）	11． 11	11.0	0	U． 11	U． 1	NE	$\bigcirc 4$	11\％：2	1）	1.0	0.0
5	11	0.0	11.7	${ }^{1}$	0.0	0.0	$1)$	11.1	0.5	NE	$\cdots 4$	\cdots	11	0.0	0.0
6	11	0.0	0.5	${ }^{1}$	（1．0）	U． 1	0	11.10	0.0	入L	2.4	\％． 4	11	0.0	（1．）
7	U	0.0	0.5	19	11.0	11.	0	11.11	11.2	AE	4．－	13． 4	11	11.19	0.0
\cdots	11	13.0	1.4	11	19.11	11.0	11	11.0	11.11	11	1.11	1.16	11	11.19	19.0
9	11	0.1	（1）．	$1)$	11.11	1.8	NE	$\because 4$	1.7	11	11.0	11．\because	11	（1．0	0.11
10	0	00	11.10	1	0.19	0.7	NE	24	1．9	0	11.0	$\therefore .4$	11	0.1	11.0
11	0	0.0	13.0	＂	0.0	1.7	NE	4.8	$4, \therefore$	0	0.11	11.1	0	0.0	0.0
Sums．－．			B．－			：1．0			？$\because 9.3$			3302			0.9
Means．			U． 3			1.5			（1）－			14.7			0.0
Day．	MARCH， 1873.														
	16.			17.			18.			19.			20.		
Honr．	Dir．	Vel．	Dist．	Dir．	Yel．	Dist．	Dir．	Vel．	Dist．	Dir．	Yel．	Dint．	Dir．	Yel．	Dist．
0 b	0	0.6	0.0	\mathfrak{s}	15，6	14.0	f	0.0	3.1	19	0.0	U． 0	ST	16.0	16.6
1	0	10.1	11.10	$\stackrel{\sim}{1}$	－ 4	11.7	1）	（1， 11	1.2	11	11.11	0.0	－IT	12．11	135
\because	0	13.0	11.10	\checkmark	1－0	15.7	11	（1）， 11	10．$\%$	0	1.0	11.0	\cdots	120	12.4
3	0	0.0	11.11	$\stackrel{\sim}{*}$	1 $\because 2$	$15 . \therefore$	11	U． 0	0.7	11	11.11	11.1	\rightarrow IV	ti．1）	14.3
\pm	0	1.11	1.11	－	9.15	1－11	0	11.0	0.11	11	0.0	0.7	$\bigcirc \mathrm{SH}^{\text {che }}$	9.1	11．\because
\because	0	11.0	0.0	\therefore	15．5	1\％	${ }^{1}$	11， 11	11.4	$1:$	$\because 4$	1.9	$\therefore \mathrm{IV}$	$\because 1$	9\％
ti	1	11.0	0.11	s	110．－	12．－	11	11.0	11．11	\therefore	C． 4	：3．：3	\bigcirc IV	$14,=$	14．1！
\％	0	1）． 11	0.3	－	10．${ }^{\text {－}}$	11.0	11	11． 11	11.1	－IV	10．$=$	10．\because	\triangle IT	12．11	15.7
\because	1）	0.10	0.0	－	10．－	－． 6	11	0.0	11.0	－110	9.1	11．－	－IV	12．11	13,
9	0	11.10	O．，${ }^{\text {\％}}$	$\stackrel{\sim}{1}$	$1 \because 0$	12.4	11	0.0	11.11	≤ 11	9.15	9.7	－IV	9， 6	11.2
10	$1)$	13.0	11.11	s	$1 \because 0$	14．$=$	11	（1） 11	（1）．11	$\therefore 11$	1－．11	$1 \because 5$	-11	（6．）	11． 2
11	0	0.11	0.2	\checkmark	10．－	11.3	11	11.11	（1）．0	－15	11i．－	10．\because	11	11．1）	\therefore
Nimm．	0	11.11	11.0	－1：	12.11	$1 \% 7$	11	11.10	0.11	－110	1－．11	16.4	11	11.11	$\because 1$
$1^{1 /}$	0	0.11	11.11	\cdots	$1 \because 0$	$1 \because \therefore$	0	0.0	0.11	S	1－．11	－4．5	19	11．0	$\because 2$
\because	11	0.10	$0 . \because$	S1：	10．${ }^{-}$	9． 3	0	11.11	11.11	－15	\because	91.	11	11.10	0.1
3	S	13．0	1.11	1	8.4	11.9	0	11.11	11.0	－15	$!6$	16.1	11	（1．） 10	0.11
\pm	5	1： 3	11.1	AL：	6． 0	3.3	0	0.10	11． 1	815	$-.4$	17.7	0	1）．11	0.0
\％	S	$1 \div 0$	$1 \because \square$	－	6．1）	6.1	19	11.10	11.0	－15	24． 4	17． 2	$1)$	0.0	0.13
\％	\therefore	1.01	10.9	－	6.0	6	11	11.11	0.0	SW	113， 2	1－．11	11	11.11	0.11
7	－	8.4	4．，	\cdots	$\bigcirc 1$	7.9	19	1.0	0.11	－15	1＜．11	116.7	1	11． 0	11． 11
4	S	13.11	111． 1	S	6.11	7.11	11	11.11	11.11	－IV	$1-11$	17.1	11	11.11	0,11
4 10	－	1．0	11．$\%$	－	4.3	$\therefore 7$	＂	11.11	11.11	STV	1＊．11	1－7	NE	4.	$4 . \mathrm{i}$
111	8	$1 \therefore 0$	11．\because	－	$\because 4$	$\because 2$	1	11.11	11.0	－ 11	119\％	14．：3	入E	6．11	4.7
11	S	16．$=$	1：1，	i）	0.0	11.4	19	11.0	0.0	S11	14.4	14.9	0	11.10	3.9
Sums．	－		3 3.4			ごー． 6			b． 1			26.1			1613．5
Means．			3.9			10.4			11．\because			11．2			6.9

Das．	MARCH， 1873.														
	2 L			22.			23.			21.			25.		
Howr．	Dir．	Vel．	Dist．	Dir．	Tel．	Dist．	Dir．	Vel．	I）ist．	Dir．	Vel．	Dist．	Dir．	Tel．	IVist．
04	NE	8.1	3.1	NE	P． 0	4.4	NE	10.8	11.11	NE	20.4	25． 1	NE	8.1	11.7
1	N゙F	9.1	9.4	N4	r． 4	111.9	NE	1.0	$\therefore .7$	NE	14.4	16.1	NE	12.11	14．3
$:$	NE	111.8	9.9	Ni\％	（i． 0	4.1	NE	3.6	9.5	NE	12.1	11.4	NE	15， 15	115．2
：	NE	10．8	11.	NE	4.8	0.7	NE	$1 \because 0$	$1 \because .1$	NE	6.0	12．\because	NH	1×11	1．3
4	小	10.4	11.5	NE	3.15	4.1	16	9．8	天．3	NE	3.6	4． 5	NE	15．6	14.3
：	NE	13．\because	14.3	NH	9.6	11．3	NE	9.6	7.9	11	0.0	4．1；	N以	1－6	14．1i
6	NE	13．6	14.3	NE	4.	4.5	NH	13：	14.19	N	4.8	3.5	NE	1＊．11	16． 3
7	NE	1－1．${ }^{\text {i }}$	15.5	NE	4.4	5.2	NE	$13:$	13.3	NE	$\cdots .4$	5.9	NE	$\because 1.4$	1\％．5
\％	NE	$1 \sim 0$	21.6	NE	4.8	4.6	NE	11.3	37．5	1	120	（1） 1	NH	16.5	12．1
$1)$	NE	19．：	1：3．5	NE	3.6	5.1	NH	12.0	16.4	St	$1 \because 0$	12.5	NE	15．6	1i， 1
10	NE	15， 6	13.8	Nに	$\because 4$	2．！	NE	19.3	1～．6	S	14.4	15.7	NH	15．6	$1 \therefore 1$
11	N15	$1 \sim 0$	13： 3	N゙っ	4.8	$\therefore 11$	NE	\％	$\because 1.5$	E	1－11	14.1	NE	12.1	18． 2
Nu．nn．	入E	19\％	16.9	NE	111.8	（1） 1	ND	21.6	2． 2.	NE	$1 \because 0$	$\therefore 1$	入も	14.4	11． 1
1^{13}	N：	1．19	16．${ }^{2}$	NH	E． 4	17.7	NH	$\because 4.0$	21.5	NE	！15	9.4	NE	14.4	13．1
\because	NE	1！： 2	21.5	NE	9.6	11.8	NH	$\because 1.0$	2－ 6	NE	9.6	4．2	NE	14.1	14．11
：	NE	18.1	$1 \times .1$	NE．	$13:$	14.4	NE	呺为	？	NE	4.8	（1）$:$	NE	$1 \because 0$	13：
4	NE	16.8	$1-9$	NE，	13．3	16．\because	NR	29.4	$\because 21$	N以	8.4	4.5	NE	8.1	12． 1.
\％	NE	$1 \because 11$	12．0	入 H	120	7.3	NE	$\because 1.0$	24．9	N	$\cdots 4$	$\therefore 1$	NE	14.4	12．6
1	NE	$1 \because 11$	$1 \because$－	N以	13． 19	11．${ }^{1}$	N	－11） 4	19.7	NE	$\cdots .1$	！！，\％	N以	$\therefore 1$	5.9
7	NE	$1 \because 11$	11.11	NE	9.15	－． 4	$N \mathrm{~N}$	1×0	11．． 1	NE	$1 \because 0$	7.5	NE	13． 18	12， 1
8	NF	16．K	1：31	NE	$\times 4$	7.11	$N \mathrm{~N}$	20．8	19． 5	NE	3.6	4．9	NE	120	12．8
9	NE	$1 \because 0$	13．${ }^{\text {\％}}$	NE	9.1	$\therefore \because$	N1	81.4	19.3	NE	1－6	17．5	N以	4.6	6i． 4
10	NE	$1 \because 0$	12．：	N心	6， 10	6.8	NL	14.4	15，5	NH	120	$1 * 3$	NE	3.4	4.9
11	NE	13． 2	9.0	NE	10.4	3.0	NH	14．${ }^{1}$	$1 \because 9$	N L	$1: 11$	1 $\because .0$	NL	11.0	$4 . i$
Snms．． Means			$\begin{array}{r} 3: 2.2 \\ 1 \because .9 \end{array}$]95.			$\begin{array}{r} 329.4 \\ 16.6 \end{array}$			2－5． 6 10.6			$\because 321.4$
Day．	MARCH， 1873.														
	26.			87.			28.			29.			30.		
Hour．	Dir．	Yel．	Dist．	Dir．	Vel．	Lint．	Dir，	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Tel．	Dist．
$0^{\text {b }}$			3.1						1.0	NE	10.8	12.0	N12	4．－	$4 . \alpha$
1	NE	3.6	$\because!$	NH	111． H	4．9）	0	0.0	11.0	Ni	H． 4	5.3	NH	1.6	11.3
2	NH	1．${ }^{\text {a }}$	$\because 9$	NH	12.11	13．3	11	（1．0	11.0	NE	$\therefore 4$	9.4	NH	1i． 11	1.7
3	NE	$\therefore 1$	1.	NE	12．1	11.1	0	11.19	17.19	NE	3， 6	11．3	NE	7.2	7.5
4	NE	1． 3	1.4	NE	9.6	7． 11	11	11.19	11.0	NH	11． 1	11．：	${ }^{1}$	11.0	$1 .:$
5	0	11.0	$\because .1$	NE	$\therefore 1$	$\therefore 4$	$1)$	1.0	1．：	NE	13.1	12．6	${ }^{1}$	11.19	2.7
6	19	0．11	1.1	NL	（i． 0	（i，i，	11	0.0	11.0	NE	$1 \because .11$	14.0	0	0.11	1.15
7	19	11.0	0.1	NH	1i． 11	7.4	0	0.11	11.10	NE	13．2	13．${ }^{\text {i }}$	0	11.0	2.3
8	0	11.0	0.0	NE	111，\％	\％． 2	0	0.0	11.11	$N \mathrm{~N}$	16．，	14.7	NE	： 13	4.5
9	11	11．01	19．1）	NE	11.6	9.7	NL	$\because 4$	$\therefore 2$	N13	111.	19.4	NE	$\because 1$	$\therefore 3.3$
10	11	0.11	0.11	N4	10．8	10.7	入1：	4.2	1．1）	NE	$!1.6$	10.7	NE	6.11	3.1
11	1）	11.11	0.01	NE	12.0	12，	N12	$\therefore 4$	－ 5	NE	6.0	－ 1	N0	10.8	11.8
Noon．	0	0.0	0， 0	N F	14.4	14.8	N14	10.6	11．$\%$	Nl	6.0	6． 1	入 E	$1 \because 0$	$1 \because$
1^{10}	1	0.11	0.0	NH	10．8	12.5	NE	10.8	11． 3	N F	H．＊	3．6	XE	6．0）	10.9
边	0	11.10	0.0	N1：	6． 0	7．6	N12	9.6	13． 3	NE	$\because 4$	4.5	NE	： 13	4.7
\because	11	0.11	19.15	N13	$\therefore .4$	＊． 1	NE	1．20	17.2	0	0.10	1.7	NE	$\therefore 1 ;$	$\because 1$
4	11	11.0	11.1	NE	4．1）	－． 6	NE：	14.4	$1 \because 6$	0	0.0	20	${ }^{9}$	11.0	2.1
\therefore	0	11.11	0.11	八E	－． 4	1.7	N以	$1 \because 0$	］\because ．	0	（1．） 1	0.11	NE	1．：	$0 . .1$
1	0	（1）． 11	II． 1	N゙心	4.	$5 . \therefore$	NH	12.1	14.6	0	0.0	11.11	NE	$1 . \because$	2.4
7	0	13． 0	0.0	1	11.1	$\therefore .5$	N15	12.0	1．7． 1	11	0.0	0.11	NE	6.11	5.6
is	0	11． 11	0． 1	11	1．1）	0． 0	N1：	16．	13， 4	！	1.0	（1）． 11	NL	4．k	5.7
！ 11	0 10	11． 01	0.9	11	1.11	0.1	NH	12．0	11．3	13	6． 01	3.5	NE	$r .4$	7.7
111	0 0	11.0 0.11	0．0	11	$11.1)$ 11.11	11． 1	N以	10．	14.11	5	4．α	Ni．${ }^{\text {a }}$	NE	$\therefore 4$	r．i
11	0	0.11	11．：	$1)$	1.0	0.11	NE	E． 4	11.11	NE	12． 2	3.9	NE	$1 \because 0$	9.7
Sums．． Meams．			$\begin{array}{r} 15, \% \\ 10.6 \end{array}$			160.4 7.1			$\begin{array}{r} 17: .1 \\ 7.2 \end{array}$		1	166.9 6.9			12－3，

8 W

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Day．} \& \multicolumn{3}{|c|}{\multirow[b]{2}{*}{10.}} \& \multicolumn{12}{|c|}{MAY， 1873.} \\
\hline \& \& \& \& \multicolumn{3}{|c|}{11.} \& \multicolumn{3}{|c|}{12.} \& \multicolumn{3}{|c|}{13.} \& \multicolumn{3}{|c|}{1.1.} \\
\hline Hour． \& Dir． \& Vel． \& Jist． \& Dir． \& Vel． \& Dist． \& Dir． \& Vel． \& Tist． \& Dir． \& Vel． \& Dist． \& Dir． \& Y＇el． \& Dist． \\
\hline \(0^{14}\) \& SiW \& 31.18 \& 26．0 \& ＊ \& 8.4 \& \(9, \mathrm{x}\) \& SW \& 6． 11 \& 7.7 \& 0 \& 0.0 \& 0.2 \& 1 \& 1）， 0 \& 0.9 \\
\hline 1 \& SW \& ：3．4． \& 为． \& nil \& 6．1） \& 3.1 \& S＇ \& 12.0 \& 9.5 \& 0 \& 0.0 \& O． 1 \& 1 \& 0.11 \& 1.6 \\
\hline 2 \& Sl｜ \& \(4 \div 0\) \& \& siv \& －1．\({ }^{\text {a }}\) \& 4．：i \& N \& 10.7 \& \％．－ \& 1 \& 11.11 \& 0.19 \& 11 \& 13.17 \& \(1 . \because\) \\
\hline 3 \& siv \& ： \(1: 1 ;\) \& ： 6.9 \& SW \& ：3．6 \& 1．： \& ＇ \& 12.11 \& 10.10 \& 1 \& 0.0 \& \(0 . \because\) \& 1 \& 11.0 \& 10.3 \\
\hline 4 \& SW \& \& 31.4 \& －W \& \(\because 4\) \& 2.7 \& \(\stackrel{\sim}{4}\) \& \(1: 0\) \& 11.7 \& 0 \& （）． 0 \& 11.8 \& 11 \& 13.0 \& 1．： \\
\hline 5 \& sill \& ：39， \& \(\because 1.4\) \& SIV \& \(\because 4\) \& \(\therefore\) \& S \& 1 \(\because 10\) \& 11．2 \& \({ }^{\prime}\) \& 11.0 \& 11.1 \& SW \& \(1 . \because\) \& 1．：3 \\
\hline 6 \& sill \& 34.0 \& \(\because 1.4\) \& SW \& 0.1 \& 3． 1 \& N \& \(1 \because 6\) \& 11．： \& 0 \& 0.0 \& 11.1 \& 0 \& 11.19 \& 1.1 \\
\hline 7 \& sill \& \(\because 4.11\) \& \& sW \& 0.11 \& 11.7 \& S \& 15．\({ }^{1}\) \& \(1 \because \cdot 9\) \& 0 \& 13.0 \& U． 1 \& 11 \& 1.0 \& 11.1 \\
\hline \(\checkmark\) \& 心110 \& \(\because 7.6\) \& \(\because 1.9\) \& Sll \& 3.14 \& \(\therefore 1 ;\) \& N \& 10． K \& 111， 1 \& 11 \& 0.0 \& 1.1 \& i \& 1.9 \& 1.7 \\
\hline 9 \& 心Wr \& \(1 \% 0\) \& 19， 8 \& nil \& 4. \& 5.4 \& \(\cdots\) \& 7． \& 8.1 \& 11 \& 1）． 0 \& 11.1 \& 1 \& 0.0 \& 1.7 \\
\hline 10 \& HIV \& 1－0 \& \(17 . \therefore\) \& SII \& 6.11 \& 1.7 \& ＇ \& 6.19 \& AK \& 0 \& 0.0 \& 11． 1 \& 11 \& 0． 0 \& 0.0 \\
\hline 11 \& Sll \& 1！\({ }^{\text {2 }}\) \& צ－5 \& Nil \& 4．s \& 5， 1 \& S \& \(\therefore .4\) \& ！¢ \({ }^{\text {r }}\) \& 11 \& 0.11 \& 0.0 \& 0 \& 1.0 \& 19.10 \\
\hline Noon． \& sil \& \(\because 1.4\) \& \& 6IV \& 1i．1） \& 5.4 \& s \& 9.6 \& \(\cdots 1\) \& 1 \& 11.11 \& 0.0 \& 11 \& 11.1 \& 12.6 \\
\hline \(1{ }^{11}\) \& Sill \& \(1-0\) \& 14.3 \& SIW \& 9.6 \& 12． \& N \& 316 \& 9， 2 \& 19 \& 0.0 \& 0.11 \& 0 \& 11.11 \& \(0 . \%\) \\
\hline 9 \& Sils \& 1 \(\because 11\) \& 1：31 \& SW \& 3.10 \& \& S \& 7 7． \& －，k \& \({ }^{1}\) \& 11.1 \& 0.11 \& \(1)\) \& 1.0 \& 11．\(\because\) \\
\hline ； \& ה \& \％． \& \％．9 \& －115 \& 7． \& ！． 1 \& 心 \& \(1 . \because\) \& 3.4 \& NE \& 19.5 \& 0.7 \& 11 \& 11.11 \& 11．\(:\) \\
\hline 1 \& sill \& 13．0 \& 7.7 \& －11＇ \& （i．） \& \(11 .: 3\) \& N \& 1．\({ }^{\prime}\) \& 1.15 \& 0 \& 1.0 \& 19.1 \& 1 \& 0.0 \& 11.0 \\
\hline 5 \& SII \& 点 4 \& \(\therefore 11\) \& －W \& \(\times 4\) \& \(111 .:\) \& 1 \& 0.0 \& 9．1； \& 11 \& 11.11 \& 11.11 \& 0 \& 0.17 \& 11.0 \\
\hline f \& Nill \& 4．\({ }^{2}\) \& （i．1） \& Sily \& （1．）1 \& 8.5 \& 11 \& 1.10 \& 0.1 \& 11 \& 11.10 \& 1）．11 \& 11 \& 11.19 \& 11.11 \\
\hline 7 \& SIV \& ？． 4 \& 3.4 \& SIV \& 6.0 \& \％． 0 \& 1 \& 1.11 \& 3.18 \& ＂ \& （1．1） \& 0． 11 \& 11 \& 0.11 \& 1）． 0 \\
\hline H \& SW \& 1． 3 \& \(\cdots\) \& SW \& 14.4 \& 11.7 \& 11 \& 1.11 \& 11.0 \& 1 \& （1．） 0 \& 0.11 \& \({ }^{11}\) \& 0． 0 \& 11． 11 \\
\hline 9 \& Swr \& 9.4 \& \(\because 1\) \& s \& 4 \& \(\therefore 2\) \& 11 \& 1． 11 \& 1.1 \& 1 \& 1.11 \& 0.11 \& SW \& \(\because 4\) \& \(\because 1\) \\
\hline 10 \& SII \& （6． 11 \& 5． 4 \& SH \& \(\cdots .1\) \& r．is \& 11 \& 0.0 \& 1.1 \& NL \& 0.5 \& 0.7 \& SW \& 2.4 \& 4.16 \\
\hline 11 \& S \& 13．1） \& 7.4 \& SW \& ¢． 1 \& （i．5） \& 0 \& 11.11 \& 10．3 \& 0 \& 0.0 \& 11.11 \& 0 \& 0.11 \& \(\because .7\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Silmis． \\
Alralls
\end{tabular}} \& \& \& \(4 \because 1.3\) \& \& \& 16： \& \& \& 101． 1 \& \& \& 3.1 \& \& \& 2， \\
\hline \& \& \& 17.7 \& \& \& （i． 6 \& \& \& 1.5 \& \& \& 0.1 \& \& \& 0.9 \\
\hline \multirow{2}{*}{1）ay．} \& \multicolumn{15}{|c|}{MAY， 1873.} \\
\hline \& \multicolumn{3}{|c|}{15.} \& \multicolumn{3}{|c|}{16.} \& \multicolumn{3}{|c|}{\(11 \%\)} \& \multicolumn{2}{|r|}{18.} \& \& \multicolumn{3}{|c|}{19.} \\
\hline Hour： \& Dir． \& Vel． \& Dist． \& Dir． \& Vel． \& Dist． \& Dir． \& Vel． \& Dist． \& Dir． \& Vel． \& 1）ist． \& Iir． \& Vrl． \& Dist． \\
\hline （1） \& 0 \& 0.0 \& 0.11 \& SW \& 16， 2 \& 20． 5 \& 0 \& 0.0 \& 0．9 \& NE \& 7． \& E： \& 1 \& 0.1 \& 0.11 \\
\hline 1 \& H \& 2.4 \& 0.7 \& SW \& 15.16 \& 1－6 \& SE \& 11.5 \& 11.9 \& NE \& 6.11 \& 5.7 \& 1 \& 0.10 \& 0.11 \\
\hline 2 \& S \& 4． 2 \& 5，3 \& sw \& 14.4 \& 1：3 \& 0 \& 0.11 \& 0.0 \& NH \& 4．\({ }^{\text {a }}\) \& 4．3 \& L \& 1． \& 1．\(: 3\) \\
\hline 3 \& SW \& 2.4 \& 5.5 \& sil \& 14.4 \& 1：\％ \& 11 \& 0.0 \& 11.0 \& NE \& 6.10 \& 7.9 \& 0 \& 0． 0 \& 1.4 \\
\hline 4 \& Stir \& 6.0 \& 7.1 \& sil \& 31.4 \& 2.5 \& 0 \& 0.0 \& 1.3 \& NE \& 1.2 \& 1.1 \& 11 \& 0.11 \& O． 11 \\
\hline 5 \& silt \& 110.5 \& 5.5 \& SII \& 30.4 \& 19．\％ \& 13 \& 6.0 \& －s \& NE \& 3.15 \& \(4 . \because\) \& 1 \& 0．0 \& 1.1 \\
\hline （i） \& Sily \& 9.6 \& 7．\({ }^{2}\) \& Sil \& 1！\(\because\) \& 10.5 \& E \& \(\because 4\) \& 3.1 \& NE \& 4.8 \& 1．， \& 11 \& 13． 0 \& 1.11 \\
\hline 7 \& Sil \& 10． F \& 11.5 \& sw \& 7.4 \& ¢． 9 \& 1 \& 3.1 \& \& NE \& 4.8 \& 4.9 \& 0 \& 0．1） \& 0.11 \\
\hline \(\stackrel{4}{4}\) \& Sty \& 16．， 2 \& 19.6 \& SW \& 8.4 \& 13.4 \& 16 \& 0.11 \& 1．9 \& NE \& 4．\({ }^{-1}\) \& 4．9 \& ＂ \& 19.1 \& 0.7 \\
\hline 9 \& Sil \& 19．2 \& 19.9 \& sil \& 6.0 \& 8.5 \& NE \& 1， 11 \& \(\therefore\) 为 \& NH \& \(\therefore 1 i\) \& \(\because \because\) \& 11 \& 13．0 \& 1.1 \\
\hline 10 \& Stir \& （2）． 4 \& 2．9 \& SW \& 10．\％ \& 11.9 \& Ni \& 4． F \& ： 3 \& NE \& 7．\({ }^{\text {¢ }}\) \& \(\therefore 0\) \& \(1)\) \& 11.0 \& 0.0 \\
\hline 11 \& SW \& ？ \& 些． 3 \& SW \& \(1 \because .1\) \& 10.0 \& N1： \& \(\because 4\) \& \(\therefore 7\) \& NL \& 7．\({ }^{\text {2 }}\) \& 7.19 \& 11 \& 13.11 \& 0.9 \\
\hline Noon． \& SW \& 29．4 \& 21.7 \& sw \& 4.2 \& 6.10 \& N6 \& 1． 4 \& 5.1 \& NE \& 7.9 \& 7．： \& 1 \& 0.0 \& 1． 1 \\
\hline \(1^{1 /}\) \& SIN \& 31.4 \& \(\because 1.3\) \& sil \& \(\because .4\) \& 1.7 \& NE \& \(\because 6\) \& 3 B \& NE \& 1． \& \(\because .1\) \& 11 \& 11.10 \& 0.5 \\
\hline \(\because\) \& SH \& 1518 \& 14.7 \& 0 \& 0.0 \& \(4 . \%\) \& NH \& 3.6 \& 3.1 \& \(1)\) \& 11.0 \& 1.10 \& NE \& \(\because\) \& \(\because\) \\
\hline 3 \& siv \& 1－9 \& \(1 \therefore \therefore\) \& 0 \& 0.11 \& 11.15 \& NH \& \(\because 4\) \& \(\because \stackrel{y}{0}\) \& 1 \& 11． 11 \& 0． 1 \& NE \& 4．2 \& 4.9 \\
\hline \(t\) \& SW \& 18．11 \& \(1: 37\) \& W \& 1.2 \& 1， 9 \& NR \& \(1 . \%\) \& 1．5 \& 11 \& 0.11 \& 11.8 \& XL \& 13.11 \& 7.9 \\
\hline 5 \& Siv
Sis \& 7.9
16.2 \& 1 11.4 \& IV \& 2.4
1.2
0.6 \& \(\therefore 1\)
\(\therefore 1\)
\(\therefore 1\) \& 11
\(N\) \& 11.11
6.4 \& 3.1
1.9 \& 11 \& 10.11
0.11
0.11 \& 11.11
10.1

1 \& 入E \& 10.6
18,3 \& 6． 6

\hline 7 \& Sily \& 16．K
号， \& 11.4 \& W \& 1.2 \& \cdots \& NE \& ？ 1.4 \& 1.9
4.0 \& 11 \& 0.11 \& 11.1 \& N12 \& 10． \& \％

\hline － \& SW \& $1 \because 0$ \& 21．0 \& S1： \& 0.5 \& \& NH \& 3.1 \& 号 \& 1 \& 0.1 \& 11.11 \& NE \& $1 \because 11$ \& 10．：

\hline 9 \& siv \& $\because 1.1$ \& 为： \& 0 \& 0.0 \& 11. \& NE \& 13．0 \& $\because: 3$ \& $1)$ \& 0.11 \& 11.1 \& NE \& 1：11 \& 1\％

\hline 10 \& Sill \& 14．4 \& 1 19 \& 0 \& 0． 0.1 \& 0.0 \& NE \& \& 9.0 \& 11 \& 0.11 \& 11.1 \& NE \& $\because 1.1$ \& 15．${ }^{\text {i }}$

\hline 11 \& SW \& $1 \sim 0$ \& $\cdots 3$ \& 0 \& 10.0 \& $0 .: 1$ \& NE \& 6.0 \& 9.0 \& 0 \& 11.11 \& 11.1 \& NE \& 4．－ \& 8.7

\hline \multirow[t]{2}{*}{Sums．．．
Mealis．} \& \& \& 341.7 \& \& \& 190.1 \& \& \& ci． 0 \& \& \& 70．5 \& \& \& 929 4

\hline \& \& \& 14.2 \& \& \& 7.9 \& \& \& 3.5 \& \& \& 3.2 \& \& \& 4.1

\hline
\end{tabular}

Day.	MAY， 1873.																	
	20.			21.			22.			23.			21.			95.		
Homr．	Itir．	Vel．	I＇ist．	Dir．	Vel．	Dist．	Dir．	Vel．	Dist．	Dir．	Va．	Dist．	Dir．	Ye．	list．	Dir．	Vel．	Dist．
11^{17}	NE	4.8	10.1	NE	\cdots	91.7	0	0.0	1．\because	NE	1.2	1．：	NH	10．	$12 .: 3$	NE	111．${ }_{1}$	15.1
1	N	6.0	7.1	NH	7． 2	7.9	${ }^{\prime}$	11.0	0.3	0	13.1	$\because 1$	N：	6.0	$1 \because .0$	NE	1：1．9	1\％
\because	N	13．1）	6．	NE	7．${ }^{\text {a }}$	7． 5	，	0.0	0.0	，	1）． 0	11.19	N以	$7 \cdot$	8.1	NE	11.5	T．
3	0	0.11	11.0	NH	8.4	9.7	NE	$\because 1$	1.5	NE	$\because 1$	$\because 4$	NE	9.16	9.7	NE	11， 11	$\triangle 1$
4	Nli	7．：	1.4	NH	$\therefore 1$	E：	NE	3.4	0.7	NE	$\because 1$	\cdots	N4，	1：3：	$14 .:$	NE	10．s	111．${ }^{\text {a }}$
i	N	4． B	$\because 4$	NE	7．9	\＆． 1	NE	1．2	总1	NE	$\therefore 6$	4．\because	N1：	12.0	11.5	NE	13.10	13： 1
is	NE	6.19	7.1	N	$7 . \because$	7.4	0	0.11	11.3	NE	13． 3	14． 10	NE	14.4	1－\％． 0	NE	13．：	1．3． 1
7	N	9.1	0.8	NE	4．s．	3.5	NE	1． 2	10.7	NE	$1 \because 0$	11.7	NH	13.3	$1 \because .9$	NE	18．0	11．4
－	N	9.1	111．${ }^{\text {ch }}$	NH	$\therefore 1 ;$	4.3	0	（1．）	11.9	NE	120	13． 4	N世	13． 3	1：3．0	NL	13．：	13．6
9	N	10．5	！ 1.5	NE	（i．）	7.1	0	0.0	11.8	NE	16．s	16．1	NH	$1 \because 0$	14． 1	N以	15． 1	14.11
10	NE	14.4	15.9	N＇S	$7 . \because$	7.1	11	0.0	11.15	NE	1：3．2	15． 2	NH	15．6	1．6． 6	NE	14.4	13.4
11	NE	15．1i	14．：	N以	6.0	5.	$1)$	（1．）	0.9	NE	10．s		Nに	15.13	16， 4	NE	19．3	11.7
Noron．	NE	$1 \because 0$	$1 \% 9$	NB		4.3	11	11.17	0.5	NE	10．${ }^{\text {a }}$	10． 2	Nし	15．1；	17．：	Ni\％	110．	12．$\%$
1^{11}	NE	10．s	$\therefore 1 ;$	N：	$\because 4$	9.7	0	11.0	\％．${ }^{\text {a }}$	NE	6．1）	1.7	NW	10．${ }^{\text {10 }}$	¢． 3	NE	15.6	1×． 6
3	NE	13.1	15．：3	NE		5.5	NH：	4．\％	5.0	NE	7． 9	！ 1.5	NJ	15.1	13.5	Ni：	11.4	13．0
：	NE	1×0	11.19	NE	1． 2	0.9	N以	1．：	5.0	NE	－ 4	7． 5	NE	20.4	1！\％．	NE	16．4	$1-7$
4	NE	10．${ }^{\text {c }}$	10.9	NE	$1 . \because$	1.6	0	1）． 0	1.5	NE	s． 4	10.9	NE	$1 \sim 0$	18.1	NE	$1<0$	13．6
5	NE	S． 4	9.1	$1)$	0.10	0.3	0	（1．1）	11.9	NE	$3 \because 0$	H．8	NE	14． 1	11.7	NE	$1 \times .0$	16， 3
1	NH	\％． 4	7.3	NH	\because	$2 .: 3$	0	11.11	1.6	NE	\％．4	！10：	NH	13）${ }^{3}$	15，${ }^{\circ}$	NE	20.4	14．4
7	NE	$1 \because 0$	10.11	NE	1．\because	0.6	0	0.11	11.0	NE	16．	13．6	NE	15， 6	1：3．K	NE	$\because 2.6$	12．：
8	NL	9.6	11.7	0	0.0	0.0	0	0.0	1.1	NE	15．${ }^{16}$	14.3	NE	14．4	14.0	NE	13．9	1．1． 1
9	$1{ }^{1}$	$\stackrel{4}{4} 4$	10.3	NE	$\because .4$	1． 1	11	0.0	0.0	NE	111．8	16.7	NH	10．\％	12.7	NE	15.6	13．2
10	\cdots	6． 0	7.2	0	0.10	1.11	0	0.0	0.2	NE	！ 1.6	11.0	N＇	15， 6	17.7	NE	15． 6	14.0
11	NE	$\because .4$	5.4	0	0.0	0.11	0	0.0	0.8	NE	11.4	11．${ }^{\text {L }}$	NL	$1 \because 0$	11.9	NE	8． 4	A． 1
Nums．						107．4			46			28：3 4			329.1			311.2
Nleaus			0.6						1.1			9.3			13．8			
Way．	MAY， 1873.																	
	26.			27.			28.			29.			30.			31.		
Hour．	Dir：	V川．	Dist．	Dir．	Yel．	Dist．	Dir．	Vel．	Disl．	Dir．	Vel．	Dist．	Jir．	Vul．	Uist．	Dir．	Yel．	Dist．
$0^{\text {b }}$	NE	6． 0	7.7	NE	3.6	$3 . \alpha$	0	0.0	1.5	NE	1＊．0	21.6	NE	2.28	20.5	NE	90.4	21.0
1	NE	30.8	7.9	NE	6.0	7.9	0	0.0	（1． 0	NE	－ 4.0	14．6	NE	24.9	21.9	NE	20.4	（3）， 5
2	NE	9.6	10.6	NE	10.8	10．${ }^{\text {a }}$	0	0.0	0.0	NE	21.6	然． 4	N＇	24．0	3：3：3	NE	$\because 1.6$	13，${ }^{2}$
3	N＇	4．－	4.3	NE	E． 4	6.5	0	0.0	0.0	NE	1－． 0	－3． 4	NE	20． 4	22． 11	XE	211.8	16.0
4	NE	9.6	$\therefore 6$	NH	10． *	8.7	0	0.0	0.0	NE	10.8	11.2	NH	24.1	25.9	NE	20.8	311． 11
5	NE	10.8	11.5	Nu	2.4	6.5	0	0.0	0.0	NE	？6． 4	31.1	NE	21.6	？	NE	12．0	15.4
6	NE	15.6	］$\because: 0$	N「	60	6.7	0	0.0	0.0	NE	29．8	21.9	NE	20．8	4． 7	NE	1－1， 6	21．6
7	NE	14.4	15.7	NE	8.4	7.7	NE	3.6	2	NE	119.2	20.1	NE	311.4	20．	NE	111.8	$1 \because 4$
8	NE	15.6	13.9	NE	6.0	7.3	NE	6.0	5．2	NE	211． 4	21.5	NE	211.4	21.5	NE	13．2	13．4
9	NE	16.8	19.4	NE	6.0	8.6	NH	7.3	8.0	NE	w－3	足． 4	N＇	20.1	19.1	NE	$1 \because 0$	12.1
10	NE	19.2	15．2	N上	6.0	7.9	NE	8.4	－8 9	NE	1×0	16． 6	NE	－1．0	20.4	N゙E	15．6	1r． 1
11	NE	18．0	15．8	NE	1． 0	$5 . \mathrm{C}$	NE	10． 8	11.5	NE	$\because 1.6$	나． 1	NE	1－0	17.9	NE	13，2	14．6
Noon，	NE	1： 16.	14．：	NE	9.6	9.0	NE	12.0	13．0	NE	24.0	足． 9	NE	$1-0$	$1 \times .4$	NE	15.6	15.2
1^{14}	NE	16.8	15.6	NF	8.4	13.6	NE	14.4	15.9	NE	29．\％	$\because 1.0$	NH	1×0	17.0	NE	15.6	15，11
\％	NE	21.6	16.7	NL	3.6	4． 5	NE	15.6	17.5	NE	为只安	$\because 1.4$	NE	119．	21.7	NE	10． 2	$1 * .4$
3	NE	13．0	16.4	NE	1.2	2.5	NE	16． *	16.5	NE	22.8	23．5	NE	18.0	17.9	NE	8.4	9.8
4	NE	14.4	12.4	NE	9.4	5.6	NE	16．8	1×0	NE	19．6	2－．6	NE	14.4	18．9	NE	\bigcirc	12.4
5	NE	14.4	15．3	NE	4.8	9.3	NE	15．6	14.6	NE	20.4	$\because 1.5$	NE	2 L .0	－1．3	N1	$\therefore 4$	9.7
6	NE	13．3	13．：3	NE	1.9	2.8	NE	20.4	$\because 1.9$	NE	97.6	？5， 6	NE	20．1） 1	$1 \times .19$	NE	－4	10．1
7	NE	14.4	13．8	NE	1．：	3.0	NE	30.8	16．5	NE	25：	91.7	NE	24.0	21．15	E	6.0	9.1
	NE	7． 2	9.4	NE	2.4	$\because 1$	NE	14．4	1：3． 7	入E	30.4	23.8	NE	3．2．	30．3	E	$\stackrel{2}{2} .4$	5.3
9	NE	1． 11	3.9	NE	3	4.1	NE	16．8	1－3：	NE	31.6	21.7	NE	21.6	19.5	E	6.0	6.7
10 11	NE	6．0	9.6	0	0.0	0.1	NE	15.6	1：2．？	NE	38.	20.4	NE	21.1	19.9	E	6.0	5． 6
11	NL	7.2	6.4	0	0.0	$0 .:$	NE	19．2	31.8	NE	21． 6	39.4	NE	20.4	21.4	E	\％． 4	5． 6
Sums Means			300.0 12.5			144.6 6.0			430．8 9			336.4 14.0			506.6 21.1			321.1 13.4

The following table，derived from the preceding observations，gives the daily mean distances traveled by the wind，without regard to its direction．

Day of the month．	1872.		1873.				
	Novemler．	December．	January．	February．	Matrel．	April．	May．
	Miles．	Miles．	Mits．	Milcs．	Jiles．	Milus．	Miless．
1	13.3	11． 3	i． 9	20．	11．9		0.1
\because	13.9	15．${ }^{\text {¢ }}$	0.	19．\because	8.9	0.9	： 3.6
3	13．6	13．6	？\because	13．0	13，3	13.1	0.5
4	S 5	11.1	0.1	16． K	4.11	0． 2	$\bigcirc 8$
5	9．8	$1 \because 2$	5.1	9.3	2．	15.6	$\because \because$
6	3.0	1.7	11.3	3.1	7.4	111.0	1．${ }^{\text {r }}$
7	11． 3	4．\because	$\because 1$	1.0	3．3	$\because 6$	1i． 9
＊	4.9	号， 3	7．：	8.3	7.11	9．2	$1 \because 11$
9	16.5	16．9	15． 1	10．1；	3.11	$\because 1$	14．5
10	14． 5	15．11	1．5． 1	11.7	1.0	111． 5	17.7
11	16．	17．8	2． 9	6． 5	17．$:$	$\therefore 0$	1i，${ }^{\text {r }}$
1：	10．$\%$	14.8	1.1	13．：	1．5	11.1	1.7
13	哭：3	$1!4.4$	0.1	16.7	0．8	㬉5	11.1
14	$\because 1.9$	11.1	4.8	19.15	11.6	9．：	0.9
15	13.0	10.1	$15 . \cup$	$1 \sim 4$	1.0	6.0	14．\because
16	10.5	18.8	14.7	17.9	3.9	$\cdots 1$	7.9
17	$\because 4.5$	19.5	16.0	7.1	10． 1	16． 1	3.5
1%	19.0	14． S	17.7	－ 8	11.3	11.6	$\therefore 2$
19	$1 \therefore 1$	17.5	5.11	$9 . \%$	11．${ }^{\text {a }}$	1.5	1． 1
20	14.0	19.8	5.0	1.11	6.9	7.9	9．1i
$\because 1$	3.5	$\because 0.0$	3.3	0.9	1：3．9	14． K	4.5
\because	16．5	$\because 10.8$	0．：	$3 . \geq$	8.1	\because	1.1
23	15.1	9.3	0.0	$0 . \cup$	16.6	2.5	$9 . ;$
－4	15.3	6.6	1.1	$5 .: 3$	10.8	3.1	1：3
95	13．	18．：	7.1	11.1	13．4	910．3	13.8
96	15.5	11.0	3.8	16.1	19．1）	号保	19.5
27	16.6	10.3	5.7	120	7.1	20．11	13． 11
28	13.1	7.18	9.0	12．5	7.	10.4	9.7
9	8.0	16.0	3.8		6.9	6.5	14.11
$: 3$	4.3	10.9	11.9		5.3	0.8	－1．1
31		17.9	10.2		3.3		13.4
Σ	387.9	4.81 .1	193.9	301． 1	200.1	265.7	953．3 3
Meaus．	12.9	14．${ }^{\text {i }}$	6.2	10.8	1． 5	8.9	$8 .:$

The following table shows the number of times the wind blew from cach point of the compass at the respective bours of observation，and also the number of calns．As will be seen，we make a distinction between nominal and absolute calms．Under the former head are juchuded those eises where the index of the anemometer had mored during the interval between two observations， although it was at rest at the instant of observation；while under the latter are comprised all those cases where the index of the anemometer had not shifted at all during an interval of one honr between two observations．

Direction of the wind．	1872.		1873.					Σ
	November．	December，	January．	Felbruary．	Marelı．	Arril．	May．	
N ．．．．．．．．．．．．．．．．	\％	\because	2	6	5	2	0	120
NE．．．．．．．．．．．．	：34	60.5	242	4\％	314	312	345	Stid
E．．．．．．．．．．．．．．．	23	4	9	10	11	＂	吅	$\therefore 1$
NE．	\because	0	$\because 1$	3	6	：	5	40
S．	：5	0	71	号：	4.5	104	呺	319
SW ．．．．．．．．．．．．．	87	\because	51	26	5	5	130	1：1
W ．．．．．．．．．．．．．．	3	19	0	1	\because	1	3	10
NW ${ }^{\text {W．．．．．．．．．．．．}}$	0	1	$1)$	0	11	1	$1)$	\because
Calms．．．．．．．．．．．	5，i）	（1）	117	118	1163	102	11%	7！
Alisolutecaluns．．	（13）	3.	\cdots	¢i，	140	139	-3	71.5
Totil．．．．．．．．	$2: 01$	244	74	（5：	711	201	744	5，0，is

The next table，derivel from the preceding one，gives the above values in percentages．

1hrection of the wind．	1872.		1873.					Average per crint． for all the months．
	Novernlex．	160cmbtio．	January．	Febuary．	March．	April，	Mas．	
	10．6i） 1	2． 9.2	（1．269	0．x^{4} ：	11．洨：	11．0．8	11.20110	9，3iv
NE．	53，湤；	－1．317	3：3．33：3	64． 2×15	12．244	1：3． 333	11.371	51.57
	3.194	0． 5 sin	1．209	1．1－n	1，心－	19，30，	¢． 017	1． 0.02
SE	0． 22.9	0， $17 \% 1$	只必号	0.146	0．$\times 19$	0.117	0.672	0.7×6
S．	4．Sil	17． 000	1）． 946	3． 4×3	6． 114%	14． 44	5．10x	C． 0^{6}
心W	12．110：	－1． 629	（1．） 5	3．8i0	6．小－${ }^{\text {a }}$	$\therefore 0.15$	17． $17: 3$	E． 171
W	0.117	13． 1110	11． 000	0.140	1）． 3_{6}	11．1：19	0． 415	0． 107
NW	13． 000	19．1：3	1）． 1000	0.010	0.1710	0．1：39	0.0001	11．10：9
C＇r！ms	7．5心	13． $7: 3$	1．2． 26	17．5．9	处：319	1－） 1090	15． 0.1	14． $2-9$
Alosolate calms	7． 3 （il	4.3114	09，-3.9	7． 2.4	1s．$\times 17$	17.916	11．156	14．05
	100.100	100.000	100.000	1011.000	100.000	100． 600	100.000	100.000

The following table shows the means of the distances traveled by the wind，including also the nominal calms．

1 birection of the winh．	1872.		1873.				
	November．	December．	Junuary．	Felurnay．	March．	Λ_{1} ril．	May，
N ．．．．．．．．．	17． 5	14． 21	15．：$: 10$	11.53	3，is	2.30	7．（ix
NE．．．．．．．．．．	13． 8	15． 59	10．7\％	1.1 .00	11．	13．71	11，50
	5． 3.	1． 3	$1 \because 3$	7．12	5． 319	11， 15	5，碞
SE	3．30	11． 00	$\therefore 16$	6． $2 \cdot 0$	9． $1: 3$	1，－0	6． 39
	1：3．	0.00	12．0\％	13．11	11.53	13， 79	9.19
STY	19.71	？	10．4i	13． $3:$	14．05	11.3	11．85
W	12.00	0.00	0.10	1×10	\％．95	19.00	2.67
NW ．－．．．－．－	0.00	¢． 00	0.00	0.16	0.00	1.90	0.00
Calus．．	0， 49	1.43	0.48	0．$\times 23$	0.69	0.48	0．1x
Sums．．．．	－13． 58	71）． 11	71.20	85.48	64.17	46.69	5i． 12
Means．	9.61	7.89	7.91	9.50	7.13	5.19	6.12

The following two tables gire the number of miles traveled by the wind at the station of the observatory，with the same also expressed in percentages．

Table showing the number of miles trarchal by the wint at Polaris Monse．

Direction of the wind．	1872.		1873.					Total．
	November．	1）cermber．	January，	Fehmary．	March．	April．	May．	
	$\begin{aligned} & \text { Milts. } \\ & 1: 54.4 \end{aligned}$	Miles： 490,8	Miles． $: 30.6$	Milis． （ie． 1	Milus． 8	$\begin{array}{r} \text { Mits... } \\ 1: 3 \end{array}$	Miles． 46.1	$\begin{aligned} & \text { Mitus. } \\ & 1 \not 1: 1 \end{aligned}$
NE	5：313．8	96530	22：11．6		3501． 2	421.0	4012．8	
E	141.4	16． 2	120.9	27.2	E9． 1	ソ．：	123．6	500． 2
SE	10.5	11.9	171.3	15．7	fir． 8	9.0	17.9	291.1
S．	469.1	2.7	949.1	：3：3， 0	5．is． 3	1489.9	：175．19	4116.7
SW	1714．1	753． 4	［ild． 4	：35．5	767.1	6．7．9	1178.9	6：36．
W ．．．．．．．．．	90.7	11.11	0.0	18． 1	15，9	0.4	8.6	$\cdots 7$
NW．	0.0	F． 0	0.0	0.0	0.0	4.0	0.0	$1 \because 0$
Total．．．．	9063.0		H179．9	$7130 . \mathrm{x}$	5049.2		6105，5	44154

Table showing the number of miles treteled by the wint at Polaris Ilouse，expressed in percentages．

1）inelwo of the wind．		2. 	Jamany	Promumy．	$1873 .$ Mintela，	April．	M15．	lercent． for all the RETM品 montlis．
N＊．．．．．．．．．．	14.94		0． 61	11． 87	0.45	0.10	11． 215	：3． 199
NE	5in． 06	210． 10	［1）．1：3	R2，45	70． 3	60.15	13i． 43	7：310
	1.81	0．15	2． 6118	1.09	1.76	0． 119	1．94	1．16
SL．	1）． 19	10.11	$\therefore .71$	11．$\because 1$	1．	0.14	11．：30	1）． 69
	5．12	1）． $11: 3$	$\because 11.51$	4． 81	10． 44	－28．57	1）． 17	↔：
SII	1＊．91	－ 6.115	1：3，：0	5．	15．19	10.111	$\because 1$.	1：30：
W．	11． $3:$	11.111	11． 1111	11．	0． 2.	10.11	0.14	0.15
NW．	0.00	0.118	0.100	0.00	0.00	0.015	0．（1）	0.02

For the sake of comparison，the following table was arranged，giving the quabitity of air passed over both Iolaris Bay and Polanis lonse during winter and spring．

Dircction of the wind．	Wintes．						Mauch.		Ammet．			
	Jece		Jat	ars．	Febr	ary．			Al_{1}	i3．	M	
	Polition Bay．	Polaris Itoms．	Jomaris lian．	Polaris llonse．	1oblaris Jiay．	Polan is Itonse．	Polaris Buy	［口и：口 Honse．	lolaris Bins:	I＇olaris llomse．	Polaris 1Bis．	Polaris floms．
N	209．${ }^{3}$	3！\％）．－	1－3．7	：11．1；	：3i1） 0	12.1	5． 0	3？	6． F	$6 .:$	1）．11	41.1
NE	$24: 1.7$	9758.0	369．3		10：3． 0	6－3．5．	Pels．	\％51． 2	1－17．3	以！1．0	ッ！\％10．：	4110．8
1	12\％\％． 1	11．：	14．12．4	1 $\because 9.9$	1181．9	\％\％．	710．2． 0	－9． 1	－\％ 5.4	$2:$	104． 4	1：11． 0
NE	140.7	10.9	－38\％	171．$:$	$1: 1.7$	1 \therefore \％	5111.6	（0）	：\％\％\％ 9	9.11	105．1	17.9
S．	50.3	$\because .7$	20．11	（19） 1	只．	：13： 11	9.0	537.3	0.0	1129．9	2－0	335， 6
SU＇	1548．3	～T3． 1	7以！：	［14． 1	1313．9	：385． 5	554.0	763， 1	658．0	697.9	1－0．5． 1	14：2，
W	29.1	0.11	44.6	0.0	8.9	1R．1	111.8	15.9	37.0	0.4	50.7	8.6
NW	95.2	8.0	1.4	0.1	213.8	0.0	44.1	0.0	215，$\%$	4.0	：30． 1	0.0
Sums．．	6751.6	10－55．0	50：08． 1	4619.9	7515.4	7130．	8048.7	5049	：วリビ 1	（6，80）． 4	4！－6， 9	60\％ 5.5

Althongh the quantity of air that passed from the north during the period nuder consideration is rather insiguificant, we still see that it is decidedly larger at Polaris Bay during January and February than at Polaris Monse. In December the case was found a little different, however, as nearly twice the quantity passed orer the laller place.

In general, more air passes from the NE over Polaris Iouse than over Polaris Biy, althongh we never experienced such high winds from this direction at the former place as at the hater. It will be seen that the quantity which passed over Polaris Bay in March is nearly twice as large as that over the other station during the same month. The difference nearly vanishes in Januar.

In regard to the easterly curront, exactly the contrary takes phace, except in May, when the amonnt noted at lolaris House is a trifte larger; while dming the rest of the period moler eonsider. ation it isdecidedly less at the latter locaiity.

The same may be noticed in regard to the se winds; the quantity of air passed from this direc. tion being, withont any exception, larer at Polaris Iny than at Polanis Honse.

If we except Tanuary, the quantity of air that passed fiom the S is larger at Polaris Homse than at lobaris lay. This fact is very striking in April, when the proportion becomes $1.100: 0$.

In ragad to the quantity of air that passed from SW, nearly the coutrary takes place from What we noticed roncerning the NE winds. In three instances, viz, in December, Febrnary, and May, the cuanlity passed over lolaris lay is by fir srater than that passed over the other station. Doming Janmat it is nealy efual at both localities.

The W winds are very rave, and the greatest quantity of air that passed during amy month in the period muder consirleration does not rexceed tity miles; while, during Jommber and Jamary, there were for westerly winds at all on remol for Polaris Mouse.

The quantity of air passed from the NW, though very small, is more considerable than that from the direftion last mentioned; during every month, however, it is deridedy larger at Polaris Bay than at Polatis Lomse.

As stated before, we have discminiated between calms and absolute calms; comprising under the former all those cases when the wings of the amemometer were not in motion at the moment of ohservation, the reading of the dial, however, having increased since the last observation; whereas, dming our absolnte calms, the hand of the dial had not noved at all. The following table contains the mober of "alms and absolnte calms recorded both at Polaris bay and Polaris Honse from November till Jume.

Tuble of culms and absolute calms rownded al Polaris Bay and I'oleris House.

It will be seen that the momber of both calms and absolnte calms is greater at Polaris Honse than at Polaris Bay: the maximum of calms observed durins any month at the former locality erfualing 160 (in Mareh); that of the latter being 157 (in Λ_{p} ril). At Jolaris IIonse, we find for the
 disciminate between nominal culhs and absolnte calms, we fud that at both stations the total calms occur more frequontly in spring than in winter, which is in conformity with the observations made at rarious other northern stations.

DURATION OF STORMS.

Storms obscrven at Poluris House firm Torember 1, 18i-, to June 1, 1s7.

Inate.	Direction of wind.	Duration.	Maximum relocity.	Remarks.
189 November 14	SH5	6	40	I ${ }^{\text {arometer }}$ not much affected.
Heccmber 7 and ${ }^{\text {a }}$.	S11	14	15	Parometer not much affected.
1-\%				
April 36	NE	21	310	Isarometer fell about 0.5 inch.
May 10.............	SH^{+}	10	42	Iharometer rose about 0.3 inch.

An examination of the storms obsorved at Polaris Bay and at Polaris Honse shows that gales were less frequent at the latter locality than at the former. The maximum relocity of the wimb observed at Polaris Bay is fifty-eight miles per hour; Whereas at Polaris IIouse it merevexeeded forty-eight miles. If we exeept the gale lasting from November 1s-s:3, 1871 , the record of which is not on hand, the maximm duration of any storm observed at Polaris Bay will be found to be 52 hours, and at I'olaris House 48 hours only. The nmmber of stoms ohserved at Polaris Bay, rompared with that of Polaris Monse, is as follows:-

Months.	Polaris 1Bas.	Iolaris Hons.
November	3	1
	2	1
, Tamuar	5	0
Pebrnary	5	1
March	\therefore	0
Apuil.	0	1
May	\because	1

During the same period of time, the expedition muter Dr. I. I. Hayes recorded fourten storms, two of which were blowing from Silt and the rest fiom NE, with the exception of one, during which the wiud occasionally blew from SIV. It shond be remembered, however, that in this case the velocity was only estimated, and not based on actual measurement. At Rensselaer ILarbor, the number of storms for the same periorl of time is five only; the relocity of the wind being also estimated. Sir Leopold MeClintock olserved sixtecn storms at Iort Kennedy from the 1 st of November, 1858, to the 1st of Jme, 1859, thinteen of which were from NW, one from W^{+}, and two from NE. Ilis register kept in Baffins Bay giventwenty, mostly from NW, for the same period of time.

ROTATION OF STORAS AND OF WINDS IN GENERM1.

Two of the storms recorded at Polaris Honse secm to show a decided rotation, according to the law known as Dove's. In the first instance (December 7 and 8), the wind, blowing from sh, was fresheming to a gale, reoring throngh NW to N after the storm had abated. The storm recorded on May 10 shows also a deeided rotation from NE to $S W$. Those observed on November 14 and April 26 blew from SUY and NE respectively; freshening in both instances after the wind had been blowing at a moderate rate from the respectice directions for some time.

The stoms observed at Polaris Bay are partly revolsing storms. Those reering decidedly according to the law are as follows:-

November 28 and 29.-Wind reered from E to $S T^{\top}$, with occasional squalls from NE.
Jamary 3.—Wind shifted from NE to E, with squalls from N.
Jamuary 1 t. Wind veering from NE to E, with an occasional squall from SW.
Fehruary 18,19 , and 20 .-Wind reering from SW, throngh W and NW, to NE.
March 12.-A freshening northeaster, veering to E after the storm abated.
June $2-6$ and $28 .-B e f o r e ~ t h e ~ b e g i m n i n g ~ o f ~ t h e ~ g a l e, ~ t h e ~ w i n d ~ s h i f t e d ~ f r o m ~ N ~ N ~, ~ t h r o u g h ~ N, ~$ to NE.

July 24.—Wind shilting from NW to N.
Consequently, one third of the storms recorded at Polaris Bay follow the law of gyration; besides, we have two instances, namely, December 28 and May 10, in which it is doubtful whether the wind shifted contrary to the apparent motion of the sno or not. The trelre remaining storms show either a decided retrograde motion or they are winds that had been blowing for some time, either from NE or from SW, tieshening to storms. The following ones belong to the first kime:

November 18 to 23.-Wind reering from SW, through E, to NE.
December 16 and 17 . Wind reering from NE to N, springing back to NE when the storm was abating.

Tanuary 10 . - TVind shifting from E to NE.
February 11 and 12.-Teering from E to NE.
February 2. - Shifting from \mathbb{E} to N, reering back to NL .

- Marel 10.-Wind shifting from E to NE.

May 4 and $5 .-V e e r i n g$ from SE , through E , to NE.,
whereas, on Norember 12, January 11, Jamary 31, February 9, March 20, and June 21, the Wind had been blowing from NE some time previons, freshening nutil it attained the velocity of a storm.

How far the winds in general follow the law of rotation may be seen from the following two tables, exhibiting the mumber of changes of the wind at Polaris Bay and at lolaris House. The columns headed + contain the direct, and those headed - the indirect, changes. In making ont these tables, the changes were connted, the comnting being renewed after each calm.

Rotation of the wimt at Polaris Bay.

Direction of wind.	1871.				1872.															
	Novamber. December.				January. February.				March.		April.		May.		June.		July.		August.	
	$+$	-		-	$+$	-	$+$		+	-	$+$	-	$+$	-	$+$	-	+	-	$+$	-
N		1		:	4		8		1	1	1	2		--	3	.-	4	6	4	14
NE:	1:3		S-	1	13	6	1:	1	R		\because	2	$\stackrel{\square}{9}$	2	4	4	10	6	3	4
I			11	泬	19	16	11			7	g-	\cdots	6	1	4	1	6	4	13	.
54		5	4	7	1	11	:	13	2	1.5	\because	$\because 1$	5	9	9	9	8	5	16	8
S			5	9	9	,		7		4	1		7	4	2	6	8	8	4	15)
SH	1	1	-			7	1	6	1	1	\therefore	1	3	5	13	5	$\because 1$	7	182	10
W		1			1	4		\because	1	2	4	4	4	3	4	15	3	6	6	15
NTV.		1	5	3-.		1	2	5	1	4	5	2	1	6	3	4	8	7	8
Sinms.	17	\because	6.5	(3.)	43	$4!$: 1	44	39	33	40	44	29	25	4.7	36	64	50	71	74
liserss		5			.	6	- - . . .	13	6	.	.	4	4		9	----	14	-	-..	3

Rotation of the wind at Polaris House.

The above tables prove what we might have expected a priori, according to our present knowledge in regard to the motion of the winds in high latitndes. Schott, in discussing McClintock's observations,* thinks that "the law of rotation probably does not hold good" for those regions, and our experience corroborates this opinion. It Polaris Bay, we find the greatest teudences of direct motion manifested in Joly, ant, at Polaris Wouse, in Mar and December ; in all the otber months, the rotation is more or less retrograte at both localities. As may be sem trom the following table, the motion in winter is decidedly more rotromank at Polaris Bay than at Polaris House ; although the quantity of air that passed from the direction of the presailing wind is greater at the latter station than at the former during the same season. In spring, cases of direct motion are more frequent, and in summer the excess at. Polaris Bay was $+\boldsymbol{O}$.

Direction of wind.	Winter.				sprivg.				scmanes.	
	Pol. Bay.		Pol. House.		Pol. Bay.		Pol. Honse.		Pol. Li:3, ${ }^{\text {r }}$	
	+	-	$+$	-	$+$	-	$+$	-	$+$	-
N.	12	3	6	8	2	3	7		11	21
NE.	53	13	3	4	13	6	10	5	17	14
E	41	66	4	3	49	16	4	1:	凹!	5
SE	7	43	3	7	9	46	5	\because	33	15
	7	11	10	9	8	8	13	5	14	99
SW	9	21	3	11	7	7	3	13:	\%	9:
W	3	9	1	...	9	9	...	\because	13	3
NW	6	5			11	7			17	19
Sums..	138	171	30	316	108	102	42	: 2	1-0	160
Excess		33		6	6		3		20	

* MeteorologicaI Observations in the Arctic Seas, by Sir Francis Leopold McClintock, R. N. Jeviewed and discussed, at the expense of the Smithsomian Institution, by Charles A. Schott. Wirhington City: Publisherl by the Smithsonian Institution, lelw. pp. 7-7:

Schott finds that the rotation is only direct in spring at Bafin's Bay, and in the winter at Port Kennedy; whereas at lemssibur Harbor the result is more in favor of the direct motion, as may be seen from the following tables, abridged from Schott's tahles previonsly refered to.

Chmmes to-	$\begin{gathered} \text { Antumm, } \\ 10 n . \end{gathered}$	Winter, 		Arring, 1×5.		$\begin{gathered} \text { Summur, } \\ 1-5.2 . \end{gathered}$			
		+	-		-			+	-
N	$:$	8	\%		4	5	1	21	1
NE	6) 11	11	:			9	4	31	\because
E	1111	0	1	(i)	1	:	0	$\because 1$	\because
SE	12	\because	5	13	:	$1 \geqslant$	6	: 3	21
	6	:	4	\because	0	\because	4	13	2
N1V	6	5	4	10		5	14	63	2
W.	18	1	1.5	1		9	:	14	:
NW.	17	-	8	6	10		$1{ }^{11}$:	:
Sumbe....... (6)	(6)	$\because \cdot$	4:3	4n	4.	$\therefore 1$	513	210	31-
Exd	1		\therefore	5			T		

P'ort Kemedy (latiturle, $3=0.0$ I ; longitude, 94.2 TV).

Changes to-			$\begin{aligned} & \text { Winter, } \\ & \text { lomer, } \end{aligned}$		Spring,$1: 9$		$\begin{gathered} \text { Smmmer, } \\ 1-. \pi . \end{gathered}$		$\begin{gathered} \text { Year, } \\ \text { 10, } \end{gathered}$	
	+	-	7	-	$+$	-	+	-	+	-
N	2	1	1	0	1	1	3	1	7	$:$
NE	10	4	;	1	4	2	11	5	2	13
E	:	19	1	11	5	0	7	$\underline{7}$	16	\because
SE	2	4	11	1	1.	11	3	2	6	7
8	1	1	0	0	0	0	1	8	\because	4
SW	0	9	0	5	1	2	0	6	0	\because
WV	5	5	1	14	1	9	0	1:3	7	41
NH	9	12	23	2	i	6	13		50	2%
Sumis.	: 3	86	2	23	19	21	37	40	116	119
Exuens		4	5			1		3		3

T'an Ienssciner Harbor (latitude, 780.6 N ; longitude, 70.9 W).

C'hanges to-	Anturne, 1003-54.		$\begin{gathered} \text { Winter, } \\ 1-3-i n, i s . \end{gathered}$		smiug,		$\begin{gathered} \text { Summer, } \\ 1-3 . \end{gathered}$		$\begin{gathered} \text { Year, } \\ 1-\ldots, i+\ldots \end{gathered}$	
	+	-	+	-	+	-	$+$	-	$+$	-
N	10	1	3	5	4	0	11	I	23	11
NE	$?$	1	$1)$	$\stackrel{2}{\sim}$	0	1	4	11	6	1
E	1	6	1	10	0	5	0	:	2	24
SE	3	18	10	17	2	16	5	4	20	5
S	14	13	110	20	15	10	7	2	5	51.
SW	90	2	9	6	13	6	3	0	64	14
W	6	4	11	1.	2	2	2	25	21	2
NW.	4		4	3	$!$	5	18	5	35	20
sums..	60	5.9	It	64	44	4.7	50	44	235	212
Excess..	1		10			1	6		16	

The following table contains the results of our bi-houly observations made in Lancaster Sound and Baftin's bay during Ju! y and Augnst, 1873. The record in full will be given in one of the following parts of this volume, and the thack of the veswel during the period under consideration mas be found on the accompanying map, showing the discoveries of the expedition.

For July, the exers is positive, but not su for the following month, which is in contormity with the result obtaned at Polnis Bay. The winds blowing from N, S, and W seem to have a temdency to veer direct than the others. At Polaris lay, this will be found to be the case with SE, E, and sW, and at Polaris House with S, winds.

Accordins to all appearance, the winds are sometimes of a very loeal character. Frequently one would remark that it in Polaris bay* the wind blew with romsiderable relocity from the northeast. the lower clonds hanging apprently orer the coast of Grimell Land, just opposite, indidated hy their course a different direction of the wind. Sometimes such notable calms prevaled at the Polaris Bay observatory that the index of the anemometer did not move one-tenth of a mile in the course of sereral honrs, while seven or eight miles farther south, according to the testimony of pedestrians, an umpleasant sharp breeze prevailed. During our sledge-journey south, in the suring of $155^{\prime \prime}$, we noticed vers striking differences in the directions of the snow-drifts that had accumblated during the winter; and while on our return to winter-quaters we were detaned ly a severe gale from the southwest, the direction of the wind at Polaris Bay was at the same time from the northeast. While on the boat-party toward the north, we had the same experience; namely, we found at every projection of the coast we donbled local deviations of the wind.

At our second winter-quarters, at Polaris Honse, the wind would sometimes attain a relocity of thirty miles or more, while complete calms prevailed at the Eskimo settlement at Sorfalik, a certain distance south of our hut. A fact noticed ly almost every one of our crew is this: that if at Polaris House there was bardly a breet stirring, a pretty sharp wind began to spring up as soon as we doubled Cape Alexander. Generally, this breeze was from the south, following the direction of the coast, and seeming to come from Fonlke Fjord, into which a glacier discharges.

[^19].

SOLAR RADIATION.

SOLAR RADIATION A'T POLARIS BAY.

INTRODUCTORY REMARES.

A short time after the sun had made his re-appearance, two black-bulb thermometers were exposed, both at Polaris Bay and at Polaris House, to measure the amount of solar radiation. One of these thermometers was in cucuo; the other having a naked bulb of blackened glass.

The instrument in vacuo, manulactured by L. Casella, London, is a mercurial maximum thermometer, inclosed in a glass tube; the cylindrical bulb and a part of the stem being eovered with lamp-black. The length of the thermometer is 15 inches, and it is graduated from $0=\mathrm{F}$. to $21 \geq \mathrm{F}$.

The naked-bulb instrument is a common thermometer with blackened bulb; the upper part of the stem being inclosed in a glass tibe, to protect the gradnation against moistme.

Both instrmments are momuted on small stands, as represented in the annexed diagram. The upper portion of the stands on which the instruments rest can be turned in azimuth, and is very

slightly inclined toward the horizon. The instruments are about 12 inches above the ground, which is corered with white eotton sered to a piece of cotton-flannel, to which two small bars of lead are fastened, to prevent the cotton from being blown awas by the wiuch.

The regular observations recorded hereafter begin March 4, ending Jaue 21, 1872.
The first column of the following table, headed c, contains the readings of the themomelor in rucuo; the second, headed f, those of the naked bulb; the third, headed $D v$, the difference between the temprature of the air in the shade and the temperature as indicated by the instrument in rucuo; the fourth, headed I) f, contains the difference betwren the temprature of the air in the shade aud the temperatture as indicated by the naked-bulb thermometer.*

In the last column, the amount of clouds covering the sky at the moment of observation is given; 0 indicating a perlectly clear sky, 乙 that the sky is less covered than one-fourtlo, etc.

[^20]MARCH, 1872.

13.
11.
1.5.

Hour.

Noon.

MARCH, 1872.
Das.

－3．5．
26．
ッタ。

Hour．

$$
\therefore
$$

$$
\left\{\begin{array}{cc|c|c|c}
-11.11 & -3.5 & 7.7 & 1.3 & \because-4 \\
+4 .- & -15.4 & 31.0 & 5.8 & \because-1
\end{array}\right.
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{llllll|l|l}
+1 . .7 & -12.1 & 37 . & 7.11 & 2-4 & . \\
+14.6 & -11.9 & 23.11 & 3.7 & 1-4 & \ldots
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{ll|ll|l|l|}
-3.3 & -16 .! & 16.11 & 0.1 & 1-4 & +4.3
\end{array}
$$

$$
10
$$

$$
\begin{array}{lll|l|l|l|l|l|l|l|l|l}
:-i .3 & -11.6 & 11.0 & 1.6 & 1-4 & +1.4 & -3.6 & 1 i .6 & 1.6 & 4-4 & +10.3 & +3.3 \\
13.2 & 11.1 & 4-4
\end{array}
$$

$\therefore \quad$

MARCH, 1872.
APRIL, 1872.
31.
1.
-

11silu:
い
11

Nim".
\therefore -

APRIL, 1872.

Dar.

APRIL, 1872.

I):1).

\therefore ~

1月5．	APRIL， 1872.														
	1.5.					16.					1\％．				
Howr．	1	f	$1 n^{\prime}$		\％	1	f	$1 H^{\prime}$		s		t	De	I！	＊
11／1															
1														－－－	
3	-17.4	ージ，シ	7.0	－：	1－4	－ 30	－	2	11.4	0	－ 3.0	－－30．0		1.4	0
1	－9．6i	－-8.5	11.1	－$\because 5$	0	± 0.0	－ 2.6	25．	1.0	11	$+11.8$	1－itr． 6	： 23.1	1．：	0
5	$+10.8$	－ 31.5	3！	－1．4	9	＋1－8	－$\because 11.3$	$4 \because \because$	3.1	11	$+11.1$	－ $2 .: 3$	$\therefore \mathrm{if} 5$	1.4	0
1,	＋1＊．0	-17.11	：3． 7	$\because .1$	0	＋20．5	－14．：1	4－4	5.0	11	＋\％\％	－19．	49．：	3.7	0
1	＋！1．4	－18．	$4 \because 6$	$\because 4$	0	＋吅5	－14．3	50.8	［． 9	0	＋：i\％． 7	－1\％${ }^{2}$	00.1	9.	1
\sim	＋11．7	－ 9.8	2i． 1	6.2	1	$+41.0$	-12.4	51.4	6.11	0	＋39．1	-14.1	5.4	5.11	0
$!$	＋590	－Ftr	16i．5	1i， 0	11	＋40．7	－10．：	（2．）．	5	0	＋53．11	－11．3	7－11	7.7	1
111	＋54．7	$-11 . \geq$	06.1	11．5	11	$+11.0$	－－1．3	\％）． 1	11.8	0	$+47.1$	－11．0	1； 2.4	1.4	0
11	＋510：3	-5.0	12.7	6.4	0	＋54．3	-9.3	6.6 .7	11.1	$1)$	＋57．5	－0．5	72.4	14.4	0
Nown．	＋5．5	-5.3	（6）． 1	r． 1	0	＋5．5．6	－5．3	70．：	！ 4	11	$+57.5$	＋ 3.0	71.9	17．1．	11
1^{11}	＋5：9	－5．4	13.9	＋． 2	0	$+55.2$	－4．：3	6．．\times	10.3	${ }^{1}$	＋54．5	-3.8	（i＊． 9	10.6	0
\because	$+47.0$	-3.11	130.15	110．$\%$	0	＋4\％0	-4.4	B2， 7	10.3	0	＋1－0．0	-5.7	（it） 0	10，： 3	0
：	$+41.2$	-9.5	5n 5	11.8	0	$+4.11$	-6.4	19.4	9.11	0	＋12．10	$-\pi .1$	131.0	11．31	11
4	＋：36．0	-4.9	51.4	9．5	11	$+37.1$	－ 0.8	52． 5	$\therefore .8$	$1)$	＋35．5	－ 7.9	23.1	11． 5	$1)$
F	＋：3i． 4	-7.1	111：$:$	5． 8	11	＋34．：	－M，5	49.7	6． 31	$1)$	＋23．6	-11.9	14.3	7． 5	11
6	＋35．0	$\ldots 1$	47.9	4.5	11	＋3： 2	-9.4	4×2.1	6.1	0	＋35．11	－15．！	17.4	65.5	0
7	＋A． 11	－ 9.9	为	1． 4	11	＋8：31）	-11.0	41.19	7.15	0	＋14．	－－20．4	37.9	（3． 11	11
\dot{s}	$+9.4$	－16．0）	23． 3	11.11	0	＋14．0	-14.9	23．0	4.1	11	$+\times .1$	－2．5	3：3．1	3.	${ }^{1}$
$!$	＋11．1i	-13.6	99， 0	B．	0	＋9．11	－1\％．i	\％ 2.4	11．${ }^{\text {c }}$	${ }^{1}$	＋ 5.0	-19.7	$2!4$	4.7	11
10	-19.0	$-1 \cdots$	0．${ }^{\text {；}}$	－11． 4	0	－1i．	－64．：	4． 6	－2．${ }^{2}$	0	－17．${ }^{\text {a }}$	-30.3	7.3	－4．＇	0
11															

APRIL, 1872

11:

APRIL, 1872

Ital.
21.
\qquad - - -

Howr. ["!

$$
\because \quad+11.1-3.414-1.3144
$$

$$
\therefore \quad+20.2+!0: 1: 5 \quad \because 5|+1+61.1|+\because 1.943 .1 \quad 7.3 \quad \because-4+3 i .11+13.10, \because 1.9 \quad 1.9 \quad 3-4
$$

$$
9 \quad\left|+21.2+16.10^{\circ} \quad 5.60 .4\right| 44+14.1|+11.2| 2.6-1 .: 34.1 .
$$

11

APRIL, 1872.

APRIL, 1872.

Das.

APRIL, 1872.
MAY, 1872.
$\mathrm{V}_{\mathrm{il}, \mathrm{F}}$
30.
\qquad
-

\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

-2.
$L_{n}^{-} \mid$Iff \mid

+315			
$+\cdots .5$	31.3	14.5	0

$+\because 2 n \mid+2.8$
$+: 3.3+23.2$
$+21.3+7.5$
$+\cdots 8+8+\cdots$
1
$+30$.
$+\approx$
$9 \quad 3 \%$
35.4
35.5
:3.7

$2 \therefore 0$	15

41.9 !
$37.0 \quad 1$
1:3:
1:3. 1
13.:3

$1 \therefore 1$
17.:314.5
$\therefore 2+27$.
71.0
16.1
-0. 4
31.5

$$
+64.2+30.9 \quad 02.4 \quad \because!.1 \quad 11
$$

$$
\begin{array}{lll|ll}
+63.9 & +9.9 & 10.1 & \because 5.9 & 0
\end{array}
$$

$$
+6010+49.1 \quad \therefore .1+\because .510
$$

$$
\begin{array}{|l|l|l|l|}
+50.5 & +25.5 & 50.1 & 3.3
\end{array} 0
$$

$$
+50.8+5.0 \text { 2n.0 } 2.711+511.5
$$

$$
\mid+.11 . \cdots+2 i n, \ldots 4
$$

$$
\left\lvert\, \begin{array}{|l|l|lll}
+40.3 & +25.1 & 40.2 & 28.11 & 0 \\
+49.7
\end{array}\right.
$$

$$
10 \cdot ;+3 \because+\because 32 \mid: 3030
$$

$11|+3+.7|+115.3|: 3.1| 3.7 \quad 0$

MAY, 1872.
Day.

1)ay.	- -.-		6.				MAY	1872 7.					8.	-- -	
Hour.	v	f	Dv	If	s	1	f	Di:	$D f$	8	0	f	$D e$	IV	s
$0^{\text {b }}$	+14.3	+25	15.9	3.4	$3 \cdot 4$	+23.4	$+7.3$	15. 6	0.5	2-4	$+6.1$	+2.2	1.7	-2.	0
1	+15. 1	+2.4	15. 5	2.8	3.4	$+24.0$	$+7.1$	17.9	1.0	$\cdots 1$	$+10.1$	$+4.9$	6. 5	1.3	0
2	+ 3	$+0.3$	37.4	0.9	3-4	+29.8	$+6.8$	93.3	0.3	2-4	$+10.8$	+6.	12.3	1. ${ }^{\text {d }}$	0
3	+37.4	$+3.9$	32.5	1.0	1-4	$+12.2$	$+4.6$	13.4	-0.9	3-4	$+95.4$	+8.0	19.8	8.4	0
4	-147.8	+7.8	47.3	7.3	1-4	+36.2	$+4.2$	31.6	-1. 4	0	+29.0	$+11.3$	20.4	2.7	0
5	$+56.0$	$+11.4$	55.1	10.5	1-1	$+37.0$	$+7.4$	31.0	1.4	1-4	+26.9	+11.1	12.7	9.9	0
6	$+54.0$	$+10.8$	52.1	8.9	$2-4$	$+4.5 .9$	$+6.8$	40.4	1.3	1-4	$+324$	$+9.9$	23.8	1.3	0
7	$+3.3$	$+4.8$	23.7	1.2	$3-4$	+.3.3	+10.	46.2	3.4	$1-4$	$+36.8$	+8.11	2 Cl 1	-0.7	0
8	+:34.0	$+7.7$	31. ${ }^{\text { }}$	4.9	3-4	$+69.5$	$+14.9$	62.19	7.4	1-4	$+49.4$	$+21.1$	36.9	$\therefore 6$	0
9	+i2.8	$+17.4$	72.0	11.6	-2-4	+56.1	$+17.2$	42.2	9.3	$1-4$	+61.2	$+19.3$	47.5	5.6	0
10	+83.2	$+21.5$	76.8	15. 1	$2-4$	+81.5	+11. \downarrow	73.1	3.4	$1-4$	$+73.3$	+23.0	56.4	9.1	11
11	$+60.5$	+23.8	54.1	17.4	:3-4	+58.6	$+11.3$	50.7	3.4	1-4	+73.0	$+32.8$	61.2	21.1	0
Nomb.	+64.6	$+19.0$	52. 5	12.9	3-4	+79.6	+16. 5	711.8	7.7	2-4	+584	+91.3	64.4	9.3	0
$1{ }^{10}$	$+5.3$	+12. 7	46.	4.3	:3-4	+ 1.0	+15.8	7-6	7.4	1-4	$1+3$.	+21.	2:30	10.7	0
2	+i.8.8	$+17.6$	60.6	9.4	3-4	+7\%.5	$+16.9$	63.1	7.5	$2-4$	+76.4	+0.0	615.5	10.1	0
3	十Ti, 0	$+13.9$	69.0	69	:3-4	$+7.5$	$+17.9$	61.9	8.9	1-4	+i3.5	+16.4	(i:3. 9	6.8	1
4	$+72.0$	$+20.5$	63.1	11.6	$2-4$	+5.5. 3	+17.4	45. 2	7.3	$3-4$	$+71.9$	$+19.9$	63.3	11.3	0
5	$+63.2$	+15.3	$53.6{ }^{1}$	5.7	2-4	$+10.8$	+15.5	30. 2	5.5	$2-4$	+66.0	$+180$	57. 7	9.7	0
6	$+60.5$	+14.2	21.5	5.2	$2-4$	$+54.0$	$+14.9$	4. 4	6.3	1-4	$+66.0$	$+\cdots 5$	- - ${ }^{\text {2 }}$	17. ${ }^{1}$	1-4
7	+34.0	$+11.5$	24.9	2.4	- -4	+54.9	+15.0	46.3	7.1	1-4	$+53.1$	+15.5	45. 5	\%.9	0
*	$+45.5$	$+9.9$	38.6	3.0	1-4	+53. ${ }^{2}$	$+16.0$	46.2	$E .4$	0	+38.2	$+17.0$	4.3.	9.6	0
9	$+38.5$	$+7.5$	32.4	1.4	2-4	+41.5	+14.0	34.1	6.6	0	+4.0	+14.4	30.1	6.3	0
10	+090	$+6.4$	16.0	0.4	3-4	$+40.9$	+13.1	35.9	8.1	0	+ 13.9	+12:	\%6. 8	5. 1	1-4
11	+14.1	$+5.2$	7.7	-1.2	$2-4$	+41.2	$+11.5$	36.9	4.2	0	+45.11	+8.6	$3 \times .5$	2.1	0

4 SR

MAY, 1872.

Inr.

12.

13.

\qquad
 $+43-915150.94-4+19.0+3.110 .20 .3,4-4+25.9+16.510 .1 \quad 1.0 \quad 4-1$ $+3.6+-916.9 \quad 1 . \because 4-4+212+10.311 .70 .4 .4+20.3+10.011 .31 .54$

Day.	MAY, 1872.														
	15.					16.					17.				
Hour.	$1 \cdot$	f	Dv	Df	s	v	f	Dv	Df	s	v	f	$I^{\prime \prime}$	Df	8
0^{12}	+33.6	+19.8	23.0	4.2	0	+53.8	+25, 2	:33, 4	6.8	0	+67.9	+23.	碞. 9	5.5	1.4
1	+:3.11	$+1.5$	2:- 1	3.6	0	+55. 2	+25.6	36.6	7.0	0	$+50.0$	+23.1	31.4	4.5	2-4
\because	+130	$+17.5$	42.1	1.0	0	+54.7	+25.3	36.1	6.7	0	$+44.3$	$+21.8$	呩. 0	2.5	$2-1$
3	+50.:	+18.9	32.7	1. 3	0	$+60.3$	+25.3	41.5	6.5	0	+38.8	+22.0	34.0	2.9	1-4
4	+56.0	+ 211.4	37.1	1.5	2-4	+68.0	+25.	48.3	6.4	0	+70.5	$+23.1$	51.9	4.5	$3-1$
5	+63:	+21.8	34.0	1.6	$3-4$	$+75.3$	+5s. 6	34.9	5.4	0	$+60.2$	+93.4	43.5	:3.7	1-4
6	+44.9	$+20.5$	24.8	0.4	$\because-4$	+iti. 3	+29.9	55.7	9.3	0	+60. K	+24.0	41.4	4.6	$1)$
7	+63.	+23,9	19.7	3.4	3-4	$+80.9$	$+25.6$	60.4	5.1	0	+75.5	$+24.9$	54.6	4.0	0
8	$+61.4$	$+19.0$	39.9	-2.5	$\therefore-4$	+7:3	$+29.6$	59.5	8.2	1-4	$+85.8$	+26.5	63.6	4.3	0
9	+63.4	+26.3	41.8	5.3	3-4	$+80.0$	+31. 2	58.4	9.6	1-4	+91.5	+26.1	69.6	4. 2	0
10	$+65.9$	+ 11.4	43.3	3. ${ }^{\circ}$	3-4	+-2.3	+33.1	66. .	11.6	2-4	+4.9	+87.2	62.9	9.5	1-4
11	+71.9	$+30.0$	48.6	7.4	3-4	$+82.8$	+34.5	50.7	11.4	2-4	+82.2	$+28.3$	61.0	7.1	1-4
Noon.	+61.4	$+27.3$:30, 0	4.9	3-4	+4R.5	+28.9	65.7	6.1	$3-4$	+86.5	$+27.1$	65.9	6.5	0
$1^{\text {b }}$	$+73.4$	$+29.6$	31.0	7.2	3-4	$+94.0$	$+31.5$	70.4	7.9	3-4	+86.2	$+27.3$	65.8	6.9	0
2	+61.0	+26.8	38.7	4.5	3-4	$+91.0$	+30.0	67.4	6.4	3-4	+85.0	$+25.7$	64.9	5.6	0
3	+57.5	+25.8	3.3. 0	3.3	3-4	+82.0	$+29.3$	58.7	6.0	$3-1$	+20.0	+24.9	60.0	4.9	0
4	+69.2	+3.6	46.1	5.5	3-4	+80.6	+25.5	5.40	5.9	3-4	$+77.3$	+25.1	37.3	5.1	0
5	+86.2	$+29.9$	63.6	7.3	24	$+92.5$	$+30.0$	71. 1	7.6	$3-4$	+5.0	$+30.5$	57.9	10.4	0
6	+78.4	+29.2	56.6	7.4	1-4	+1.2	$+25.4$	59.6	6.8	2-4	$+75.5$	+28.8	56.2	9.5	1-4
7	+63, 11	+25.8	41.4	$4 . \because$	0	+79.2	+25. 8	58.6	4.2	$2-4$	+69.8	+40.6	80	21.0	1-4
e	+69.:	+ +3.7	42. 6	$\therefore 1$	1-4	+71.2	+26.	50.1	5.7	Q-4	+61.0	$+40.7$	41.4	21.1	1-4
9	-161.7	+213.0	41.6	5.9	1-4	+6-3	+06.0	4-.7	6.4	2-4	$+47.0$	+28.6	29.4	11.0	
10	+-3	+95.1	85.5	5.:3	0	+60.5	$+25.3$	39, 8	4. 6	2.4	$+47.0$	+27.3	29.4	9.6	
11	+59.5	+24.9	2:3. 7	6.1	$1 /$	+61.6	$+21.4$	43.7	3.5	2-4	+54.0	+23.0	37.2	6.2	

Dar．	MAY， 1872.														
	$18 .$					19.				20.					
Hour．	r	f	$D r$	If	8	ε	f	Di	Df	$\stackrel{8}{ }$	${ }^{*}$	f	$D c^{\prime}$	Df	δ
$0^{\text {h }}$	＋59．9	＋20．5	$\therefore .1$	3.4	1－4	＋5．0	＋	51.1		$2-4$	＋i¢0	＋2．	as． 4	4.1	$\bigcirc-1$
1	＋5\％．3	＋20．	39．	3.2	1－4	＋71．5	＋2．	ה． 6	5.9	1－4	＋54．0	＋+0	30.4	？． 4	3－4
2	＋59．0	$+19.0$	41.4	1.4	1－4	－-66.3	＋285	4i 6	10.3	1－4	＋ 42.7	＋29：	19.0	0.1	$2-1$
3	＋61．？	＋1－． 5	42.5	-0.3	1－4	＋6． 0	＋2？．0	4.5	2.1	1－4	＋64．3	＋2－4	39.7	0.	\cdots
1	＋19．4	＋21．$=$		3.8	It	$+59 .:$	＋22．1	33.6	9.	1－4	＋i1．	＋30．$=$	45	5．	9.4
5	＋60．3	＋24．3	39．：	8． 7	0	＋61．：	＋24．3	景	S． 0	1－4	＋-2.11	$+36 . \geq$	$45: 3$	9.4	0
6	－rise	$+2.1$	44.3	8.6	1.4	＋70．9	＋こ． 6	4：9	6． 61	$1-4$	＋$=11.0$	$+13.7$	－4， 6	17.3	11
	＋：5． 3	$+29.1$	53.1	6． 9	11	＋60．3	$+23.9$	$\therefore 2.0$	3．${ }^{1}$	1－4	十ッ，	＋36．2	－it． 1	11.5	0
$=$	＋is． 1	$+33.4$	54． 7	111.5	0	＋ 21	＋34．9	－14．	14.3	$2-4$	＋ 50.4	＋49．	30，	90． 9	0
9	＋55． 3	$+30.0$	02.5	13．？	0	＋55． 3	＋42．$=$	Q． 0	19.6	1－4	＋91．：	＋44．4	64.3	15.5	0
10	＋91．0	＋57．	6 A .5	14.3	1－4	$+5.9$	$+44.0$	61．${ }^{\text {a }}$	19.9	1－4	＋56．0	$+37.4$	59，	110.8	0
11	＋59．5	＋41． 5	6.4	19.7	1－4	$+5.0$	＋39．9	61.9	14．${ }^{\text {a }}$	$2-4$	$+23.5$	$+50.6$	－1． 3	2t． 5	0
Soon．	＋5：	$+32.5$	B． 3	10.0	1－4	＋ニッら	＋35．3	63， 9	10.7	$8-4$	＋90．0	＋39．9	13.6	13．3	0
$1{ }^{\text {b }}$	$+8.5$	$+35.6$	64.6	12.7	1－4	$+93.0$	$+35.0$	6iti．${ }^{\text {a }}$	59	3－4	＋96．2	$+40.7$	69.9	14.4	0
2	$+5.6$	＋32．3	65.9	10.6	Q－4	＋i3．2	$+30.6$	46.4	3.5	4－4	$+91.3$	＋40．3	65.1	14.1	0
3	＋2－． 5	＋34．4	65.1	13.0	－－4	＋55．1	$+31.2$	$31 . \because$	4.3	4－4	＋E．0	＋25．2	61.2	12.4	0
4	$+8.5$	＋35．4	8 B	13.6	$\bigcirc-4$	$+56.0$	$+30.5$	－3．4	3.9	4.4	$+-4.1$	＋39．0	$\therefore 4$	13.3	0
5	＋ 8.4	＋35．0	6ito	13.6	$3-4$	－+55.5	＋31．	291	5.1	4－4	＋－4．2	$+350$		12.2	0
6	＋5：5	＋34．6	eric	13.2	3－4	＋61．0	＋33．6	34.9	7.5	3－4	$+5.3 .3$	＋340	－9．9	11.5	0
\％	＋i4．5	＋31．3	53.9	10.7	3－4	$+54.0$	$+i n=3$	？ 3.4	10． 2	4－4	＋20．4	$+36.0$	53.6	10.	0
－	＋64． 0	＋07．7	47.1	$=5$	$3-4$	＋？	$+25.0$	13． 4	1.9	$3-4$	＋：\％．3	＋20．7	30.7	10.1	0
9	$+61.0$	$+26.7$	42.1	7．	$3-4$	$+57.0$	$+35.4$	枵 7	11.1	1－4	＋ris． $\mathrm{y}^{\text {a }}$	＋31．	42.8	5.9	0
19	$+5.0$	$+31.3$	$\therefore=.4$		$2-4$	＋52．	＋ 20.7	09.9	3.9	$8-4$	＋5：	$+33.3$	32.9	$7 . \overline{7}$	0
11	$+56.5$	＋29．9	87.9	9.3	$2-4$	$+69.0$	＋31．4	45.4	i． 3	9－4	＋5is	＋31．2	31.4	$3 .=$	0

MAY, 1872.
Day.

Hour.

MAY, 1872.

Imy.	MAY, 1872.														
	2% 。					28.					29.				
Mour.	1	f	Dv	Df	s	v	f	$D v$	Df	s	v	f	Dv	Df	$\stackrel{ }{ }$
0^{13}	+34.0	$+24.0$	11.2	1.2	4-4	$+57.8$	$+27.7$	35.2	5.1	3.4	+65. 1	+27.2	4.2	6.3	0
1	$+35.8$	+95.4	13.2	9, ¢	4-4	$+60.3$	+99.6	37.7	7.0	3-4	+64. 2	+26.4	42.7	4.9	0
2	$+38.0$	+24.3	16.1	2.4	4-4	+69, 9	$+30.7$	46. 6	A. 1	4-4	$+63.0$	+25.6	4.9	5.5	0
3	$+3.2$	+24.!	17.1	2.	4-4	$+77.4$	+31.8	50	9.4	44	+62.5	$+26.0$	42.2	5.7	0
4	$+40.8$	+25.5	18.9	:3. 1	4-4	+69.8	$+30.7$	47.2	¢. 1	4-4	+64.6	+28.4	43.5	7.3	0
5	+47.9	+26.8	$\because 4.9$	4.5	4-4	+ 211.5	$+31.8$	$4 \% .5$	r. 8	3-4	+67.2	$+28.0$	46.3	7.1	0
6	+is. 1	$+30$.	14.6	7.3	4-4	+ 74.3	+35.3	50.8	11. ${ }^{\text {\% }}$	1-4	$+60.9$	+28.8	40.4	8.3	0
7	+14.9	+33. 2	41.7	10.0	4-4	$+6.0$	+36. 4	39.5	10.9	1-4	$+67.5$	$+30.4$	46.0	$\bigcirc .9$	0
8	$+69.6$	$+30.5$	\%r.	7. 2	4-4	+92.5	$+40.0$	66. $=$	14.3	$2-4$	$+55.2$	+32.4	62.7	9.9	0
9	+5.2	+31.8	35. 3	8.9	4.4	$+106.5$	$+47.9$	79.8	20.5	1-4	+94.	$\underline{+34.9}$	71.8	11.9	0
10	+79.2	$+40.3$	54.0	15.3	4-4	+83.4	+38.7	57.2	12.1	: 4	$+90.0$	$+32.4$	63.9	9.3	0
11	+95.0	+43.4	69.3	17.7	4-4	+ 26.2	$+37.7$	50. 1	11.6	$9-4$	+ +2.2	+32.5	66. 2	9.5	0
Nowis.	+iso	$+2.0$	34.3	3.3	4-4	$+101.0$	$+37.8$	74.2	11.0	1-4	+72.4	+29.9	54.8	6.3	0
1^{11}	$+95.0$	$+33.3$	69.4	7.7	3-4	+88.2	$+35.6$	61. ${ }^{2}$	8.6	$2-4$	$+89.6$	+31.3	64.9	6. 6	0
2	+64.0	$+27.5$	40.4	3.1	4-4	+88.0	$+32.9$	61.6	6.5	$2-4$	+89.8	$+33.9$	63.8	7.9	0
3	$+67.0$	+28.6	42.5	4. 1	4-4	$+96.0$	$+33.7$	69.2	6.0	$2-4$	+89.3	$+32.5$	63.8	7.0	1-4
4	$+30.5$	+29.0	66.7	5.2	3-4	+88.5	$+36.0$	61.9	9.4	$2-4$	+87.6	+31.4	63.0	6.8	1-4
5	$+5.8 .0$	+05.9	33.5	2.4	4-4	+87.0	$+32.5$	62. 4	7.9	1-4	+86.5	+32.9	62.4	8.8	$1-4$
6	+5.5	+26.2	25. 4	3.1	4-4	+86.9	$+33.5$	62.4	9.7	0	+84.8	+31.8	61.7	8.7	1-4
7	$+52.6$	+29.2	28.8	5.4	4-4	+61.2	$+30.7$	3*. 4	7.9	1-4	$+69.0$	$+30.8$	45.4	7.2	1-4
$=$	$+42.7$	+27.8	25. 6	4.7	4-4	+ 71.3	+32.7	49.0	10.4	1-4	$+73.5$	+31.2	50.5	8. 2	1-4
9	+41.3	+25.3	18.5	2.5	4-4	$+70.0$	$+31.2$	49.4	9.6	0	+71.3	$+30.7$	43.2	7.6	1-4
10	+45.7	$+36.1$	23.1	3.5	4-4	$+71.2$	$+30.0$	48.6	7.4	0	+69.8	+30.1	47.4	7.7	1-4
11	+43.2	+ 25.9	20.8	2.8	3-4	+ 12.3	+02. 7	45.3	6.7	0	+65.2	+29.8	43.9	8.5	1-4

Day.	MAY, 1872.										JUNE, 1872.				
	30.					31.					1.				
Hour.	v	f	Dv	Df	8	v	f	De	Df	8	v	j	Dr	$D f$	8
$0^{\text {b }}$	$+60.1$	$+27.5$	39.2	6. 6	1-4	+ 66.0	+27.4	46.4	7.8	1-4	$+53.8$	+29.1	27.4	2.7	3-4
1	$+67.0$	+29.7	45.4	8.1	1-4	$+60.7$	+27.0	39.8	6.1	1-4	$+41.0$	+24.3	15.4	2.7	3-4
2	$+60.5$	+27.5	38.9	3.9	1-4	+63.8	$+28.3$	41.8	6.3	1-4	+54.0	+89.7	27. \times	3.5	3-4
3	+68.5	+30.2	45.1	6.8	1-4	+62.9	+29.0	40. \because	6.3	1-4	+55.7	$+31.0$	29.1	4.4	4-4
4	$+70.0$	+29.8	45.7	5.5		+ 65.3	+30.7	41.9	7.3	1-4	$+51.0$	$+30.2$	23.7	2.9	4-4
5	$+77.3$	+33.4	52.8	8.9	0	+ 76.2	+33.1	51.8	8.7	1-4	+55.2	$+31.3$	$2 \times .1$	4.2	4-4
6	+80.6	+34.9	55.4	9.7		$+80.5$	$+35.6$	55.6	10.7	1-4	$+57.5$	$+32.0$	30.1	4.6	4-4
7	+84.1	+37. 2	58.5	11.6	0	+89.3	+38.4	63.6	12.7	1-4	$+58.0$	$+32.3$	30.4	4.7	4-4
8	$+87.8$	+40.6	61.3	14.1	0	+101.2	$+39.3$	75. 1	13.2	$2-4$	$+64.3$	$+36.1$	35.7	7.5	4-1
9	+99.8	$+4.3 .7$	73.8	17.7		+83.5	$+37.2$	57.9	11.6	3-4	+64.5	+35.8	35.1	6.4	$4-4$
10	$+93.7$	+43.2	67.0	16.5	1-4	$+66.0$	+34.	41.0	9.9	3-4	+61.4	+35.3	32.4	6.3	4-4
11	+90.0	+42.9	63.2	16.1	1-4	+ 82.2	$+33.3$	56.6	7.7	3-4	+63.0	$+36.0$	34.3	7.3	4-4
Noon.	+108.0	+37.0	81.2	10.2	1-4	$+97.5$	$+36.9$	71.4	10.8	2-4	$+62.5$	+32.2	33.7	3.4	4-4
$1^{\text {b }}$	+115.4	+36.2	68. 4	9.2	1-4	+97.5	$+36.5$	70.3	9.3	3-4	+62.1	+31.8	33.2	2.9	4-4
2	+101. 1	+35.8	74.5	9.2		+ 87.0	$+31.8$	60.6	5.4	3-4	$+67.2$	+33.3	37.4	3.5	4-4
3	$+105.0$	+34.0	79.2	8.2	1-4	+87.0	+32.2	61.4	6.6	$2-4$	+65. K	+34.1	35.0	3.3	4-4
4	$+92.8$	+32.0	73.7	6.9		+ 79.3	+30.0	53.7	4. 4	2.4	+75.3	+37.5	44.0	6.2	3-4
5	+93.0	$+34.0$	68.5	9.5	0	+ 51.0	+26.2	27.1	2.3	$3-4$	$+66.1$	$+35.3$	34.9	4.1	4-4
6	+82.4	+34.5	58.3	10.4		+ 77.2	$+33.0$	52.3	8.1	3-4	$+58.0$	+32.5	27.4	1.9	44
7	+ 87.8	+38.3	63.9	14.4	1-4	+ 63.4	+35.0	38.0	9.6	$3-4$	$+57.4$	+32.0	26.9	1.5	4-4
8	+68.0	$+35.0$	44.4	11.4	1-4	+ 46.2	+28.8	20.6	3.9	4-4	$+50.3$	+31.8	20.9	1.7	4-4
9	+ 64.0	$+31.7$	41.0	8.7	1-4	$+41.7$	+27.7	16.3	2.3	4-4	$+50.9$	+31.2	21.0	1.3	4-4
10	+71.0	+31.0	48.4	8.4	1-4	+ 41.5	+28.0	15.9	2.4	3-4	+46.9	$+31.0$	16.7	0.8	4-4
11	+66.0	$+29.5$	43.9	7.4	1-4	+ 73.5	$+32.6$	46.9	6.0	3-1	$+40.2$	+30.4	101	0.3	4-4

Day.	JUNE, 1872.														
	2.					3.					4.				
Hour.	v	f	Do	Df	s	v	f	$D v$	Df	8	v	f	$D v$	Df	8
0^{14}	+ 40.3	$+30.4$	10.2	0.3	3-4	+ 73.1	+4.3.7	32. 5	9.1	1-4	+ 80.3	+36.5	43.6	-0.2	1-4
1	+ 43.2	$+31.2$	12.6	-0.6	3-4	+ 81.4	+47.8	33. 6	11.0	1-4	+ $2 \therefore .5$	+36.4	37.3	1.2	$2-4$
2	$+38.0$	$+30.9$	7.6	0.5	3-4	$+70.2$	+46.0	34.4	10.2	1-4	$+70.0$	+37.6	33.4	1.0	1-4
3	+ 39.5	+31.7	8.9	1.1	3-4	+ 79.2	+41.5	41.7	4.0	1-4	$+65.3$	$+39.0$	27.2	0.9	2-4
4	$+45.0$	$+33.0$	13.4	1.4	4-4	$+29.0$	$+40.8$	41.9	3.7	1-4	+.64.2	+40.4	25.6	1.8	$2-4$
5	+50.0	$+33.1$	1 m .1	1.2	4-4	+ 82.3	+41.2	45.7	4.6	1-4	+ 22.2	$+43.9$	32.9	4. 6	1-4
6	$+48.5$	+33.3	16.9	1.7	4-4	$+82.5$	+39.2	47.1	3.8	1-4	+65.6	$+38.7$	25.7	-1.2	1-4
7	+55.3	+35.0	22.5	2.2	4-4	$+90.2$	$+43.9$	55, 2	8.9	\checkmark	$+68.3$	+40.2	28.7	0.6	1-4
8	$+60.7$	+38.0	27.7	5.0	3-4	$+95.0$	$+47.2$	59.8	12.0	0	+81.3	$+50.2$	40.7	9.6	0
9	+68.0	$+39.7$	34.4	6.1	3-4	$+95.3$	$+48.8$	59.2	12.7	0	$+9 \times .8$	$+53.9$	57.2	12.3	0
10	$+102.0$	+46.0	67.3	11.3	3-4	$+110.9$	+55.3	71.6	16.0	1-4	$+91.5$	$+60.2$	50.2	18.9	\checkmark
11	$+72.3$	+42.0	39.3	9.0	4-4	+105.5	$+59.7$	65.6	19.8	1-4	+95.2	$+55.6$	53.8	14.2	1-4
Noni.	$+95.6$	+40.3	61.1	5.8	3-4	$+98.0$	$+58.7$	58.4	19.1	1-4	+102. 2	$+58.3$	60.8	16.9	1-4
$1^{\text {b }}$	$+104.3$	+42.0	71.1	7.8	3-4	$+90.0$	$+51.7$	51.1	12.8	1-4	+104.4	$+58.7$	63.3	17.6	0
2	+103.0	$\underline{+43.9}$	69.0	9.9	2-4	$+87.7$	+49.0	50.1	11.4	1-4	$+105.6$	$\underline{+54.2}$	63.6	12.2	0
3	$+97.8$	$+40.9$	64.2	7.3	2-4	$+88.7$	+49.3	51.9	12.5	1-4	+ 98.0	$+52.0$	57.6	11.6	0
4	+82.0	+41.0	$4 \times .5$	7.5	2-4	+85.7	$+48.0$	49.1	11.4	1-4	$+95.4$	+47.3	55.6	7.5	0
5	$+106.5$	$+45.7$	71.9	11.1	2-4	+ 89.0	+42.7	52.9	6.6	1-4	$+97.0$	$+49.9$	57.4	10.3	0
6	+ 82.0	$+41.3$	48.6	7.9	1-4	$+90.0$	+47.0	53. 2	10.2	1-4	$+94.2$	+49.4	55.5	10.7	\smile
7	$+79.8$	+42.0	46.2	8.4	1-4	+ 29.7	$+50.8$	51.6	12.7	2-4	$+87.3$	$+50.7$	44.4	7.8	1-4
8	+ 76.2	$+46.0$	42.6	12.4	\sim	+6s.0	$+45.3$	29.4	6.7	2-4	$+87.5$	+48.0	50.9	11.4	1-4
9	+ 13.3	+42.2	33.7	8.6	\checkmark	$+63.5$	+43.7	24.9	5.1	2-4	$+83.7$	+49.0	43.9	9.2	\checkmark
10	$+35.0$	$+49.7$	40.9	15.6	1-4	+ 84.0	$+53.0$	43.7	12.7	2-4	+ 72.0	$+45.7$	35.4	9.1	\checkmark
11	$+75.3$	+42.0	40.2	6.9	1-4	$+87.3$	$+51.5$	48.5	12.7	2-4	+ 74.7	$+50.3$	35.8	11.4	\checkmark

JUNE, 1872.
Day.

Hour.	8.					9.					10.				
	v	f	Do	$D f$	8	v	f	Du	Df	8	v	f	Di	Df	
$0^{\text {b }}$	+ 52.0	$+40.0$	14.3	2.3	4-4	$+48.0$	$+38.7$	11.9	2.9	3-4	$+48.0$	+3*.6	10.4	1.0	4-4
1	$+60.1$	+40.	17.3	-2.0	3-4	+45.6	+37.3	10.4	2.1	2-4	$+48.7$	$+36.5$	13.8	1.6	3-4
2	+ 79.5	+44.8	39.9	5.2	2-4	+40.9	$+33.3$	7.5	-0.1	2-4	+71.0	+44.3	32.9	6.2	2-1
3	$+80.6$	+43.2	42.3	4.9	1-4	$+77.6$	+39.7	41.9	4.0	2.4	$+68.3$	$+39.0$	30.0	0.7	2-4
4	+ 83.8	+44.7	44.4	5.3	34	$+97.0$	$+41.6$	61.3	5.9	2-4	$+78.2$	$+45.1$	37.8	4.7	$2-4$
5	+ 83.2	+45.4	44.1	6.3	3-4	+83.5	+40.8	49.5	5.2	$1-4$	+82.4	+48.3	43.8	9.7	2-4
6	+73.4	+43.5	36.0	6.1	3-4	$+87.8$	+42.3	51.6	6.1	1-4	$+94.8$	+48.8	52.4	6.4	$2-4$
7	$+84.8$	+52.7	42.0	15.9	4-4	$+98.5$	$+53.1$	57.8	12.4	1-4	+63.2	$+47.2$	22.8	6.8	4-4
8	+69.0	+47.8	30.7	9.5	4-4	+80.0	+44.3	52.7	8.0	2-4	+84.0	$+45.7$	43.2	4.9	3-4
9	+ 79.0	$+47.8$	39.3	8.1	4-4	+61.9	+42.2	27.3	7.6	3-4	+101.6	$+49.1$	60.0	7.5	3-4
10	$+100.2$	+57.4	60.5	17.7	$2-4$	$+70.5$	$+40.6$	36.9	7.0	3-4	+107.0	$+49.0$	66.4	7.4	2-4
11	$+94.5$	+47.4	56.9	9.8	1-4	$+81.8$	+44.1	46.3	8.6	3-4	$+97.2$	$+49.8$	55.1	7.7	1-4
Noon.	$+95.3$	+49.7	57.1	11.5	2-4	+80.4	+47.1	46.0	12.7	1-4	$+100.0$	$+51.3$	57.7	9.0	1-4
$1^{\text {b }}$	$+65.0$	$+45.5$	27.0	7.5	3-4	+81.8	+48.3	46.2	12.7	1-4	$+59.6$	+43.9	22.0	6.3	3-4
2	+8世.4	+49.4	48.8	9.8	4-4	$+84.5$	$+46.8$	49.1	11.4	1-4	$+61.4$	+43.5	23.4	5.5	3-4
3	+ 81.0	+46.5	41. $\%$	9.3	4-4	$+77.0$	+42.6	42.5	8.1	1-4	+ 64.5	+39.8	29.9	5.2	4-4
4	+ 71.4	+43.5	33.6	5.7	4-4	$+76.0$	+42.0	40.2	6.2	1-4	$+48.8$	+36.3	14.2	1.7	4-4
5	+67.0	$+43.6$	28.5	5.1	4-4	+86.0	+47.2	50.3	11.5	1-4	+48.3	+36.7	14.2	2.6	$4-4$
6	$+55.6$	+41.0	1-. 1	3.5	4-4	+8.7	$+46.7$	53.2	11.2	1-4	$+50.0$	+37.3	15.5	2.8	4-4
7	+ 79.3	+46.1	41.7	8.5	3-4	$+92.4$	$+51.0$	55.7	14.3	2-4	+51.0	+36.5	17.6	3.1	4-4
8	$+50.2$	+39.0	13.6	2.4	4-4	+-66. 4	+49.5	30.0	6. 1	2-4	$+45.0$	$+34.5$	12.0	1.5	4-4
9	+ 51.5	$+40.6$	14.01	3.1	4-4	+52.0	$+39.7$	15.9	3.6	1-4	+ 44.4	$+33.7$	11.9	1.2	4-4
10	+ 43.4	+37.9	7.5	1.3	4-4	$+52.0$	$+40.3$	16.0	4.3	3-4	$+42.4$	+33.0	10.3	0.9	4-4
11	$+45.2$	$+36.8$	9.6	1.2	4-4	+49.3	+39.5	11.7	1.9	4-4	$+45.0$	$+33.5$	12.9	1.4	4-4

JUNE, 1872.

Day.	JUNE, 1872.														
	14.					15.					16.				
	v	f	Dv	Df	8	v	f	Dv	Df	8	v	f	Dv	$D f$	8
$0^{\text {b }}$	$+45.4$	$+35.1$	12.7	2.4	4-4	+ 40.0	+34.8	6.4	1.2	4.4	+ 82.0	+49.1	40.0	7.1	0
1	+42.1	+34.5	9.5	1.9	4-4	+ 44.5	$+32.6$	9.3	-2.6	4.4	+ 80.8	+48.5	38.0	5.7	0
2	+44.0	+35.1	11.6	2.7	4-4	+ 41.9	$+34.6$	8.2	0.9	3-4	+84.2	+47.3	41.8	4.9	0
3	+44.0	$+35.2$	12.0	3.2	4-4	$+44.0$	$+36.8$	9.5	2.3	$4 \cdot 4$	$+8.3 .8$	$+47.2$	40.6	4.0	0
4	+42. 6	+34.3	10.9	2.6	4-4	$+46.0$	$+35.6$	12.1	1.7	4-4	+86.0	+47.1	42.5	3.6	0
5	+47.6	$+36.8$	14.6	3.8	4-4	$+58.3$	$+37.4$	24.6	3.7	4-4	+82.0	$+48.0$	3s. 2	4. 2	0
6	+58.2	$+38.7$	23.2	3.7	4-4	+61.1	$+3 \times .7$	27.6	5.2	4-4	$+83.9$	+41.0	49.3	6. 4	0
7	+66.6	$+40.3$	33. 2	6.9	3-4	$+59.3$	$+38.4$	25.7	4.7	4-4	$+94.9$	+45.4	60.6	11.1	0
8	+63.9	$+39.7$	31.6	6.4	3.4	$+61.0$	+39.6	27.4	6.0	4-4	$+94.3$	+46.6	59.0	11.3	0
9	+71.2	+44.0	37.0	9.8	3-4	$+62.7$	$+39.8$	29.3	6.4	4-4	$+98.7$	+48.1	62.0	11.4	0
10	$+90.0$	$+44.6$	54.3	8.9	3-4	$+63.1$	$+39.8$	28.9	5.6	4-4	+104.1	$+51.3$	66.9	14.1	0
11	+71.2	$+45.3$	33.1	7.2	$3-4$	$+100.4$	$+48.6$	64.7	12.9	3-4	$+94.9$	$+51.1$	58.1	14.3	0
Noou.	+77.4	$+46.0$	38.	7.4	3-4	$+74.2$	$+44.0$	36.8	6.6	4-4.	+ 89.0	+48.6	51.9	11.5	0
$1{ }^{\text {b }}$	+20.3	$+52.0$	51.0	13.7	3-4	$+105.2$	$+53.8$	67.4	16.0	3-4	+ 94.3	$+50.8$	57.2	13.7	0
2	+71.7	$+43.0$	32.2	3.1	3-4	+ 95.2	+48.3	56.7	9.8	:-4	$+94.8$	$+50.7$	57.3	13.2	0
3	+133.0	$+43.8$	25.4	6.2	3-4	$+92.0$	+ 4.4	55.4	11.8	2.4	+ 91.2	$+51.2$	53.5	13.5	0
4	$+63.0$	+42.0	25.4	4.4	4-4	$+88.0$	+46.1	2. 2.1	10.2	2-4	+ 89.2	$+51.7$	51.2	13.7	0
5	$+58.5$	+40.1	21.4	3.0	4-4	$+84.3$	+42.9	49.7	8.3	1-4	$+88.3$	$+51.4$	49.5	12.6	0
6	+49.4	$+38.0$	13.7	2.3	4-4	$+87.0$	+45.4	51.7	10.1	1-4	$+89.1$	$+51.1$	49.6	11.6	0
7	+48.4	$+37.8$	13.3	2.7	4-4	$+87.0$	+40.8	54.0	7.8	1-4	$+91.0$	+49.8	53.3	12.1	0
8	$+49.0$	$+35.6$	14.6	1.2	4-4	$+82.2$	$+41.8$	49.5	9.1	0	$+90.8$	$+48.6$	53.3	11.1	0
9	$+44.0$	$+35.8$	8.8	0.6	4-4	+ 79.0	+42.2	46.3	9.5	0	+ 82.4	$+50.3$	45.8	13.7	0
10	+43.8	$+35.5$	10.0	1.7	4-4	$+87.0$	$+51.9$	45.9	10.8	0	$+86.0$	$+49.9$	49.1	13.0	0
11	$+43.5$	+36.4	9.1	2.0	4-4	+84.8	$+51.0$	42.5	8.7	0	$+78.2$	$+46.7$	43.0	11.5	0

Day.	JUNE, 1872.														
	17.					18.					19.				
Hour.	${ }^{\prime \prime}$	f	Do	Df	s	v	f	$D v$	Df	8	"	f	H_{i}	If f^{\prime}	8
$0^{\text {h }}$	$+74.0$	+43.2	39.1	8.3	0	$+35.0$	$+30.5$	5.0	0.5	4-4	+39.0	$+33.0$	7.0	1.0	4-4
1	+ 72.0	+42.5	37.4	7.9	0	$+35.8$	$+31.9$	5.7	18	4-4	+41.4	$+33.7$	94	1.7	4-4
2	$+66.2$	$+41.6$	27.9	3.3	0	$+37.9$	$+31.8$	7.6	1.5	4-4	$+43.0$	$+33.5$	11.4	1.9	4-4
3	+67.s	+39.1	33.7	5.0	0	$+37.0$	$+31.3$	6.9	1.2	4-4	+44.9	+33.8	13.4	2. 3	44
4	$+75.8$	+42.1	40.2	6.5	1-4	$+38.5$	+30. 8	8.8	1.1	4-4	$+44.8$	$+33.7$	13.2	2.1	44
5	+ 77.9	+41.6	40.0	3.7	14	$+38.8$	$+31.5$	9.0	1.7	4-4	$+51.0$	$+35.6$	19.3	3.9	4-4
6	$+95.5$	$+49.2$	56.1	9.8	1-4	$+43.1$	$+33.0$	12.9	2.8	4-4	$+49.6$	$+35.0$	17.7	3. 1	4-4
7	$+93.2$	+46.4	55.9	9.1	2-4	$+47.8$	$+35.2$	16.6	4.0	4-4	$+50.0$	$+35.3$	12.1	3.4	4-4
8	+110.2	$+55.3$	71.4	16.5	3-4	$+55.0$	$+37.3$	23.3	5.6	4-4	$+50.0$	$+36.2$	17.8	4.0	4-1
9	$+108.4$	$+49.8$	72.4	13.8	1-4	$+50.0$	$+37.4$	17.2	4. 6	4-4	+69.6	+42.0	35.6	8.0	3-4
10	+116.8	+52.3	82.3	17.8	3-4	$+113.0$	$+51.3$	7. 2	16.5	4-4	+60.2	$+40.0$	26.6	6.4	3-4
11	+104.6	$+50.2$	71.2	16.8	3-4	$+68.1$	$+38.8$	35.3	6.0	3-4	+5\%.i	$+37.5$	24.6	4.5	3-4
Noon.	+ 73.9	$+39.3$	41.5	6.9	4-4	+ 86.0	$+45.2$	48.9	8.1	4-4	$+55.4$	$+37.11$	21.2	2.8	3-4
$1^{\text {b }}$	+ 89.4	+48. 1	55.7	14.4	3-4	+ 71.5	+40.3	35.7	4.5	4-4	$+68.8$	+42. ${ }^{\text {i }}$	34.0	7.8	3-4
2	$+80.1$	$+41.0$	47.0	7.9	3-4	$+67.5$	+39.4	32.6	4.5	4-4	+65.0	$+42.6$	30.3	\%. 9	3-4
3	$+73.0$	$+39.1$	40.4	6.5	3-4	+69.8	$+41.9$	33.2	5.3	3-4	+79.1	$+40.7$	43.5	5.1	3-4
4	+86.5	+39.4	53.8	6. 7	2-4	$+37.5$	+39.3	42.9	4. 7	3-4	$+76.0$	$+42.7$	$3 \div .4$	5.1	3-4
5	+81.6	$+37.9$	492	5.5	2-4	+ 57.5	$+38.0$	22.9	3.4	1-4	+84.2	+45.0	46.9	7.7	3-4
6	$+83.0$	$+37.9$	51.1	6.0	2-1	$+53.9$	$+36.3$	19.9	2.3	4-4	+56.3	$+38.9$	19.8	2.4	4-4
7	$+50.2$	+32.8	19.0	1.6	3-4	+ 46.2	$\underline{+35.0}$	13.1	1.9	4-4	$+53.2$	$+39.4$	17.2	3.4	4-4
8	$+47.3$	+33.2	15.7	1.6	3-4	$+47.0$	$+35.3$	13.5	1.8	4-4	+47.3	+37:3	12.4	2.4	4-4
9	+ 42.8	$+32.0$	12.0	1.2	4-4	$+48.5$	$+34.9$	15.4	1.8	4-4	$+50.0$	$+38.3$	14.7	3.0	4-4
10	+32.2	$+31.0$	7.6	0.4	1-4	+ 44.0	$+33.6$	11.6	1.2	4-4	$+47.0$	+38.2	13.3	3.6	4-4
11	$+36.0$	$+30.7$	5.7	0.4	3-4	$+43.3$	$+33.1$	11.2	1.0	4.4	$+43.4$	$+36.7$	9.0	2.3	4-4

Day.	JUNE, 1872.									
	20.					21.				
Hour.	v	f	Dv	$D f$	s	v	f	Dv	Df	8
$0^{\text {b }}$	+44.8	$+37.2$	9.7	2.1	4-4	+85. 5	$+43.0$	48.3	5.8	4.4
1	+52.0	- 38.6	17.7	4.3	4-4	$+50.4$	$+36.0$	16.2	1.8	4-4
2	$+53.0$	$+38.9$	18.0	3.9	4-4	$+48.8$	$+36.3$	14.0	1.5	3-4
3	$+49.3$	$+37.9$	14.7	3.3	4-4	+47.9	+34.0	15.6	1.7	3-4
4	+51.6	$+37.3$	17.5	3. \because	3-4	$+44.0$	$+33.9$	11.7	1.6	3-4
5	$+76.0$	+41.3	41.9	7.2	3-4	+48.3	$+34.3$	15.0	1.0	4-4
6	+72.3	$+39.6$	36.8	4.1	3-4	$+50.9$	$+34.8$	17.6	1.5	4-4
7	+74.5	+42.3	$3-4$	6. \because	3-4	$+56.0$	$+33.2$	24.4	1.6	4-4
8	$+66.9$	$+43.5$	30.1	6.7	3-4	$+53.0$	+32.8	21.4	1.2	4-4
9	+79.	$+49.5$	40.9	11.2	4-4	$+79.0$	$+36.1$	46.4	3.5	3-4
10	+75.3	+50.2	35.4	10.3	4-4	$+66.3$	+35.2	34.2	3.1	4-4
11	+79.0	- +52.6	35.4	9.0	4.4	$+73.0$	+35.9	40.0	2.6	4-4
Noon.	+99.8	+55.2	56.2	11.6	$3 \cdot 4$	$+78.0$	$+37.2$	43.9	3.1	4-4
$1{ }^{11}$	+82.5	+44.8	41.7	4.0	3-4	+73.5	$+37.3$	38.9	2.7	4-4
2	+80. 2	+45. 1	39.4	4.3	3-4	± 65.0	+35.4	31.7	2.1	4-4
3	+75.1	+45.0	34.5	4.5	$3-4$	+69.3	$+35.5$	36.2	2.4	4-4
4	$+65.6$	+44.1	25.5	4. 0	3-4	$+60.3$	+34.4	27.7	2.1	4-4
5	$+66.9$	$+45.7$	24.6	3.4	3-4					
6	+65.0	+44.4	23. 6	3.0	3-4					
7	$+53.6$	$+41.7$	13.5	1.6	3-4					
8	+57. 2	$+41.3$	17. 2	1.3	3-4					
9	$+59.0$	+41.6	19.:	1.8	3-4					
10	+64.0	$+41.9$	25.6	3.5	3-4					
11	$+56.2$	$+37.9$	20.6	2.3	3-4					

SOLAR RADIATION AT POLARIS HOUSE

The following observations, made at Polaris House, were condncted precisely in the same manner as those at Polaris Bay. The naked black-bulb thermometer being broken, its place was supplied by a Casella long-stem standard thermometer, the cylindrical bulb of which was coated with Indian ink.

MARCH, 1873.

Day.

MARCH, 1873.

Das.

Hour.
0^{n}
1
\geq
3
4
5
6
7
8
9
10
11
Noon.
1^{b}
\qquad
6.

v	f	$D v$	$D f$	s			

- -

7
$\left[\begin{array}{c|c|c|c|}\hline f & I v & D f & s\end{array}\right.$
8.

| r | f | De | Itr | s |
| :--- | :--- | :--- | :--- | :--- | :--- |
| r | | | | |

MARCH, 1873.

Day.	MARCH, 1873.														
	9.					10.					11.				
Hour.	v	f	De	Df	s	v	f	$D v$	Df	8	r	f	Dc	nf	*
0^{17}															
1														
2													
3															
4								
5												
6															
7														
8															
9															
10						-	-15.2	-18.7	8.5	5.0	3-4
11					+14.4	-13.0	32.3	4.9	1-4	-12.0	-92.3	11.6	1.3	$3{ }^{3}$
Noon.				-		-1.2	-18.8	17.7	0.1	1-4	-13.2	-24.0	9.8	-1.0	3-4
$1^{\text {b }}$				\ldots	\cdots	-10.0	-20.1	11.0	0.9	1-4	-11.3	-23.6	11.2	-1.1	4-4
2					-14.8	-0.0 0	5.7	-1.5	1-4	-15.3	-23.3	7.2	$-0 .{ }^{*}$	4-4
3						-18.5	-23.6	4.0	-1.1	1-4	-21.5	-23.0	0.9	-0.6	4-4
4	\ldots														
5														
6				-											
7															
8															
9															
10															
11															

Day.	MARCH, 1873.														
	12.					13.					14.				
Hour.	r	f	In	Df	s	'	f	Dv	Df	s	${ }^{*}$	f	D.	Df	s
$0^{\text {h }}$	$\ldots . .$.			.	\ldots			\ldots						
1				\ldots-.....			
2						.	.								
3				--.	-								-
4													-
5						\cdots						
6															
7					-...						
8								.							
9									
10					+1\%.4	-20.0	45.9	7.5	-				.	
11					...	+20.8	-19.1	47.2	7.3	\smile					
Xoon.	-11.3	-15.8	4.5	0.0	3-1	+19.9	-23.2	46.1	3.0	\smile					
$1^{\text {h }}$	- 5. 8 \|	-15.0	8.7	-0.5	4-4	$+21.8$	-25.5	48.3	1.0	\smile				..	
\because	-15.0	-16.8	0.5	-1.3	$4-1$	$+13.6$	-21.3	37.2	-0.7	\checkmark					
3						+0.3	-20.3	25.0		\smile				
4													-
5													\ldots
6						\cdots	
7															
B	$\ldots . .$.						
9								\ldots						
10													...		
11									\cdots
-															

Das.	MARCH, 1873.														
	18.					19.					20.				
Hour.	r	f	Dr	Df	s	r	f	Dv	Df	s	v	f	Dv	Df	s
0^{4}															
1.															
2															
3 -.......															
4-.....															
5															
6															
7															
8	$+3.0$	$-{ }^{-25 .} 7$	35.9	7.2	\sim	$+18.3$	-16.2	37.8	3.3						
9	+1\%0	-27.2	44.6	5.4	\checkmark	$+27.5$	-13.9	45.8	4.4	\ldots				\ldots	
10	+18.9	$-2 * 6$	51.3	3.8	\checkmark	+28.0	-14.5	45.0	2.5	...					
11	+25.1	- 27.4	52.0	4.5	\checkmark	+33.0	$-1 \because 4$	49.4	4.0	..					
Noon,	+26.3	-20.0	56.6	10.3	\checkmark	+29.7	-14.7	44.7	0.3	...					
$1^{\text {b }}$	+24.7	-21.4	53.5	2. 4	\sim	+14.8	-15.6	30.1	-4.3						
2	+17.9	-19.8	46.0	8.3	\sim	± 0.0	-16.1	15.5	- 0.6						
3	+6.5	-982	:2. 5	2.8	\checkmark	- 1.3	-15.5	13.7	-0.5	\checkmark	+ 3.1	--12.5	14.4		$2-4$
4	+ 7.8	-27.5	39.8	4.5	\sim	+ 0.4	-15.8	14.8	-1.4	+-4	-4.8	-14.3	7.1		4-4 ${ }^{\text {4 }}$
5	+ 7.0	- ${ }^{\text {g }} 0$	40.9	5.9	\checkmark	-0.5	-16.6	14.2	-1.9	4-4	-8.4	-17.8	5.2		4-4
6						+ 3.8	-16.5	19.4	-0.9	4-4	- 15.5	-16.0	-2.5		4-4
7															
8															
9															
10															
11															

MARCH, 1873.
21.

21.
95.

0

$$
i \quad+\because 11 . \bar{n}|-7.31 . \pi \quad 3.3-2.0-23.930 .9| 1.0 \mid
$$

$$
+32.5-5.7 \quad 3-.7 \quad 0.5 \quad+\therefore .3-32314.711 .1 \smile
$$

$$
+41.2-4.4,41.2 \quad 1.3 \quad 1-4+29.4-03=410,1.8,
$$

$$
+39.2-3.3: 30.0 .3 \quad 1.4+39.1-34.1 \quad 54.9 \quad 1.7-
$$

$$
\begin{array}{|l|llll|ll|l}
33.4-1.8 & 3.7 & 2.5 & 1-4 & +34.1 & -21.7 & 09.0 & 3.3
\end{array}
$$

$$
4 \quad \mid+10.4-\therefore 6,24.9-0.1 \quad 3-4+2.8-21.6459 \quad 9.1-
$$

$$
5 \quad+16.9-16.531 .7-1.7 \quad 9.4+25.0-25.449 .6-11.5
$$

$$
i \quad|\cdots \cdots \cdots \cdot|^{i}
$$

$$
i
$$

$$
9
$$

10

11

APRIL, 1873.
Day.

+23.1 +2.4	1\%.* 3. 1 44	+83.0	+135	$13.1)$	-5	4-4
+	1901 1, 14			10.1		

Numi.
14.

Hour.
)

\star

I

$|$| +3.4 | +16.0 | 25.0 | 0.6 | $: 34$ |
| :--- | :--- | :--- | :--- | :--- |
| +35.2 | +15.5 | 19.9 | 0.5 | $3-4$ |

15.

$+\because 0.7$	-11.2	23.3	1.1	1.1

$+24.7+11.63 .30 .1 \quad 3.0 \mid 4$
$+7=2$

+3.4	34.6	$1: 0$	2.4	+

19
+19
+30 , 2
$+14.0$
$+24.0$
+19
+10
$+12.7$
+11 .
$+10.9$
$+2.6$
27.:
4. $20.5{ }^{20.3} 1010$

8.9		
80.7	1.1	

67.3

踶 9
59.2
7. 1 5. \& $4-1$
\forall
4-1

$4.0 \quad 1$

APRIL, 1873.
ays.
1%
18.
19.

APRIL, 1873.

Day.
23.
-- - - -...
24.
\qquad

Hour.
0^{4}

APRIL, 1873.
MAY, 1873.

MAY, 1873.

1) ix:。

Day.	MAY, 1873.														
	13.					15.					16.				
Hour.	1	*	De	Df	8	v	f	wo	Df	s	r		In	If	$\stackrel{ }{*}$
$0^{\text {b }}$	+211.0	$+17.0$?	-0.8	4-4	+ $\because 8.4$	+230	1.4	-1.0	4-1	+31.9	+20.8	(5. 5	0.6	Q-4
1	$+\because 0$	$+1.8$	9.0	0.3	4-4	+33.0	+ $\because 0.3$	2. 4	-11.3	1-1	+ 3 : 0	+25.6	6. 3	-0.1	$\because-1$
2	+ $\because 1.1$	$+17.3$	$9 . \because$	0.4	4-1	+34.9	+:31:3	3.5	-1.1	1-1	+ 3.4	+20.0		-11. 5	$\because-1$
3	+30.\%	$+17.4$	13.1	0.6	1-4	+39.11	$+31.5$	\% 8	0.3	14	+ 3.8	+ 43.5		-1.	$\because 1$
4	+35.1	$+18.0$	15.0	1.9	$4-1$	+42.1	+:31	10.8	0.8	4-4	+3i. 1	+57.0	8.4	-0. $:$	- -1
5	+30.9	$+19.3$	22.9	3.0	4-1	+47.2	+33.0	15. 5	$1 .: 3$	1-1	+10. H	$+26.4$	14.9	- 11.2	$\because-1$
6	+44.0	+21.4	0.7	3.1	4-1	+52.11	$+32.5$	20.4	0.9	11	$+5.0 .0$	+90.4	요 1	1.5	: 1
7	+46.1	+ $\because 0.8$	2.3. 1	6.3	1-1	+ 50	$+30.4$	$\because 1.6$	0.11	1-1	+ 40.0	$+: 11.3$	i3: 7	4.9	:-1
8	+51.0	+ 25.4	29.0	3.4	4-4	t-60. 6	+30.3	31.6	1.1	4-1	+5. 1	$+31 .!$	$4: 3$	0.4	: 1
9	+63.8	+31.1	39.0	6.3	4-4	$+73.2$	$+30.8$	44.7	23	$1-1$	-1.90. 0	+33.5	54.7	-0.2	1-4
10		+	36.7	7.6	4-4	+84.2	$+30.9$	53.7	0.4	1-1	+50:	$+33.3$	5.5. 1	$\therefore .0$: $1-1$
11	+5: 1	$+85.8$	31.1	1.8	4-1	$+95.5$	$+31.11$	67.3	2. W	1-1	+i5.	+33. 1	42.1	0. 0	$\because 1$
Noon.	+49.0	+27.	24.9	3.7	4-4	$+89.2$	$+29.4$	60.6	1.2	4-4	+i1.3	+iי2 4	34, :3	0.4	4-1
$1^{\text {b }}$	$+56.9$	+ 87.4	33.0	3.5	4-4	-59.6	+28.5	31.6	0.7	4-4	+67.0	+3: 6	[3]: 3	-1.1	1.1
2	+50.4	+67.3	24.9	1.7	t-1	+53.9	+28.3	26.5	0.1	4-1	$+60.0$	+3n. 6	27.2	$\because 8$	4-4
3	$+45.8$	$+26.1$	20.1	2.4	4-1	$+60 . \%$	+29.5	: $: 2$	2.11	4-1	+10.4	+33.3	$\because 2.1$	-0.1	4-4
4	$+48.0$	+26.4	22.8	2.2	4.1					3-4	+5.0	+39. α	20.5	11.3	4-4
- 5	$+49.0$	$+\because 7.4$	15.4	0.8	4-4	+53. 5	$+29.0$	20.7	1. \because	3-4	+i1. 0	+31.5	17.6	-1.1	4-4
6	+30	+ 20.4	5.4	-0. 4	$4-1$	+5.1.4	+30.4	21.5	0.5	:3-1	+100	+:31.:	10.1	-0.1	4-4
7	+29.3	+5\%	3.6	1). 0	4-4	+ 830	$+30.7$	53. 2	0.11	'2-1	$+40.0$	+ 0.5	10. 1	0.6	:3-4
8	$+26.5$	+	11. 2	-0. \because	4-4	+57.0	+200	ミ゙1	-0.9	: 31	$+37.0$	+2805	4.5	0.0	: $\because 1$
!	+34.5	+34.3	3.1	: 3.1		+42.0	+:31.5	$1 \because 3$	1.6	$\because-1$	+5.0	+ +7	7.	0.0	$\because-1$
10	$+33.0$	+ +4	1. α	-		$+35.0$	$+29.0$	5.8	-0.2	\%-1	+:2.0	$+25.0$	5.7	-1.3	$\because-1$
11	+	+97.8	$0.1 i$	'-11.8		+39.2	+ 26.1		-1.3	1-1	+31.0	+25.1		-0.2	1-4

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Day． \& －－ \& I \& 7. \& \& \& \& MAY \& 1873

8. \& \& \& \& \& 9. \& \&

\hline Hour． \& v \& f \& IH \& If \& s \& \& f \& Dn \& Df \& 8 \& ＂ \& f \& Tr \& If \& s

\hline $0^{\text {h }}$ \& $+32.0$ \& ＋22．0 \& 11.0 \& 1.0 \& 1－4 \& $+16.8$ \& －6：3 \& 23． 3 \& －0． 2 \& 1－4 \& ＋．0．0 \& ＋210 \& \& 6.7 \& \smile

\hline 1 \& $+50.0$ \& $+39.0$ \& 29.5 \& 8.5 \& \sim \& ＋48．0 \& ＋94．9 \& 24.6 \& 0.8 \& 1－4 \& ＋53．5 \& ＋30． 1 \& 28.7 \& -2.7 \& \checkmark

\hline 2 \& $+\$ 6.0$ \& $+21.0$ \& 22．3 \& －2． 7 \& \checkmark \& $+49.2$ \& ＋23．7 \& $\because \% 3$ \& 1.8 \& \checkmark \& ＋12．0 \& $+38.5$ \& 15，5 \& 1.0 \& \smile

\hline 3 \& ＋ 45.0 \& ＋92． 2 \& 29.9 \& －11．6 \& 1－4 \& $+4 \times .6$ \& ＋23．0 \& 27.1 \& 1.5 \& 1－1 \& ＋8．4．0 \& ＋31． \& （3） 3 \& 3.1 \& 0

\hline 4 \& $+37.2$ \& $+22.0$ \& 16.3 \& 1.1 \& \checkmark \& ＋60．0 \& ＋28．8 \& 34.4 \& 3.2 \& \smile \& ＋55．1 \& $+33 . \because$ \& 40.4 \& 1．5 \& 0

\hline 5 \& $+47.1$ \& ＋+4 \& 2－3 \& 0.6 \& － \& ＋－17．0 \& ＋33．0 \& 14.5 \& 0.5 \& \checkmark \& $+76.2$ \& $+33.4$ \& 19． 5 \& $-0 .: 3$ \& 0

\hline f \& ＋79．0 \& ＋6id \& 54.2 \& 1.6 \& 1－4 \& ＋30．21 \& －194．8 \& 4.7 \& -0.7 \& \checkmark \& ＋2．0 \& $+31.5$ \& 20． 1 \& -11.4 \& 0

\hline 7 \& ＋－9．2 \& ＋28．8 \& 57.2 \& 5.8 \& \checkmark \& ＋77．0 \& ＋24．4 \& 51．2 \& -1.4 \& \checkmark \& ＋10．4 \& $+33.0$ \& 5，1．0 \& 1.6 \& 0

\hline 8 \& $+95.0$ \& $+41.2$ \& 66.0 \& 12.8 \& \checkmark \& ＋83．5 \& $+30.2$ \& 83.8 \& 0.5 \& \checkmark \& ＋－90， 5 \& ＋39．0 \& 58．2 \& 6.7 \& 0

\hline 9 \& ＋98．3 \& ＋2－5 \& 75． \& 5.4 \& \checkmark \& $+91.2$ \& $+36.8$ \& 83.5 \& 4． 1 \& \smile \& $+91.5$ \& $+40.0$ \& （ii）． 3 \& F．E \& 0

\hline 10 \& ＋93．4 \& ＋30．9 \& 69.9 \& 8.7 \& \checkmark \& $+93.0$ \& $+33.0$ \& 64.0 \& 4.0 \& \checkmark \& ＋93．6 \& $+13.0$ \& （3：3．2 \& 12.4 \& 0

\hline 11 \& $+95.5$ \& $+39.1$ \& 68.5 \& 12.1 \& \checkmark \& $+95.5$ \& $+36.9$ \& 65.3 \& 6.6 \& \checkmark \& ＋96． \& ＋42．3 \& 6．4． 1 \& 15.9 \& 0

\hline Ncon． \& $+90.2$ \& ＋37．0 \& 13.4 \& 10.2 \& \checkmark \& $+96.0$ \& ＋+1.1 \& 64.4 \& 9.5 \& \checkmark \& ＋94．9 \& $+40.1$ \& 61.6 \& 7.5 \& 0

\hline $1^{\text {b }}$ \& ＋6．0 \& ＋32． 4 \& 61.2 \& 6.6 \& \smile \& ＋96．0 \& ＋45． 4 \& 61.3 \& 10.7 \& \checkmark \& $+90.6$ \& ＋3＊ 2 \& 6.1 .1 \& 11.7 \& 0

\hline 2 \& ＋9．3 ${ }^{\text {a }}$ \& ＋59．0 \& 66.9 \& 26．6． \& \checkmark \& $+95.8$ \& $+5.2$ \& 63.3 \& 11.7 \& \checkmark \& $+80.4$ \& ＋33．8 \& 33．7 \& 7． 1 \& 0

\hline 3 \& $+84.2$ \& $+31.4$ \& 58.6 \& 5.8 \& \checkmark \& $+93.0$ \& $+45.3$ \& 的 5 \& 14.8 \& \checkmark \& ＋ 20 \& ＋33．5 \& 56.1 \& 7.6 \& 0

\hline 4 \& ＋85 5 \& ＋32．0 \& 65.5 \& 12.0 \& \checkmark \& ＋ 5.3 \& $+37.5$ \& 54.9 \& 7.1 \& \checkmark \& ＋80．0 \& ＋29．5 \& 54.1 \& 3.6 \& 0

\hline 5 \& $+7 \% .0$ \& $+34.7$ \& 56.6 \& 13.3 \& \checkmark \& ＋56．0 \& $+99.5$ \& 2n． 0 \& -0.5 \& － \& ＋\％\％0 \& ＋29．3 \& 81.9 \& 3． 2 \& － 0

\hline 6 \& ＋i4．1 \& ＋22．0 \& 5.5 \& $\therefore 5$ \& \checkmark \& ＋ir． 6 \& ＋+3.3 \& 49.0 \& 3.7 \& \smile \& ＋550 \& ＋59．0 \& 小゙ロ \& \because \& 0

\hline 7 \& $+70.0$ \& $+28.0$ \& 46.4 \& 4.4 \& \checkmark \& ＋75．11 \& $+37.8$ \& 45.5 \& 8.3 \& \checkmark \& ＋71．11 \& $+2 \times .7$ \& 43.1 \& 1.6 \& θ

\hline 8 \& $+57.0$ \& ＋24．1 \& ：3．7 \& 1.8 \& \checkmark \& ＋71．0 \& $+32.0$ \& 14.7 \& 5． 7 \& \checkmark \& ＋67．3 \& ＋29．3 \& 40.3 \& 2.3 \& 0

\hline 9 \& $+60.0$ \& ＋22．2 \& ：8． 5 \& 0.7 \& \checkmark \& $+65.0$ \& ＋35．$=$ \& 2－36 \& 19．4 \& － \& ＋63．0 \& $+5$ \& 3， 31.5 \& 2．11 \& 0

\hline 10 \& ＋53．0 \& $+23.5$ \& 31.5 \& 2.0 \& \smile \& $+50.6$ \& ＋30．5 \& 景， \& ｜ 5.2 \& \checkmark \& ＋585 \& ＋38．5 \& \％ 7 \& 1.7 \& 0

\hline 11 \& ＋45．6 \& ＋220 \& $\because 4.4$ \& 0.8 \& 1－1 \& ＋63．0 \& $+30.0$ \& 39.1 \& 6.1 \& \& $+57.3$ \& ＋ 24.3 \& ： 8 \& 8.8 \& 0

\hline
\end{tabular}

MAY, 1873.

1ays.
20.

ILom:

21.

22.

0

11

$$
\left\lvert\, \begin{array}{l|l|l|l|l}
+16.0 & +\because .4 & 17.2 & 0.0 & 0 \\
+50.2 & +0.0 & 21.2 & 1.0 & 0
\end{array}\right.
$$

$$
+46.4+\because .1, \because 21 \quad \because k \quad \smile+50,2+30012 \because 10.0
$$

$$
+50.5+23.4: 315-1.6-+60.0+26.230 .5-3.1 \quad 11
$$

$$
\begin{array}{l|l|l|l|l}
+65.8 & +5.11 & 41.1 & 0.3 & - \\
+64.1 & +21.0 & 40.2 & 0.1 & \smile
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c}
+66.0 & +2 \pi .8 & 3.0 & -3.2 & 0 \\
+\pi 3.0 & +3.6 & 32.3 & 3.3 & 0 \\
+75.8 & +34.6 & 42.0 & 1.0 & 0
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c}
+39.0 & +36.7 & 45.4 & 3.1 & 0 \\
+81.4 & +3.2 .5 & 45.7 & -0.2 & 0
\end{array}
$$

$$
\begin{array}{l|l|l|l|l}
+\pi i .2 & +29 . r & 54.5 & 1.1 & \smile \\
+67.2 & +39.0 & 58.1 & \because .9 & \smile
\end{array}
$$

$$
\left.\begin{array}{|c|c|c|c|}
+81.4 & +3.2 .5 & 4.7 & -0.2 \\
+4.0 & +34.4 & 5.5 & 0.9
\end{array} \right\rvert\,
$$

$$
\begin{array}{l|l|l|l|}
+5.3 & +0.9 & 61.0 & : 6 \\
\hline
\end{array}
$$

$$
+01.0
$$

$$
\begin{array}{l|l|l|l|}
+89.4 & +34.3 & 6.9 & 7.8 \\
\hline
\end{array}
$$

$$
+92.2+39.0 \mid \text { 汸. } 1 ; 10.4 ; 0
$$

$$
\begin{array}{|c|c|c|c|}
+93.8 & +42.6 & 61.9 & 11.3 \\
+95.8 & +430 & 0.3 & 9.5
\end{array}
$$

$$
+86.4
$$

$$
+79.9
$$

$$
\begin{array}{c|c|c|c}
+43.8 .57 .3 & 14.7 & 0 \\
+\because .5 .4 & 50.3 & 6.5 & 0
\end{array}
$$

$$
\begin{array}{|l|l|l|l|l|}
+\times 5.0 & +39.4 & 57.3 & 11.7 & 0
\end{array}
$$

$$
+86.0
$$

$$
+35.8 \left\lvert\, \begin{array}{l|l|}
\hline .6 & \boxed{4} \mid
\end{array}\right.
$$

$$
+26
$$

$$
\begin{aligned}
& +8.6 \\
& +5.8
\end{aligned}
$$

$$
+74.3
$$

$$
+50.2+3
$$

$$
\begin{array}{c|c|c|c|c|}
6 & +33.7 & 56.6 & 7.4 & 0 \\
6 & +34.3 & 55.8 & 10.5 & 0 \\
8 & +31.5 & 50.1 & 5.8 & 0 \\
3 & +30.4 & 4 n .7 & 4.8 & 0 \\
2 & +39.6 & 44.0 & 13.4 & 0 \\
0 & +34.8 & 32.3 & 2.1 & 0 \\
0 & +34.3 & 30.5 & 1.8 & 0 \\
0 & +33.8 & 34.9 & 7.7 & 11
\end{array}
$$

$$
\begin{array}{|l|l|l|l|l}
+00.5 & +40.8 & 57.2 & 13.5 & \smile \\
+93.0 & +45.9 & 5 \times 5 & 10.7 & \smile \\
+90.6 & +12.1 & 59.1 & 10.6 & \smile \\
+5.0 & +36.8 & 54.3 & 0.1 & \smile \\
+90.3 & +40.1 & \pi .4 & \boxed{2} 2 & \smile \\
+35.0 & +33.0 & 46.5 & 4.5 & 1-4 \\
+79.1 & +34.3 & 49.1 & 4.3 & 1-4 \\
+73.1 & +33.3 & 43.6 & 3.9 & 1-4 \\
+70.3 & +37.0 & 41.0 & 7.7 & 1-4 \\
+60.3 & +38.0 & 3.6 & 9.3 & 1.1 \\
+56.0 & +32.8 & 20.3 & 3.1 & 9-4 \\
+61.3 & +32.9 & 3.5 & 4.1 & 2-4
\end{array}
$$

MAY, 1873.

Day.

Das.	MAY, 1873.														
	26.					2\%					28.				
Hour.	v	f	Do	$D f$	8	v	f	Dv	$D f$	s	v	f	$D 0$	Df	8
$0^{\text {b }}$	$+57.4$	+2\% 0	31.7	0.9	0	$+55.0$	+27.2	29.7	1.9	0	$+23.0$	+30.2	1.7	-1.1	3-4
1	+36.8	$+26.2$	11.3	0.7	0	+59.2	$+25.4$	33.0	--0.8	\checkmark	$+48.3$	+23.8	26.3	1.8	$2 \cdot 1$
2	$+63.8$	$+25.3$	3. 1	-0.4	0	+62.3	+24.8	38.0	0.5	-	+52.4	+24.9	20.7	-0.8	$\because 4$
3	$+62.5$	+28.6	35	1.4	\checkmark	$+63.0$	+25.2	:3\% 0	-0.8	\checkmark	+62.4	$+27.0$	33.2	- - \%	9-4
4	$+35.2$	+21.7	11.3	-2. 2	0	$+71.0$	+29.3	40.9	-0.8	\checkmark	$+67.5$	$+34.4$	30.4	3.3	2.4
5	$+73.0$	+28.3	41.9	2. 2	\smile	+76. 1	$+32.2$	4.9 .9	0.0	\checkmark	$+18.5$	$+31.3$	16.7	-0.5	3-4
6	+76.3	+25.8	50.8	0.3	\checkmark	+2. 2	$+32.4$	51.5	1.8	0	$+41.8$	$+27.6$	15.6	1.4	:-4
7	$+80.4$	+0.4	55.3	3.3	\checkmark	+81.0	+34.1	52.3	9.4	0	+43.2	$+35.6$	16.8	9.9	3-4
8	$+83.0$	+28.3	54.7	4.5	\checkmark	+-\%.3	$+36.7$	54.2	3.6	0	$+47.2$	+30.4	29.8	6.0	2.4
9	+83.0	+2.6	59.7	5.3	\checkmark	$+88.2$	$+37.3$	57.9	6.3	\smile	+65.3	+31.2	41.6	7.5	\checkmark
10	+83.0	+28.2	60.0	5.2	\checkmark	$+90.0$	$+36.3$	60.0	6.3	\checkmark	+64.7	$+30.0$	41.2	6.5	\checkmark
11	+84.1	$+97.8$	60.6	4.3	\smile	$+90.1$	+32.8	65.6	$\triangle 3$	\checkmark	+65.0	+87.0	42.7	4.7	2-1
Noois.	$+83.0$	+97.6	59.6	4.2	\checkmark	$+90.3$	$+33.8$	62.3	5.8	\checkmark	$+5.3$	+28.9	6. 3	5.9	$2-4$
$1{ }^{\text {b }}$	$+82.2$	+25.7	$5 \pm .3$	4.8	\checkmark	+88.3	$+32,3$	62.5	6.5	\checkmark	+57.0	+27.2	64.1	4.3	\checkmark
2	+89.3	+88.7	57.5	3.9		+8.0.0	$+35.7$	59.0	6.7	\checkmark	+83.2	+26.8	60.8	4.4	\checkmark
3	+83.2	+31.7	57.8	6.:	\checkmark	+86.0	+37.5	83.9	9.4	\checkmark	+81.2	$+87.5$	59.3	5.0	\checkmark
4	+81.5	+30.0	56.3	4.-	\checkmark	+72.4	$+33.7$	46.6	7.9	1-4	$+27.6$	$+27.3$	55.4	5.1	\checkmark
5	+38.0	+29.9	5\%6	4.5	\checkmark	$+56.0$	$+28.3$	31.4	3.7	1-4	+76.0	+26.	53.7	4.5	\checkmark
6	+i? 0	$+29.7$	45.9	3.6	0	+55.0	$+29.4$	30.2	4.6	2-4	$+71.5$	$+26.3$	49.4	4. 2	\checkmark
7	+69.0	$+27.7$	42.7	1.4	0	+52.0	+27.	27.3	3.1	2-4	+6:.0	+27.7	45.6	5.3	\checkmark
8	$+66.6$	$+96.2$	40.3	-0. 1	0	+4-0	$+26.0$	29.6	0.6	3-4	$+38.7$	+22.0	47.4	0.7	\checkmark
9	+61.3	+哭3	35, 5	9.5	0	$+41.0$	+33.1	17.0	-0.9	$2-4$	+58.0	$+19.3$	32.0	-0.7	\checkmark
10	+54. 5	$+27.5$	29.3	2.2	0					Q- 1	$+56.2$	$+21.8$	30.6	2.2	$1-4$
11	+520	+27.6	S3.4	9.0	0	$+27.0$	+22.	4.4	-0.4	$2-4$	$+33.0$	+18.0	14.4	-0.6	1-4

MAY, 1873.

Das.
29.

v	f	$D C$	Df	s
$+60.0$	$+21.7$	39.0	0.7	2-4
+29.0	$+13.7$	9.7	-0.6	3-4
$+40.2$	$+12.9$	21.4	0.1	$3-4$
+03,0	+12.8	44.3	0.0	34
$+60.1$	$+1.5$	41.4	-0. 2	3-4
$+40.0$	$+1 \times 5$?1. 4	-0.1	3-4

30.

-	f
-+53.8	+17.8

| $D v$ | $D f$ | s |
| :---: | :---: | :---: | :---: |
| 37.3 | 1.3 | \smile |
| 40.3 | 0.3 | \smile |
| 40.0 | 0.2 | \smile |
| 43.7 | 0.2 | \smile |
| 45.0 | 0.8 | \smile |
| 49.4 | 1.2 | \smile |
| 46.7 | 0.8 | \smile |
| 49.5 | 1.7 | \smile |
| 45.1 | 9.9 | \smile |
| 59.8 | 3.6 | \smile |

+59.0	+18.8	64.0	3.8	\smile.
+80.4	+19.5	0.2	4.2	\smile

+79.5	+19.0	65.2	4.7	

+23.0	+19.2	6.5	4.7

$+75 . \div+19.361 .1 \quad 4.6$ -
$+64.9+20.050 .4$
$+73.0+19.558$
$+69.3+14.4$
55. 2
$+15.3$

+61.4	+15.4	47.8

+61.4	+15.4	47.8
+58.7	+14.0	45.2

+58.7	+14.0	45.2
+4.9	+16.4	43.4

$+53.7+$
$+15.5$
40.9
40.0
${ }^{2}$
2.7
31.

v	f	$D v$	$D f$	8
+46.5	+14.8	33.2	1.5	$1-4$
+28.8	+14.6	1.9 .9	1.7	$1-4$
+57.4	+13.8	44.8	0.6	\smile
+59.0	+13.5	46.0	0.3	\smile
+6.9	+10.9	50.4	-0.9	$1-4$

$$
\begin{array}{l|l|l:l:l}
+10.3 & +10.9 & 50.7 & -0.5 & 1-4
\end{array}
$$

$$
+68.0|+10.9| 55.6|-1.5|
$$

$$
\begin{array}{l|l|l|l}
+63.5 & +15.8 & 49.2 & 1.5
\end{array}
$$

$$
\begin{array}{l|l|l|l}
+67.0 & +16.0 & 50.9 & 1.9 \\
+69.5 & +15.4 & 55.5 & 1.4
\end{array} \smile
$$

$$
\begin{array}{l|l|l|l|}
+69.5 & +15.4 & 55.5 & 1.4 \\
+7.0 & +18.2 & 1.4 .4 & 4.6
\end{array}
$$

$$
\begin{array}{l|l|l|l|l}
+756 & +17.0 & 63.3 & 3.7 & \smile \\
+77.1 & +20.2 & 61.9 & 5.0 & \smile
\end{array}
$$

$$
\begin{array}{l|l|l|l|l}
+75.0 & +20.4 & 59.6 & 5.0 & \ddots \\
+75.9 & +29.0 & 60.1 & 6.3 &
\end{array}
$$

$$
\begin{array}{l|l|l|l}
+75.0 & +2.0 & 50.5 & 6.5
\end{array}
$$

$$
\begin{array}{l|l|l|l|l}
+75.4 & +29.1 & 59.2 & 5.9 & \smile
\end{array}
$$

$$
\begin{array}{l|l|l|l|l}
+73.7 & +17.3 & .7 .5 & 1.1 & \smile
\end{array}
$$

$$
\begin{array}{l|l|}
+50.0 & +20.3 \quad 53.9 \\
4.2 & \smile
\end{array}
$$

$$
\begin{array}{l|l|ll|l}
+53.0 & +16.8 & 35.3 & 0.1 & 1.4
\end{array}
$$

$$
\begin{array}{c|c|c|c|c}
+-36.4 & +17.0 & 30.1 & 0.7 & 2-4 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l|l}
+27.0 & +14.3 & 11 . \alpha & -0.9 \\
3-1
\end{array}
$$

$$
+47.7+19.2 \quad 32.3 \quad 3.5 \quad 1-4
$$

$$
\begin{array}{l|l|l|l|l|l}
1-1 & +55,5 & +19.3 & 39.9 & 3.7 &
\end{array}
$$

.

SOLAR RADIATION—RECAPITULATION.

The following table contains the differences between the readings of the black-bnlb thermometer in racuo and those of the temperature of the air from the time the sun became circumpolar till the observations were abandoued. For convenience, the observations were divided into groups of weeks. Underneath the ralnes mentioned, the sums of the same are to be found, with their corresponding means. In cases where observations are missing, - for instance, duriug hrary snow-drifts, -no means are given, as we do not think ourselves justified in resorting to interpolathou. No use was made of the readiugs of the unprotected instrument; it being influenced too much by wind and atmospheric moisture, cansing it sometimes to read even lower than the thermometers exposed in the shade.

POLARIS BAY.

Date．		POLARIS BAY.											
		$0^{\text {L }}$	$1{ }^{4}$	$2{ }^{12}$	3^{4}	1^{11}	5^{13}	6^{1}	g^{11}	$8{ }^{1 /}$	$9^{1 /}$	［ 0^{12}	$1{ }^{\text {b }}$
April	1×2.	\bigcirc	\bigcirc	\bigcirc	r		\bigcirc	－	0	c	0	－	\bigcirc
	20．．．．	69.4	（i）．${ }^{\text {c }}$	31.1	38.9	3is． 0	19.7	1－1i	11.8	7.1	7.9	1.4	11． 5
	21	24.7	碞，	45，0	16．9 9	？ 3.	13.4	11．$\%$	13.4	\therefore ¢	5． 6	3.4	0.6
	织	15.7	湿，	411． 1	33． 2	24． 3	43.4	$1 \because \%$	6.4	：10	\because \％	1.7	17.1
	碞．	99， 1	3：3	\％ 3	？ 24	34.4	1， 19	：m． 4	41．${ }^{\text {2 }}$				
	24	小－6	43． 1	49．\because	－4．6	$\because 4.6$	19.6	14．4	11． 2	－ 4	12.1	5.6	3.7
	2－1	1；＊）	4.9 .4	7，${ }^{\text {a }}$	（i．）．1；	（i．）． 7	60.3	动．	3．3． 0	17.3	41.6	ソ\％．	41.1
	S1	73.0	73， 8	71.3	\｛易！	63.2	$\therefore 9.0$	54.5	20.11	： 2.0	41．	$\therefore 1.5$	3.7
	Nim	334．1；	$\because 413$	澋！	319．	26	？31．4	35.4	1：17．0	10.12	110.6	74.3	66.5
April	2	73.7	\％	（1才．9	（in．${ }^{\text {a }}$	（iin）$\%$	5.5 .5	55.3	20， 3	41.6	43．6	37.3	80.7
	98.	71.9	7.29	（is． 3	（i4． 4	1310． 11	50.3	\％ 6	51.3	44.8	枵． 6	1！19	14．$\%$
	99	－1） 1	\％i．${ }^{\text {a }}$	4 C 0	「ご2	，\％	\％． 4	51.9	24， 3	25．3	21.4	26.0	
	30	74．3	71.1	12． 4	（13．） 9	（is． 1	Sta 4	5！） 1	$55^{2} 01$	Si．${ }^{\text {i }}$	49．${ }^{1}$	： 3.3	（：3） 1
May	1.	211． 4	75.7	10.6	1－\％． 4	促9	57.1	5\％． 1	$4!4.4$	4.1	49，-	：nis．	\％2． 9
	2.	73．11	73． 0	65.6	13.10	59.2	－ili． 1	H15．	F9\％	44.3	33： 9	$\cdots \cdots$	27.4
			72	（i）． 1	dit． 0	61.0	57.3	\％	51.9	44.4	－4．	114.5	5.1
Nития．．．．． Means．		503.7	417.2	44．${ }^{\text {a }}$	4．011．0	41＊．7	405．0		：11－7	29\％ 5	？－19	204.0	14.9
		730	71．0	（i3． 5	64.3	69．	［17．9	51.8		4．1；	：36， 9	ツ！ 1	
Mas	4.	呮． 9	40.3	$\because 1.1$	$4 . \therefore 10$	$\therefore 4.4$	5\％） 9	Iti，	40． 1	415.0	：1．9	\％itis	30.1
	5	－11． 4	52， 1	\％1．9	69． 0	61.0	11.1	12：5	10.7	\cdots	（i．9）	8.7	14.6
	6	585	4，\％	1is． 15	6.0	（ $\because 3,1$	$5 \cdot 6$	51．	－4．9	［3． 6	3： 4	16．0	7.7
	7	70．	72， 1	（i－． 1 ｜	（i4．${ }^{\text {\％}}$		30.6	4．9．4	16． 3	4（i．\because	$\therefore 4.1$	碞．9	36．4
	\checkmark	16.4	7：30	bilis．	（i3），${ }^{\text {a }}$	（i3．：	57.7	5心	15．5	4．3．	：17． 4	03.8	洞：
	9.	（6） 0	（6）， 9	－il． 1 ！	－Hi，${ }^{6}$	60．5	4%	4.4			49．4	：11．7	14．2
	10.	$6 \times$.	137．${ }^{\text {a }}$	（i．）． 4	111． 4	5． 5	54.4	5.3 .7	47.8	41.0	：3．7． 8	：1．0	
	sums．	442.	412．3	4：11．	$48!9$	f11］． 4	313.7	$\therefore 1.4$	$\because 12.7$	？ 3	ぶ，！	1！19．9	11i4． 1
	Heans．	（i3），${ }^{\text {a }}$	59\％	（61．$\overline{3}$	（i1． 4	$5<1$	4．${ }^{2}$	413．3	34.	$: 37.7$	： 3	心－． 1	？
May	11.	： 4	51.7	$3: 31$	22.5	20，	㫛．2	12.4	1：3 2	12.6	$1: 1.4$	10.4	15．
	$1:$	71.15	\＄1．4	12\％， 0	131．1	59.9	C－5．9	120， 2	4.3	－11． 7	49.5	？ 20	13.4
	13	30.8	29.81	2－1	25． 3	20．9	49． 0	54．9	54．	49．＊	47.3	39.5	$34 .:$
	11.	137.13	（i5． 1	12．0	51.4	5\％． 1	ir． 9	\therefore S， 2	$4!5$	．5． 4		： 2.4	20.1
	15.	39．0	51．0	3－3	3.11	46.1	（6）． 19	P6， 6	41.4	4×2	41.6	：in． 5	33.7
	11.	65.7	71.4	16.4	－ 7	$\therefore 0$	70.1	－19．6	$\therefore 1.6$	S11． 1	4.7	： 3	43， 7
	1%	（in． 9	（i， V	（i4． 9	（i） 10	5\％．3	－\％．9	56.2	511． 2	41.4	4.4	29.4	$\therefore 2$.
	Sums．	：13．0	415.5	3.36	33 Sa	：$\because 1.8$	：－1． 6	381.7	310.9	300.6	バッ2	$\because 1.10$	？13．0
	Meaus．	53．3	$\therefore \% .9$	－0， 9	46.4	4i． 1	51． 4	81.7	41.4	$4!3$	031.9	$\therefore 10.7$	20．0
May	14	66．${ }^{\text {a }}$	64.6	（i）． 9	（ii． 1	1i．3． 7	（ii）． 1	（if． 1	53.9	4\％， 1	42.1	\％－4 1	：17．9
	19.	13．3．9	66．：	415.4	31． 2	－19， 4	99.1	：14．9	2－4	1：3 4	： 3	29.9	45.4
	20.	13： 6	16.9	（i．） 1	61．${ }^{2}$	St． 4	－ 4	511．	Fi3． 19	0.6 .7	40.15	： 9	31.4
	21	61.9	（i）． ii	66.9	64． 6	59.6	5w． 7	－1． 6	50.7	Si． 4	43.5	$4-0$	： 2.4
	景	46.5	39，－	40.8	72	$\because-7$	59， 8	：$\because \sim$	11.4	13.9	3	15，6	14.1
	23	36.19	21.3	26.0	23：3 5	19.9	17.5	12． 1	13.9	1：3．4	12.9	54	1） 4
	$\because 4$	36.6	：3．5 5	：2i． 6	二is． 8	47.2	哭：3	2－1	2－3	刮． 2	3 la	21.4	－2 2
	Sun	365.1		3.85 .7	3 mb ，${ }^{\text {a }}$	30.9	315.0	2－3	23： 3	914.1	227.1	193.6	$1-53$
	Neans．	52．31	$5 \cdots$	414	57.7	44.1	45． 0	40.4	33： 9	211． 6	： $2+4$	$\because 7.7$	ㄴ․ 5
May	4	6． 4	34.8	3， 7	34.10	－1．	61.0	25． 6	51.5	23． 9	81.4	$4 \sim 0$	11.9
	211	41.3	5×6	47.4	61． 61	（63） 5	34.8	－	19.4	11i．＇？	16，总	14.7	13.4
	\％	34．：3	（4） 4.	40． 4	42.5	（iic． 7	：3： 5	（3）． 4	2－5	20．0	$1 \sim$	？	211．4
	ソ又	－4．2	61.2	（i1． 6	19．9． 2	61.9	10．2． 4	18.4	S\％． 4	49.11	$1-4$	4.6	45
	49	－4．－	14.9	（i3．${ }^{2}$	（is），	（i3． 0	16.4	61.7	4． 4	S11． 5	14．3	45.4	43.9
	30	－1．${ }^{1}$	Mr． 4	74． 5	30.2	73.7	1ix． 5	－ix．3｜	63．9	11.4	41.0	4.4	43.9
	： 1	71.4	711.3	（i）． 1 ；	61.4	53.7	刃i． 1	洨： 8	：－0	21.6	16．：3	1－9 9	46.9
		43.6	447.6	335． 0	469.7	440.2	：34． 1	312.1	－493． 4	2ハ10	$\because 40.11$	$\because+1.1$	$\because 3.1$
	Muans	（ii）．	（i3， 9	53.6	－5， 5	16.9	47.7	4i． 19	41.9	： 27.3	34.3	S．5．9	3

POLARIS BAY．

		$0{ }^{3}$	$1{ }^{13}$	${ }^{1 /}$	$3^{\text {h }}$	4^{11}	5 ${ }^{13}$	6^{1}	$7{ }^{11}$	$5^{1 /}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$11^{\text {b }}$
	1178.	\bigcirc	c	\bigcirc	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\％
June	1.	：\％．4	15.4	\％\％	$9!1$	2 3	2×1	：311． 1	313． 4	3， 3	： 5.1	32． 1	34.3
	9	10.2	$1 \because 6$	7.6	$\therefore 9$	13.4	1×1	16.9	？	$\because 2.7$	34.4	127.3	29， 3
	3	38． 5	33．6	： 3.4	41.7	41，9	4．）$\%$	4． 1	－3．0	S0，	\％ 19	71.6	（in），α
		43.6	37.3	33.4	27.2	事， 6	329	25． 7	Q6．	40.7	57． 2	50．3	5
	5	27.6	$\because 7.1$	：30． 4	： 2.3	42.5	61． 7	－6．9	63.8	6.6	$5 \times .9$	（il． 1	91．
	6.	83.4	39.4	219．6	41.15	45.6	51.5	55.2	S－	61.3 ；	55.6	－i1． 4	Si． 1
	1	28． 4	10.4	27.6	11．$\%$	14.1	14.6	1×7	－4．9	：3．2	41.7	［22．9	
	Snms	209.1	155.8	2011）．	120.6	20．8	$\because 4.10$		3 S 4.3	？2e 0	341.1	： 271.9	3240.1
	Means	29.9	景． 1	28.7	27.5	29，区	34.7	36.1	40.6	4i． 0	$4 \times .6$	－3． 1	$4 \% 16$
June	＊．．．．．．．．．．．	14.3	17.3	30.9	42.3	4.4	4.4	36.11	420	30.7	20．3	60.5	56， 9
		11.9	10.4	2.5	41.9	61.3	46.5	－21． 6	Si，\times	－2	：\％：$:$	36.9	416.3
	10	10.4	13.8	32.9	30.0	37.4	43，	52.4	22．	43.2	60.0	（6i， 4	－3． 1
	11.	11．2	10.4	11.9	14.5	10.2	19．9	$\because 24.6$	24， 3	29.1	36，4！	42.6	29.5
	12	23． 1	27.5	12.9	27．	：17．3	\＄1．5	4．8．9	－4．9	is．	lif． 9	［－2．9	6\％，
	13.	10.6	11.6	13.4	11.3	15.4	18.4	21．${ }^{\text {2 }}$		$\therefore 1$	45.2	，mi． 1	（it）－
		12．7	1.5	11.6	12．0	10.9	14.6	23．\because	33.3	31.6	：37． 11	T4．3	\％3．1
	Sums	94．${ }^{\text {a }}$	101.5	1：31， 1	185．5	217.3	$\because 91.1$	9－4．9	928．0	29×2	31：3．${ }^{\circ}$		349.3
	Meatls．	1：3：	14.4	1×6	$\therefore 5.1$	31.0	31.6	36.4			14.7	－4． 2	41.9
June	15.	6.4	4． 3	$\checkmark \cdot 3$	3． 5	12.1	$\because 4.1$	27.6	27.7	27.4	29．3	栄！	16.7
	11.	40.0	2． 0	41.8	411.6	4．3． 5		49.3	60.6	59.0	（2． 11	66，！	$\cdots 1$
	17.	39.1	：37．3	27．9	33.7	40． 2	40.0	\％\％． 1	5， 9	71.4	29.4	－2．31	71．2
	18.	5． 0	5.7	7.6	ii． 9	N．	9.0	12.9	16.6	23．3	17．2	7＊	：13， 3
	19.	7.0	9.4	11.4	13.4	13．2	19．3	17.7	1＊． 1	17．：	35． 6	\％i， 6	\％1． 6
	20	9.7	17.7	1×0	14.7	17.5	41.9	36．${ }^{\text {c }}$	3 S .4	：31． 1	41.9	3＇， 4	3－3． 4
	21.	$4 \times .3$	16．2	14.0	15． 6	11.7	15.0	17.6	24.4	21.4	46.1	34.2	40.11
	Su世	15．5．5	132.6	12\％ 9	134．3	146.0	1，	$21 \sim 0$	239．7	250.4	303． 6	號云	（39．3
	Means．	2！ 2	19.1	18.4	111．2	20.9 ，	26.9	31．1	34.2	35.8	43.4	50.4	47.0

POLARIS BAY.

The following ohamvations, takell at Polaris Honse, were treated in the same wals in thase of Polaris liak.

The following table contains a recapitulation of the maxima of radiation oceuring duriug the respective weeks both at Polaris Bar and at P＇olaris Ilonse；the weeks leing indicated lys the middle date（to be fonnd at the heat of the column），－that is，observations were made three days previnus and three days salosequent to the days from which the maxima were selecterl．This wats done to free the obserrations from abnormals，as we assume that the maxima obtaned in this mamer are more equally free from disturbance．The results obtaned thins are more satisfactory than by using the usual methon．The sums and the general means are fomm mulerneath the repurtise colmmas．
liESELTS．
Maxima at Polaris Bay．

Mravimea at I＇olaris Mouse．

Time．	APRIL．		MAY．			28
	23	30	7	11	21	
			\checkmark	U	\bigcirc	
0^{4}	7.8	6.1	14.7	$\because 4.0$	： 11.1	39.0
1	20.5	14.1	14.6	29.5	36.7	111．3
\because	27， 2	13.0	29，！	29.4	： 1.1	44.9
：	\％	85	O2 5	40.11	4：3．	46.0
4	\％in． 7	36.4	71．9	19.6	4－5	56.4
5	4！1， 1	26， 2	$4-3$	25．3	5：3，0	51.7
fi	4．8	49.3	64． 7	54． 2	5i． 0	56． 6
\％	水， 3	St． 2	内人， 11	－7． 2	5x，	5is． 3
\checkmark	519， 1	（i1．0）	19.7	8itic． 0	5，	61.3
$!$	（if）． 5	（5i）． 2	7： 3	\％． 2	（6）， 5	1i1． 7
111	65， 6	（is．${ }^{2}$	－11．－	19.9	（is， 5	66.9
11	（1．4． 1	（5）． 9	－11． 2		晾：	65.6
Noon．	67.1	（3i）． 6	－1． 1	13.3	1．4． 7	18．5． 7
1^{11}	［14． 5	51.0	81.4	$1 \% 0$	64． 1	
\because	（in． 1	Si．） 3	76． 2	136.9	12，$: 3$	61.1
3	Sili． 4	$4 \geqslant .1$	729	Sw． 6	（i）．	59.8
4	1－2， 3	43． 4	Biti． 15	（in）	$\therefore 4$	51，\％
\because	$\cdots 1$	41.4	611.9	56． 6	06.0	17．5
6	10，！	35． 1	813．$\%$	54.5	50.4	53．3
－	\％ 3	18．11	4.1	\cdots	49.1	49.7
－	24.2	7． 4	41．13	42.2	44.7	17． 4
$!$	16.4	5.3	$\therefore \mathrm{Ar} .1$	$4 ⿻ 4$	Sts． 17	湤． 1
10	$1 \because!$	6.0	2	11.3	36.5	40．！ 1
11	$\therefore 4$	5．	12.4	\％ 9	31.1	40.0
Sums．．．	10\％6．0	2－9， 11	1セ9\％， 7	1212．3	1246.1	1297.3
Me：m－	4\％． 1	36.4	－4． 1	51.5	51.9	54.1

A glance at the preceding table shows that the difference betreen the solar radiation at Polaris Bay aud at Polaris Honse，during the periods under consideration，amounts to 82.4 F．for $3=\because$ of latitude，or to $2=.6$ F．for 10 of latitude，so that the solar heat seems to increase with the latitude．If re compare the amount of solar heat conresed to the earth in iustances when the sun has the same altitude，we obtain the following series，in which，for example，the sun has the same altitude at moon as at a later date at midnight．With north latitude，the altitude of the sun at noou $=90-\varphi+\bar{\sigma}$ ，and at midnight $=\delta+\varphi-90$ ．

It will he found that at Polaris Bay，on March 4 ，the altitude of the sun at noon was the sume as on April 16 at midnight．At Polaris Honse the same relation exists between March 3 and May 4 ，and so on betreen all the days given opposite each other in the folloring table．

Solar radiation for equal altitules of the sun at noon and at midnight．

Fondini may，					polaris house．				
Date．		Radiation at－		$\pm \mathrm{R}$ ．	Date．		Radiation at－		$\pm \mathrm{R}$ ．
		Noob．	$\begin{gathered} \text { Mi,l- } \\ \text { night. } \end{gathered}$				Noon．	$\begin{gathered} \text { Miill- } \\ \text { night. } \end{gathered}$	
183．	$15: 3$	－	－	－	$15: 3$.	1－73．	－	－	－
March 4	April 16	2 3.4	4.6	18.6	March 3	May 4	18.5	3.6	14． 9
5	17	0.9	0.7	0.2	4	5	12.2	9.8	2.4
\％	20	4.1	0.8	3.3	i	7	3－． 9	6.7	昭． 2
8	21	37.2	0.6	36.4	6	8	40.4	14.7	25.2
9	2	42.2	1ヶ． 1	25.1	；	10	49.8	3.8	38.7
11	94	44.2	3.7	40.0		12	36.4	3.4	33.0
13	2	43.3	20	41.3	10	14	17.7	ロ．2	1．5．5
14	2	42.9	0.2	42.7	11	16	9.8	6.7	$\therefore 1$
15	9！	47.6	11．s	$\therefore 8.8$	12	18	${ }^{*}(4.5)$	＋（23．3）	＊（12．8）
16	3195 1	O20	24.3	00.5	13	20	4 4 .1	34.1	12.0
17	2	48.7	3.6	40.1	1.7	24	43.7	0.6	43.1
$1-$	3	$\cdots 3$	7． 4	42.9	1＝	31	56.6	33．\because	23.4
19	5	45.6	5． 9	39.7					
22	10	（0，\％	7． 3	54．9	$s-\mathrm{N} .$.				24.5
24	12	63.3	13．	49，${ }^{\text {a }}$					
25	14	35.1	12.9	28	＊Rejected．				
April 2	30	61.7	39.2	22.5					
3	June 2	\％ 0.1	10.2	59.9					
4	5	63.4	27.6	35.8					
5	10	22.1	10.4	11．7					
6	21	12.0	48.3	13.7					
$8-N$				32.3					

From the above table，it appears that，at Polaris Bay，the solar radiation is 302.3 greater for the same altitude，the sun being south，than with the same altitude north，which value rould corre－ spond to a difference of 0.088 inch in the force of rapor，as may be found by comparing the cor－ responding ralues of the latter for the dates under consideration，given in the chapter containing the hygrometrical obserrations．Hence，for 0.001 inch increase or decrease of the force of vapor， the radiation will increase or decrease 0.37 F ．

At Polaris House，the difference mentioned above is $24^{\circ} .5$ ，and the difference in the force of rapor 0.0063 inch．Hence the coefficient of radiation for 0.001 inch of the force of rapor $=00.40$ F．，Thich latter valne mas be adopted for the present．

11 s R

The following table contains the resulting solar radiation fir Polaris Bay and Polaris House, both uncorrected and corrected for force of vapor.

				IOLARLS HOCLE, 1873.			
	$\begin{aligned} & \therefore \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						」
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	c	n	\bigcirc
April ${ }^{\text {P }} 3$	51.2	+11.:	63.4	43.1	$+12.0$	5n. 1	7.3
30	5.5. !	14.4	70.8	36.4	14. 2	5.6. 6	${ }^{1} 14.7$
Mas 7	58.8	17.6	73.4	54.1	12. 6	615.7	5.7
14	56.4	:34.0	90. 4	50.5	33.19	84. 1	6.3
21	59.0	46.0	105. 0	51.9	415.8	98.7	6.3
-	62.4	11.4	100. ${ }^{\text {a }}$	5.4. 1	+ 3.2	-1.3	9
Jını9 4	55.6	60.0	115.6				
11	48.9	58. ${ }^{-1}$	107.7				
18	-4.:3	+59.6	113.9				

For 30.2 latitude, the mean difference $=110.0$
hence-

$$
\text { For } 10 \text { of latitude, } \Delta=30.4 \mathrm{~F} \text {. }
$$

which is a remarkable fact, as the contrary would have been anticipated.*
If we examine the uncorrected observatious, we perceive that an increase of 1° of latitude corresponds to an increase of 20.6 F . After having applied the correction due to the influence of the force of rapor, the difference becomes even greater, equaling 30.4 F ., so that the force of vapor alone cannot explain this circumstance. If we had used different iustruments at the two stations, we might suppose that the racuum surrounding one thermometer might have been more complete than that of the other; but the observations at both stations were made with one and the same thermometer. A greater nomber of observations on this point would be desirable, and we would recommend to the United States Signal-Sercice to supply their observers with black-bulb thermometers in vacuo; aud, althongl the method of measuring the intensity of solar radiation by meaus of a thermometer is a rery rough one, it would, nevertheless, yield some interesting results, especially as some of the meteorological stations of the Burean above named are situated on high mountain-peaks.

[^21]
TERRESTRIAL RADIATION.

TERRESTRIAL RADIATION.

Fecord and discussion of obserrations for tervestrial radiation at Polaris Bay.

The few obsersatious for terrestrial radiation, made at Polaris Bay and recorded hereafter, are of comparatively little value. We merely give them at this place for the sake of completeness, and because thes form a part of the meteorological record. As will be seeu, they are very scunty, and, besides the index-corrections of the instruments used, are not known, althongh they hat been determined at the tiwe. Like other parts of our different records, the note-book contanins the said corrections came to grief when the splaratiou from the ice-party occured. The greatest correction that had to be applied to any of our thermometers was -50.4 F., (Green's spirit mininum; all the others seldom exceeded 10 F ., but were mostly less, varying between 00.2 F . and $0^{\circ} .8 \mathrm{~F}$.

As far as we can remember, the correction that onght to have heen applied to the tro iustruments used to measure the terrestrial radiation was small, and we do not thiuk that it amonnted to more than two degrees Fahrenheit. Both thermometers under consideration were minimum spirit-thermometers. One of them rested on the ground, and was exposed on white cotton; the other one, fastened to a wooden stand, was placed in the focus of a spherimal silvered mirror, of $\because 1.67$ inches diameter.

The following short record contaius the instrumental readings of the minimnm temperature of the two instrments, taken at intervals of " 4 hours, between Jannary 4 and Mareh 31 , inclusive : In the first columm, the date of oloservation will be tound.
The column headed M contains the readings of the thermometer placed in the focus of the mirror.
The columu headed C coutains the readings of the iustrument exposed on cotton.
The column T contains the minimum temperature recorded during the 24 hours during which the radiation-thermometer hat beeu exposed.

The column headed S contains the mean anonut of cloudiness during the sime period of time, zero indicating a perfectly clear sky; $\frac{1}{4}$, that it was oue-tourth covered, etc.

Instrumental rearlings of radiation thermometer, de., betwecn Jomuery 4 and Mared 31.

Instrmmental rembings of mollintion thromometer，dex－（＇ontinned．

In order to make use of the precding observations，the readings takeu with the two ther－ mometers，when the mean anount of chouds dnring＇t homs did not exceed one－fourth，were grouped in the following table．

The headings of the first four columus bave the same signitication as sitated before．
The coldmon headed R contains the ratio between ML O and $\mathrm{II}-\mathrm{T}$ ．
The differences are given in the last cohmm．

Dite．	M．	C．	T．	－C．	M－T．	R ．	\triangle
1 －	\bigcirc	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Tamamy if	－$\because 2.5$	－54．820	－ 3 ？ 9	-7.0	-4.6	-1.7	－\because
11	45.0	26， 1	31.3	18.9	13．7 7	1.1	＋1
1：3	3！ 5	3，\％	30.6		$\therefore .3$	1． 1	＋1
1；；	：15， 11	2\％． 4	$\because 0.4$	7．i	4.2	1.8	－3
1%	37．5	$\because 219$	31． 1	$\bigcirc 9$	6． 3	1.4	$+1$
18	414， 5	30．-	3：3	11.7	7．5	1.3	＋
U		26．	¢）$\frac{1}{1}$	9.9	6.6	1.4	＋1
lichutary \％	－Simotor	－ 39.5	－\because 里	－ B ．	-5.8	－1．i	0
M1e：11．．	－－ 3.4	－ご，こ	－31．4	-10.4	－ 8.2	－1．5	± 1

The following relation was fond to exist:

$$
\begin{aligned}
& \mathrm{M}-\mathrm{C}=1.5(\mathrm{M}-\mathrm{T}) \\
& \mathrm{M}-\mathrm{T}=2.25(\mathrm{~T}-\mathrm{O})
\end{aligned}
$$

Amonding to Pouille,* the temperature of sace can be fomm ley the following emation:

$$
a^{\prime \prime}=0.90 a^{\prime}+0.05 \pi a^{\prime \prime}
$$

It being the zenilbal temperature obtained by muliplying the actinometrie difference by : \dagger $x=$ the mean temperature of a colum of atmosphere above the station of the observer ; $y=$ the
 huites smale).
 mean of the two valnes mamed.

 in the following manner:

Tu measure the amome of ratiation taking place between the atmosphere and space, and between these and the sulane of the eath during the night, Ar. Ponillet constructed an instrinment which he called an adtinometert $\frac{t}{7}$

Alter the loss of on rablion-themmmeters that bad ben wased on the ice inseptember,
 owing to the detiriency of the means at ond disposal. Instead of the sibrer eximer, we nsed ome ol tin, aloot $1:$ inches high and 10 inches in diameter. The inner calinder was made of thin
 the space between the inner and onter rylinder with white fox-skin. The same material was useal to coser the thre rings, blaed horizontally on the mber eybinder. The thermometer med by us "as a Camella stamdard spirit themometor with elongated balb. In mometig the instmment, wheh
 mpation $:$.
\dagger Ibid.
fomptes vemius, vol. 16. p. liai. Compare also Schmid, lon. cit.

 maling mixlures) mach lower than that of the smommeng air.

The following pase contain the obsemations made homly, will thamaption of a faw omis-

 of elonds at the moment of observation; the sigus twing the same as those nsed bafore.

\because

DECEMBER， 1872.

Das．

10.	11．
-1	

12.			13.			14.		
吾	\triangle	S．		\triangle	S．		\triangle	S．
－11．2	4.7	－-4	-21.1	3.9	\checkmark	-93.1	4.6	$\because-1$
-10.4	3.6	Q－1	$-\because 0.3$	4.1	\checkmark	－$\because 3$	5.7	4－4
-10.1	3.3	\checkmark	－ 21.7	4.9	1－4	-22.6	5.4	－4 4
-16.1	23．4	\checkmark	－ 21.2	4.8	1－4	$-\because 5$	5.5	4－4
$-16: 3$	3.1	\checkmark	－21．4	4.8	1－4	－28．0	5.6	4－4
-16.1	4.5	$2-4$	－21．8	4.1	1－4	－ 1.1	5． 4	3.4
－16．${ }^{\text {i }}$	4.1	$\because-4$	-01.9	$\therefore 1$	\smile	-20.1	5，	4－4
-16.3	3.4	1－4	－ 21.4	4.6	\checkmark	-19.7	5.1	4－4
-16.1	？．8	\checkmark	－2．0．0	5.0	\checkmark	-19.3	4.7	4－1
－17．11	3.6	\checkmark	－21．\because	4.9	\checkmark	－19．1	4.5	3－4
－17．4	4.7	1－1	－－	4.1	1－4	-1.9	4.6	i－4
-17.2	4.3	\checkmark	－ 30	4．\because	1－4	-1.6	4.9	$8-1$
-17.1	4.1	1－4	－23．6	5.0	1－4	－18．：	4.7	：$:-4$
$-1 \% 1$	3.9	1－4	－33．6	4.7	1－4	$-1 \div 3$	4.6	4－4
－17．16	3.	？－1	－33．6	4.6	1－1	-1×3	4.4	3－4
－18．4	3．	2－4	－83． 7	5.0	1－4	－1F．3	4.4	$2-4$
-19.1	4.1	2－4	－2 $2: 1$	4.6	1－4	－－19．1	4.5	4－4
－19．1	4.7	$2-4$	－23．3	5.1	3－4	－ド． 6	4.7	$4-4$
－19．1	4.6	4－4	-24.0	4.6	3－1	-17.6	4.6	4－4
-19.6	4． 2	1－1	－ 3.1	4.4	3－4	-16.7	4.5	44
-11.8	4.1	\checkmark	－34 6	5.0	$3-1$	－16．${ }^{\circ}$	4． 5	4－4
－$\because 11.0$	4.7	\checkmark	－24．6	5.2	$4-4$	-1505	4.5	4－4
－00．0	4.2	$3-1$	－ 4.3 .3	4.9	4－1	-15.2	4.0	4－1
-19.9	4.1	3－4	－24．1	5.0	4－4	-15.1	4.3	4． 4

Day.	DECEMBER, 1872.														
Howr.		\triangle	S.		Δ	S.		\triangle	S.		\triangle	S.		\triangle	S.
$0^{\text {h }}$	-15.2	$4 . \%$	1-4	-12.9	4.4	4-4	-14.9	4.6	\sim	-11.9	4.3	\checkmark	-19.	3.7	\checkmark
1	-15.1	4.3	1-4	-12.9	5.3	4-4	-14.4	4.8	\checkmark	-11.9	. 4.5	\checkmark	-12.1	2.9	\smile
*	-14.9	4.3	1-4	-13.4	4.7	4-4	-14.4	4.7	2-4	-11.2	4.9	\checkmark	-11.8	4.3	1-4
3	-15.1	4.4	3-4	-12.1	4.9	4-4	-14.6	4.7	3-4	-10.2	4.9	\checkmark	-11.1	4.19	1-4
4	-16.1	4.3	--1	-11.9	5.2	:-1	-14.3	4.9	3-4	-10.3	5. 3	\sim	$-11 .: 3$	3.9	\smile
5	-16.1	4.5	- -1	-11.7	4.8	3-4	-14.3	$\therefore .8$	1-4	-9.1	4.1	\checkmark	-11.1	4.11	0
6	-16.9	5.6	2-1	-10.0	8.5	$2-4$	-13.9	3. 9	1-4	-8.7	¢. 1	\smile	-10.9	4.5	0
7	-15.0	4.5	2-4	-11.9	3.6	$2-4$	-14.6	$\therefore .7$	1-1	-- E.is	4.4	\checkmark	-10.4	3.9	0
z	--13.8	4.8	4-4	--12.4.	4.0	4-4	-15.6	4.0	\checkmark	-7.3	-7. 5	-	-10.9	3.1	1-4
9	-13.9	3.9	4-4	-13.1	-4.3	2-4	-15.1	5.7	2-4	-6.9	4. 2	\smile	-11.!	4.2	1-4
10	-13.5	4.5	$2-4$	-14.0	4.0	\checkmark	$-1 \pm .6$	5.1	9-4	-7.1	:3.9	\smile	$-12 .:$	4.7	1-4
11	$-13: 1$	4.7	$2-4$	$-1.4 .0$	8.3	\checkmark	-14.1	3.3	1-4	$-\% .1$	4.1	\checkmark	-13.1	5.6	1-4
Sonn.	-13.9	5.0	--4	-14.9	4.6	-	-14.9	3.4	\checkmark	-- 6.6	4.0	\checkmark	-11.4	6.0	\checkmark
$1^{\text {b }}$	-13.4	4.3	$2-4$	-16.11	5.8	\checkmark	-15.1	5.7	\checkmark	-6.4	3.9	\checkmark	-10.4	5.8	\checkmark
\because	-14.4	4.4	1-4	-15.9	4.7	\checkmark	-14. 1	5.4	\checkmark	- 7.11	3.2	\smile	-9.9	5.1	0
3	-14.9	4.4	\checkmark	-15.1	4.8	1-4	-13.3	4. -	\checkmark	-7.6	3.6	\checkmark	-9.3	4.8	0
4	-1.5	4.4	\checkmark	-14.5	4.6	2-1	-13.1	4.4	-	-8.2	3.5	\checkmark	-8.3	4.0	0
5	-15.7	4.7	\checkmark	-14.6	4.6	--4	-13.0	$\therefore 3$	-	-9.6	3.1	\checkmark	- 7.9	3.9	0
1	-15.5	4.3	3-4	-14.6	5.0	$3-4$	-13	5.2	\checkmark	-10.6	4.2	\checkmark	-7.6	3.7	0
7	$-1.5 .1$	5.4	:3-4	-14.4	4. 7	3-4	-19.1	4.6	\checkmark	-11.1	4.2	\checkmark	-7.7	3.5	0
8	-14. ${ }^{\text {c }}$	5.4	4-4	-14.4	4.8	3-4	-11.1	3.9	\checkmark	-11.1	: 9.9	\checkmark	- 7.9	3.3	0
$!$	-14.1	4.6	4-4	-14.5	4.3	$3-4$	-11.1	3.8	\checkmark	-12.0	4.0	\checkmark	-8.1	3.4	\smile
10	-13.6	5.3	4-4	-14.6	4.5	$1-1$	-11.6	3.5	\checkmark	-12.3	3.9	\smile	- 80	3.3	\checkmark
11	-1:3 1	4.5	4-4	$-14 . i$	4.7	\smile	-11.7	4. 2	\checkmark	-12.6	3.15	\smile	-7.6	4.0	\sim

Das．	JANUARY， 1873.														
	11.			15.			16.			1% ．			18.		
Hour．		\triangle	S．		\triangle	S．	crin	\triangle	S．		\triangle	S．	䓓	\triangle	s．
$0{ }^{\text {b }}$	-35.7	6.1	4－1	-39.1	6.1	\checkmark	-33.2	（6． 1	4－4	-40.1	5.9	－-1	－4． 1	6.1	\smile
1	-36.1	7.1	4－4	－39．3	5.9	\smile	－31．7	4.7	4－4	-40.1	$\checkmark .5$	$\because-1$	-16.1	（i． 4	\checkmark
2	－－35．9	\％． 4	4－4	-39.4	$6 . \because$	\checkmark	-3.1	4.9	4－4	-10.4	\％．；	$\because-1$	-86.1	7.1	\checkmark
3	-35.3	6.4	J－4	－ 29.4	5.2	\smile	-33.1	5.8	4－4	－3： 6	16． 6	$\because-4$	－16： 2	7.7	\checkmark
4	-37.1	5.8	4－4	-39.7	5.2	\checkmark	－33．6	5.2	4－4	-38.1	4.6	$\because-1$	－ 3 ii． 1 ．	2.7	\smile
5	-37.1	4.6	4－1	-33.7	7.4	\checkmark	－33． 5	4.4	4－4	-40.1	6.1	$2-4$	$-46,3$	7． 1	\checkmark
6	-38.8	5.1	4－4	－30．6	1.6	\checkmark	-33.9	4.7	4	-40.1	6.7	$2 \cdot 1$	－ 5.4	10.6	\checkmark
7	-39.4	5.8	4－1	－39．6	7．8	\checkmark	-34.7	6.2	14	-40.1	5． 5	1－4	-5.1	12.1	\sim
8	－39．4	5.0	4－4	－30．4	6． 6	\checkmark	－34．4	5.8	4－1	-40.0	4． 1	1－4	－	8.3	\checkmark
9	-39.6	5.3	4－4	-3.4	6.9	\checkmark	-34.4	4.6	1－1	-40.1	16.7	\checkmark	－ 3 \％ 9	8.9	\checkmark
10	-42.0	6.4	4－4	-37.5	6.5	\smile	-35.9	5.7	4－4	-16.0	$\therefore 0$	\smile	－$\because 3.9$	ii． 8	2－1
11	-4.1	6.3	1－4	-36.7	5.8	\checkmark	-35.6	4.9	3－4	$-4: 3$	6.7	－	－Mi．0	7.4	：－4
Noon．	-42.1	5.9	2－4	-36.0	7．0	\checkmark	-37.0	5.4	$\because-4$	-11.9	6．5	\checkmark	－35．i	6.7	2－1
$1^{\text {b }}$	-42.6	6.5	2－4	-36.5	7． 6	\smile	-38.7	5.2	$\because-4$	－41．9	6． 1	\checkmark	$-36 .: 3$	5.9	4－1
2	-42.7	7.7	$2-4$	-36.7	6.5	\smile	-38.9	6． 0	2－4	-43.1	\bigcirc	\smile	－$\because 1$	4.5	4－4
3	-41.7	8.1	2－4	－35．4．	6.0	\checkmark	-3.8	6.3	－1	$-43 .: 3$	5．	\smile	-35.3	5.5	4－4
4	－41．1	6.5	3－4	－34．5	4.5	\checkmark	-38.4	6.1	－－4	－43． 5	6.9	\checkmark	-34.3	6.4	4－4
5	－40．9	6.6	2－4	－34．9	6.2	\smile	-3.3	5.9	8－1	$-3: 3.8$	5.3	\checkmark	-33.6	5． 1	4－4
\％	-41.1	7.3	3－4	－34．1	4.3	\checkmark	－3． 1	7.1	－4	-43.9	$\therefore 8$	\checkmark	－3．3 4	5.9	4－4
7	-40.0	6.6	3－4	$-3.1 .1$	5． 2	1－4	－3i． 6	5.1	－1	-44.1	6%	\checkmark	－3．3． 4	5.4	1－1
8	－39．1	5.8	3－4	－：3．1． 5	5.2	1－4	－3－1	4.7	$4-1$	－14．9	4.8	1－4	一澋． 1	5.1	4－4
9	－39．1	6.6	4－4	－34． 6	6.0	\checkmark	-33.8	5.2	3－4	－5． 1	7． 1	\checkmark	-33.1	4.9	$\because-4$
10	－38． 6	5.9	4－4	-34.1	6.6	\checkmark	－39．1	5.2	：-1	-42.8	4.7	1－4	－30．9	4.6	1－4
11	-37.4	4.0	3－1	－ 9	f． 0	\checkmark	－39．1	5.6	3－4	-44.6	6.5	1－4	－	3.9	1－4

Das.	FEBRUARY, 1873.														
	3.			4.			5.			6.			7.		
Hour.		\triangle	S.		\triangle	S.	烒	\triangle	S.	安	\triangle	S.	\%	\triangle	S.
$0{ }^{\text {h }}$	-27.1	4.6	2-4	-24.4	5.1	3-4	-19.4	5.1	4-4	-8.9	0.9	1-4	-32. 1	10.3	2-4
1	-0\%.0	5.7	$2-4$	-94.3	5.5	4-4	-18.5	6.5	4-4	-15.1	2.8	1-4	-31.4	9.9	4-4
2	-25.6	5.3	1-4	-23.4	5.8	4-4	-17.3	5.6	4-4	-18.6	5.3	\checkmark	- 0.1	8.9	4-4
3	-95.4	5.0	1-4	-29. 1	5.6	4-4	-17.5	5.8	3-4	-23.4	7.9	0	-2. 4	7.6	4-4
4	-2.51	4.7	1-4	-21.1	5.1	4-4	-170	5.6	4-4	--23.6	7.8	0	-251	8.6	4-4
5	-85.0	5.2	1-4	-90.4	5.3	4-4	-16.5	5. 3	3-4	-23.6	88	0	-20.6	4.6	4-4
6	- -29.2	5.2	2-4	-20.4	6.0	4-4	-15.4	4.4	3-4	-21.6	7.4	1-4	-21.1i	5.6	4-4
7	-23.1	3.5	3-4	-18.7	5.2	3-4	-15.6	4.5	4-4	-21.4	7.9	1-4	-83.9	6.9	4-4
8	-23.9	4.6	3-4	-20.1	5.7	--4	-15.5	4. 2	4-1	-17.9	6.6	1-1	-06. 1	8.6	4-4
9	-23.7	4.7	$3-4$	-19.0	3.3	2-4	-15.0	4.7	4-4	-14.5	5. 1	1-4	-26. 1	8.5	1-4
10	-23.1	4. 6	2-1	-99. 1	4.3	2.4	-14.1	4.6	4-4	-14.1	4.6	3-4	-89. 1	8.6	4-4
11	-23.1	4.5	2-4	-22.1	5.6	$2-4$	-13.9	4.4	4-4	-13.9	5.4	1-4	-95. 1	8.6	4-4
Noon.	-23.9	4.3	4-4	-26.3	6.1	$\bigcirc-1$	-13.1	3.6	4-4	-13.9	4.4	1-4	-29.3	8.7	4-4
$1^{\text {b }}$	-23.9	4.3	3-4	-25.9	6.4	$2-4$	-13.3	5.0	4-4	-16.9	4.4	$1-1$	-21.	7.8	4-4
2	-23. 1	4.7	3-4	-24.1	6.1	2-4	-13.1	4.5	4-4	-20.6	5.6	1-4	-20.9	2.2	4-4
3	-24.1	4.1	3-4	-25.9	6.1	2-4	-9.4	2.9	4-4	-23.3	7.8	\checkmark	-19.1	9.7	4-4
4	-24.9	4.7	3-4	-23.6	4.0	3-4	-8.3	4.3	4-1	-26.7	8.7	1-4	-12.5	10.3	4-4
5	-25.7	4.7	$9-4$	-21.6	5.1	4-4	-5. 1	3.6	4-4	-98.8	9.5	\smile	-9.1	6.	4-1
6	-26.4	5.0	3-4	-24.1	5.7	4-4	-4.1	1.6	3-4	-25.5	0.9	1-4	-8.3	5.3	4-4
7	-26.3	5.1	4-4	-23.6	6.3	4-4	-2.6	$2 .: 3$	2-4	-29.1	9.8	\checkmark	-9.1	4.1	4-4
8	-26.1	4.7	3-4	-29.4	6.1	4-4	-2.2	0.7	1-4	-31. 1	10.1	\checkmark	-12.3	(?)	3-4
9	-26.1	5.4	4-4	-20.9	5.7	4-4	-2.3	0.5	4-4	-31.9	10.6	\smile	-17.7	0.3	1-4
10	-26.3	4.7	4-4	-20.1	4.8	4-4	-1.9	0.7	2-4	-39.8	10.8	1-4	-23.9	0.9	$3-4$
11	-26.1	5.1	4-4	-20.1	5.5	4-4	-4.9	0.7	1-4	-33. 1	10.9	3-4	--90.9	4.4	2-4

Day.	FEBRUARY, 1873.														
	8.			9.			10.			11.			12.		
Slour.		\triangle	S.		\triangle	S.		\triangle	S.		\triangle	S.	烒	\triangle	S.
$0^{\text {b }}$	-33.1	6. 8	2-4	-14.0	4.7	-4	-31.5	8.5	\checkmark	-95.3	3.0	4-4	-39.1	6.3	2.4
1	-34.4	6.4	2-4	-14.0	4.4	2-4	-31.1	5.6	\smile	-2.3.1	7.1	4-4	-39.1	5.5	$\because-1$
2	-37.1	7.7	$2-4$	-14.1	4.6	$2-4$	-31.1	5.9	\checkmark	-21.6	5.8	4-4	-40.1	4.6	$2-4$
3	-39.6	8.0	2-4	-15.6	5.1	$\therefore-4$	-31.1	4.9	\smile	-20.8	5.6	4-4	-40.1	7.0	\cdots
4	-40.2	11.0	2-4	-15.6	4.4	$2-4$	-31.6	6.5	\smile	-19.3	10.6	4-4	$-3 \times .9$	7.3	思 1
5	-38.4	9.1	2-4	-15.7	4.9	1-4	-31.3	6.6	1-4	-15.1	5.6	4-4	-3र. 1	6.1	1-4
6	-38.9	9.5	2-4	-19.1	6.7	1-4	-30.3	7.8	1-1	-15.3	3.7	4-4	-32. 1	6.0	1-1
7	-35.1	7.2	2-4	-18.0	6.1	\checkmark	-97. 1	9.7	1-4	-16.9	4.3	4-4	-38.2	4.9	1-4
8	-34.4	7.9	2-4	-17.4	5.8	\checkmark	-26.9	6.4	1-4	-16.5	6.9	3-4	-39. 1	6.0	1-4
9	-33.4	7.6	2-4*	-29.3	7.9	\smile	-30.1	6.8	1-4	-15.1	6.1	4-4	-35.1	4.9	1-4
10	-33.7	8.2	$2-4$	-18.1	4.6	\checkmark	-25.1	10.6	2-4	-14.4	5.6	3-4	-38.9	5.5	\checkmark
11	-35.4	7.9	2-4	-23.3	6.1	\smile	-21.7	6.3	1-4	-14.1	4.7	3-4	-39.2	7.7	\checkmark
Noon.	-35.6	9.7	2-4	-25.1	5.0	\smile	-29.5	8.2	1-1	-14.1	4.5	4-4	$-3 \pm .0$	7.5	\checkmark
$1{ }^{\text {b }}$	-34.4	14.4	2-4	-26. 1	3.5	\smile	-31.0	4.5	1-4	-14.6	4. 0	4-4	-37.9	7.3	\checkmark
2	-34.4	10.9	4-4	-28. 4	4. 8	\smile	-30.1	5.9	1-1	-19.1	1.6	4-4	-37.1	8.6	\checkmark
3	-31.6	11.0	4-4	-22.4	2.7	\smile	-30.1	4.9	2-4	-20.6	1.9	4-4	-33.5.	5.7	\checkmark
4	-27.3	9.2	4-4	-99.5	5.5	\smile	-30.1	6.2	3-4	-93.6	3.1	3-4	-32.0	6.6	\checkmark
5	-23.0	7.6	4-4	-29.2	6.6	\smile	-99.9	6.4	4-4	-26.6	3.1	2-4	-30.3	5.4	\checkmark
6	-15.9	11.3	4-4	-23.9	6.5	\smile	-29.3	5.6	4-4	-30.3	2.9	\smile	-30.9	(?)	\checkmark
7	-19.1	7.6	4-4	-29.4	5.6	\smile	-29.4	4.7	4-1	-31.1	3.7	\checkmark	-34.7	2.7	\checkmark
r	-10.6	5.2	4-4	-31.2	9.0	\smile	-29.1	6.6	4-1	-37.3	6.8	\checkmark	-37.3	1.4	\smile
9	-11.1	3.7	4-4	-34.1	3.9	\smile	-28.3	5.7	4-4	-38.4	7.8	1-4	-39. ${ }^{\text {a }}$	5.0	\smile
10	-11.6	3.6	4-4	-35.0	6.3	\smile	-23.3	4.6	4-4	-38.1	7.2	1-4	-39.3	7.2	\checkmark
11	-12.3	4. 1	4-4	-31.9	9.1	1-4	-97.8	\% 8	4-4	- 2.3	4.3	2-4	$-3^{*} .4$	6.1	\smile

Das.	FEBRUARY, 1873.														
	13.			11.			15.			16.			17.		
Hour.		\triangle	S.		\triangle	S.		\triangle	S.		\triangle	S.		\triangle	S.
$0^{\text {b }}$	-3ミ.	4.1	\checkmark	-38.1	6.3	\checkmark	-39.6	6.4	\checkmark	-39.2	5.7	\checkmark	-36.11	4.8	$2-4$
1	-39.4	4.9	\checkmark	-38.7	5.3	\checkmark	-39.1	6. 6	\checkmark	-39.1	6.5	\checkmark	-36.4	5.6	$\bigcirc-4$
2	-34.6	6.6	\checkmark	-39. 1	6.3	\checkmark	-39.1	5.1	\checkmark	-38.4	4.9	\checkmark	-36.6	6.1	$\because-4$
3	-40.1	6.6	\smile	-37.9	6.9	\smile	-39.3	5.3	\smile	-38.7	6.0	\checkmark	-36.3	5.1	--4
4	-39.8	6.3	\checkmark	-37.3	7.3	\checkmark	-39.1	5.4	\checkmark	-40.0	7.5	\checkmark	-36.4	5.0	2-4
5	-39.7	6.5	\checkmark	-39.2	8.0	\checkmark	-39.2	5.7	\checkmark	-39.3	6.0	\checkmark	-36.7	5.4	1-4
6	-39.1	5.6	\checkmark	-38.9	7.0	\checkmark	-41.0	4.6	\smile	-38.4	7.9	1-4	-36.6	6.0	1-4
7	-39.1	6.8	\checkmark	-39.1	6.9	\checkmark	-40.9	4.3	\checkmark	-36.1	5.5	1-4	-36.0	6.7	1-4
z	-39.9	5.9	\smile	-37.9	6.6	\smile	-4]. 1	7.5	\checkmark	-37.0	4.9	1-4	-36.1	4.2	1-4
9	-40.3	5.6	\checkmark	-38.3	7.8	\smile	-41.3	6.3	\smile	-37.0	5.5	2-4	-36.7	4.5	1-1
10	-41.0	5.8	\checkmark	-37.7	7.3	\checkmark	-42. 1	6.5	\checkmark	-35.5	6.1	$2-1$	-36.1	5.6	1-4
11	-41.6	5.3	\checkmark	-36.4	5.1	\smile	-42.2	5.5	\checkmark	-34.9	5.9	2-4	--26. 4	5.7	1-4
Nooll.	-41.8	6.8	\smile	-37.3	4.8	\smile	-42.6	4.9	\checkmark	-33.1	4.3	2-4	-36.6	4. 6	1-4
$1^{\text {b }}$	-41.4	6.3	\smile	-37.6	5.0	\checkmark	-43.4	5.8	\checkmark	-33.2	3.9	$2-1$	-38.2	4.8	1-4
2	-41.1	6.6	\checkmark	-39.0	4.0	\checkmark	-43.6	8.3	\checkmark	-34.0	4.4	$2-4$	-39.1	5.5	1-4
3	-40.1	5.9	\checkmark	--39.4	E. 2	\checkmark	-41.9	6.9	\checkmark	-34.7	4.7	$2-4$	-39.5	4.8	1-4
4	-40.4	5.8	\checkmark	-32.9	6.6	\checkmark	-41.0	6.5	\checkmark	-34.9	4.6	3-4	-40.9	5.7	1-4
5	-41.1	6.1	\smile	-37.9	7.4	\checkmark	-40.1	4.5	\checkmark	-34.9	5.4	4-4	-41.1	7.8	\smile
6	-41.3	6. 1	\smile	-39.0	4.3	\checkmark	-41.1	7.5	\smile	-34.6	5.3	3-4	-40.6	6.4	\checkmark
7	-41.1	5.8	\checkmark	-40.9	7.7	\smile	-40.3	6.4	\checkmark	-34.9	4.7	3-4	-42. 1	5.6	\sim
8	-41.7	7.5	\checkmark	-39.9	6.1	\checkmark	-40.3	5.6	\smile	-34.8	5.3	3-1	-43.6	6.9	\checkmark
9	-40.5	7.7	\checkmark	-39.6	8.0	\checkmark	-40.9	5.9	\smile	-34.6	5.2	2-4	-42.9	8.0	\checkmark
10	-39.3	7.7	\checkmark	-39.1	5.3	\checkmark	-41.0	6.4	\smile	-34.9	5.3	1-4	-41.1	7.5	\checkmark
11	-3.3	6.2	\smile	-39.6	5.1	\smile	-40.5	7.0	\checkmark	-35.7	4.0	$2-4$	-40.4	6.4	\checkmark
	$\left\|\begin{array}{l} \Sigma, 966.4 \\ 11 ., 40.3 \end{array}\right\|$	$\begin{array}{r} 148.5 \\ 6.2 \end{array}$		$\begin{aligned} & \Sigma, 926.2 \\ & \mathbf{M}_{r,}, 38.6 \end{aligned}$	$\begin{array}{r} 153.5 \\ 6.4 \end{array}$		$\begin{aligned} & \Sigma, 980.7 \\ & \mathrm{M} ., 40.9 \end{aligned}$	$\begin{array}{r} 14.9 \\ 6.0 \end{array}$							

Day.	FEBRUARY, 1873.														
	18.			19.			20.			21.			22.		
Hour.		\triangle	S.		\triangle	S.		\triangle	S.		\triangle	S.		\triangle	S.
0^{4}	-37.9	5.5	\checkmark	-39.7	6.5	1-4	-37.6	6.0	\checkmark	-46.8	9.3	\checkmark	-43.9	8.6	\checkmark
1	-38.1	5.7	\checkmark	-39.4	4.9	1.4	-38.1	3.6	\checkmark	-46.1	7.6	\checkmark	-43.0	8.4	\checkmark
2	-39.9	7.4	\checkmark	-39.1	5.5	1-4	-39.9	5.3	\checkmark	-45.9	8.2	\checkmark	-41. 1	8.2	\smile
3	-37.9	6.3	\checkmark	-39.6	6.6	1-4	-40.9	4.7	\checkmark	-45.5	8.2	\checkmark	-39.4	6.9	\checkmark
4	-37.2	6.5	\checkmark	-39.9	5.4	1-4	-41.1	6.7	\checkmark	-45.8	8.3	\checkmark	-38.3	6.7	2-4
5	-37.1	5.6	\checkmark	-40.1	5.5	1-4	-41.1	6.5	\checkmark	-46.1	8.6	\checkmark	-37.1	6. 6	4-4
6	-37.4	3.9	\checkmark	-40.1	6.7	$9-4$	-40.9	6.9	\smile	-46.1	8.6	\smile	-36.9	5.9	4-4
7	-3×1	5.7	\smile	-39.3	8.0	2-4	-41.4	6.9	\checkmark	-45.9	10.1	\smile	-36.1	6.1	4-4
8	-3x 3	5.5	\checkmark	-37.7	6.2	$2-4$	-41.6	6.5	\checkmark	-45.1	11.1	\checkmark	-35.1	5.9	4-4
9	$-3 \pm .0$	5.4	\smile	-:i7.3	5.9	--4	-43.9	7.4	\checkmark	-43.1	8.4	\smile	-34.3	6.7	4-4
10	-37.8	6.5	\checkmark	-36.6	5.9	--4	-45.4	7.1	\smile	-42.9	7.0	\smile	-33.4	6.9	4-1
11	-37.4	6.0	\smile	-36.1	5.5	2-4	-46. 7	8.3	\checkmark	-43.9	7.4	\checkmark	-35.7	8.2	4-4
Noob.	-38.4	4.8	\checkmark	-36.1	5.6	$2-4$	-46.9	7.1	\checkmark	-43.9	7.4	\checkmark	-37.3	10.5	4-4
$1^{\text {b }}$	-39.1	5.6	\checkmark	-35.9	5.3	2-4	-47.4	6.8	\checkmark	-44.0	10.5	\smile	-32.0	5.6	4-4
2	-40.3	6.4	\checkmark	-35.4	5.4	2-4	-4.6	7.6	\smile	-43.9	E. 5	\checkmark	-31.9	5.9	4-4
3	-40.3	4.8	\smile	-34.9	5.5	1-4	-50.7	9.5	\checkmark	-43.3	7.7	\smile	-31.1	6.5	$4 \cdot 4$
4	-41.4	5.7	\checkmark	-3.1	3.4	1-4	-50.1	9.8	\smile	-44.1	7.4	\checkmark	-31.3	4.6	4-4
5	-42.1	6.8	\checkmark	-39.5	6.0	\checkmark	-50.2	8.7	\checkmark	-45.0	7.4	\smile	-31.7	4.9	4-4
6	-41.9	5.9	\smile	-40.0	6.5	\checkmark	-51.1	E. 6	\smile	-45.1	7.8	\checkmark	-31.4	5.5	4-4
7	-41.1	6.9	1-4	-39.8	5.6	\checkmark	-51.6	10.1	\checkmark	-45.9	7.4	\smile	-30.9	5.6	4-4
8	-40.4	6.2	1-4	-39.9	6.8	\checkmark	-50.9	10.:	\checkmark	-47.5	7.9	\checkmark	-30.0	6.0	4-1
9	-39.9	7.1	-4	-39.1	7.7	\checkmark	-50.0	9.7	\checkmark	-47.9	9.4	\smile	-23.6	6.6	4-4
10	-39.1	5.6	3-4	-41.1	と. 5	\checkmark	-49.3	9.1	\checkmark	-46.9	8.6	\smile	-26.6	6.5	4-4
11	-39.3	5.1	$2-4$	-37.1	6.2	\checkmark	-4R.1	9.9	\checkmark	-46.1	9.2	\checkmark	-25.1	5.6	4-4
							$\begin{aligned} & \Sigma, 1102.5 \\ & 31 ., 45.9 \end{aligned}$	$\frac{8.3 .3}{7.6}$		$\begin{array}{\|l\|} \hline \Sigma, 1086.8 \\ \mathrm{M}, 45.3 \end{array}$	$\begin{array}{r} 202.0 \\ 8.4 \end{array}$				

It having been impracticable, for want of time, to reduce the whole of the preceding observations, seven clear days were selected, the means of which will be found in the following table, in which $\mathrm{T}=$ the temperature, as indicated by the actiuometer; and $\mathrm{T}-\mathrm{A}=$ the difference between the readings of the actinometer and the temperature of the air.

Wate.	T	$\mathrm{T}-\mathrm{A}$
1-73.	\bigcirc	\bigcirc
Fehmary 13	-40.3	-6.2
14	25.6	6.4
15	40.9	6.0
$\because 0$	45.9	2.6
21	45.3	E. 4
23	45.9	9.6
$\because 4$	-46.3	9.6
Mean	- 43.3	-7.8

The mean temperature of the ail during the period under consideration was found to be $-350.5 \mathrm{~F} .=-37^{0.5}$ Cels.

We obtained the zenithal temperature by subtracting $1^{\circ} .1^{\prime 2}$ of the actinometric difference (-70.8 F .) from the reading of the actinometer, which may be considered practically the same as Pouillet's subtracting $\frac{9}{4}$ of the actinometric difference from the temperature of the air.

Hence the zenithal temperature $=-51^{\circ} .4$ F., or $-46^{\circ} .3$ Cels.

$$
\begin{aligned}
& "=1.0077 \text { or } \log a=0.0033=\frac{1}{390} \text { referred to Celsius's scale.* } \\
& \pi^{\prime \prime \prime}=0.90 \pi^{+}+0.9 \text { ã } \pi^{\prime \prime} \\
& \text { Assume for } y=-150^{\circ} \quad-135^{\circ} \text { Cels. } \\
& \log \pi^{\prime \prime}=-0.500 \quad-0.450 \\
& \log 0.65=+\underline{9.813}+\underline{9.813} \\
& 9.913 \quad 9.363 \\
& \begin{array}{rlc}
C & =0.206 & 0.231 \\
a^{\prime \prime \prime} & =\frac{0.701}{0.495} & \frac{0.701}{0.470} \\
a^{\prime} & =\begin{array}{ll}
0.550 & -0.522 \\
& -0.260
\end{array} & -0.242 \\
x & =-780.0 & -840.6 \text { Cels. } \\
\mathrm{A} & =-370.5 & -370.5 \text { Cels. } \\
y & =-132.5 & -1310.7 \text { Cels. } \\
\triangle & =-210.5 & -30.3 \text { Cels. }
\end{array} \\
& \text { For }-150 \triangle-21.5 \\
& -135 \triangle-3.3 \\
& +290.0 \\
& -49.5 \\
& \begin{array}{l}
y=+240:-18.2=-1320 \text { Cels., or }-206 \circ \mathrm{~F} . \\
-\quad 3=
\end{array}
\end{aligned}
$$

At Polaris Bay the temperature of space was found to be......... $-174^{\circ} \mathrm{F}$.
The observations taken at Polaris Honse gire...................... - -
By taking the mean, we obtain -190° F., or $-123 \circ$ Cels.
The value given by Pouillet $=-140$ Cels.
*For convenience' sake, wr nsed Celsins's seale, the fiual result being given in Fahrenheit degrees, like the rest.

FACE OF SKY

AND

STATE OF WEATHER.
-

FACE OF SKY AND STATE OF WEATHER AT POLARIS BAY.

The following record coutains the homly observations of the amount and kinds of clouds and the state of weather at Polaris Bay. The scale adopted is 0 to $4-4$; 0 indicating a clear sky; $1-4$, that it is one-fourth coveret ; $\because 4$, that it is half covered; $3-4$, that it is three-fourths covered; $4-4$, that it is wholly obscured. If the names of the clonds only are given, the cloudiness was less than one fourth. The order in which the different kinds of clouds follow each other rertically are indicated thus:
$1-4$ ci.-st.,
$1-4$ cum.,
$2-4$ st.,

which means that the cirro-stratus was the highest, the camulus the next following, etc. If we find recorded 1.4 | $\mathrm{ci} .$, |
| :--- |
| st. |

the quantity of cirms and stratus taken together amounted to abont one-fourth.
The montls of September and October, 1S71, were not taken into account in the tables following, as there were but three observations on record for each dar.

NOVEMBER, 1871
11as.

Das.	NOVEMBER, 1871.									
	16.		17.		18.		19.		20.	
17omr.		$$								
$0^{\text {h }}$	1-4 st.	Fair.	3-4 st.	Clondy.	\therefore S 4 st.	Cloudy.	$2-4$ st.	Fair.	4.4 st .	Clondy.
1	1-4 it.	Fair.	4-4 st.	Cloudy:	3-4 5 t.	Clomis.	3-4 st.	Clondy	3.4 st.	Clomaly
\because	0	Clear.	4-4 st.	C'londs.	8.4 st.	Clomis.	3-4 st.	Clomity.	4.4 st.	Clomers.
:	1-4 st.	Fair.	3-4 st.	Clondy	4-4 st.	Clours:	2-4 st.	Fair.	4-4 st.	Clandy.
4	0	Clear.	$\because-4$ st.	E'air.	2-4 st.	Fair.	- \ddagger st.	Fair.	3-4 st.	Clondy.
5	11	Clear.	2-4 st.	Fair.	: 3 -4 st.	Clonoty.	O-4 st.	Fair.	4-4 st.	Cloudy.
f)	1	Clear.	3-4 st.	Clouds.	$\therefore 4$ st.	Clomdy.	9.4 st.	Fair.	4-4 st.	Cloudy.
7	0	Clear.	S-4 st.	Clouly	2-1 st.	Fair.	3-1 st.	Clourly	4-4 st.	Cloudy.
Q	0	Clear.	3-4 st.	Clonds.	S-4 it.	Clondy.	3-4 st.	Clourly.	4-4 st.	Clonly.
9	11	Clear.	2-4 nt.	Fair.	3-4 st.	Clomery.	3-4 st.	Cloundy.	4-4 st.	(Cl moty
10	0	Clear.	4-4 st.	Clomity.	3-4 st.	Cloudy.	3-4 st.	Clonsts.		
11	0	Clear.	$\therefore-4$ st.	Clomoty:	44 st.	Clomly.				
Noon.	1-4 ci	Fair.	: $1-1 \mathrm{st}$.	Clondy.	4-4 it.	Claraty.				
$1^{\text {b }}$	$\because 4$ ci.	Fair.	4-4 st.	Clomidy.	2-4.i.-cam. - 4 st.	Lt.snow.				
2	$\begin{aligned} & 1-4 \text { ci.-cum. } \\ & \text { 1-4 st. } \end{aligned}$	Fair.	4-4 st.	Clondy	$\begin{gathered} 2-4 \text { ri.-fumı, } \\ =-4 \times 1 . \end{gathered}$	Lt. suow.				
3	$\begin{gathered} 1-4 \times \mathrm{i}_{1}-\cdots \mathrm{wm}, \\ \because-4 \text { st. } \end{gathered}$	Cloudy.	4-4 st.	Clonots:	2.4 st.	Fair.				
4	$\begin{aligned} & \text { 1-4 ci.-cum. } \\ & \quad \geq-4 \text { st. } \end{aligned}$	Cloudy	4-4 st.	Clonds.	2.4 st.	Fair.				
5	4-4 st.	Cloury.	$\begin{gathered} 1-4 \times \mathrm{i} .-\mathrm{r} 1 \mathrm{~mm} . \\ 3-4 \mathrm{st.} . \end{gathered}$	Cloudy.	S-4 st.	Fair.				
6	4-4 st.	Cloury	$\begin{aligned} & \text { 1-4 ci,-cum. } \\ & 3-4 \text { st. } \end{aligned}$	Clomis.	$2-4$ st.	Fair.				
i	:-1 st.	Cloudy,	$\begin{aligned} & \text { 1-1 ci.-cum. } \\ & : i-1 \text { st. } \end{aligned}$	Clomy,	3.1 st.	Clondy.				
४	: $:-4$ st.	Clorndy,	3-4 st.	Clouly	3-4 st.	Clondy				
9	:3-4 st.	Clondy,	3-4 st.	Cloudy.	3.4 st.	Cloudy.				
10	$3-4$ st.	Clemdy.	3-4 st.	Clondis.	3-4 st.	Clundy	3-4 st.	Cloudy.		
11	: 21.15	Clondy.	3-4 st.	Clonity.	P-1 st.	Fair.	3-4 st.	Clouds.		

〕!	NOVEMBER, 1871.									
	26.		27.		28.		29.		30.	
Honr.			$\begin{aligned} & \text { Amonit fond kind } \\ & \text { of clomes. } \end{aligned}$		$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$					
(f)		Cla ar	$\begin{gathered} 1-f \times i .-+1111 . \\ 1-f \text { st. } \end{gathered}$	F'air.		Chomity.	$4-4$ sit.	Clonily.	3.4 st.	Cloudy.
1	1.1 at.	Fair.	$\begin{gathered} 1-\frac{1}{1} \text { (i.-cum. } \\ 1-1 \text { st. } \end{gathered}$	Fiar.	$\begin{gathered} \because-1 \text { ri.-culul. } \\ \because-1 \text { st. } \end{gathered}$	(1096)	4-1 st.	Clomil	$\begin{gathered} 1-1 \text { cimm., } \\ 2 \text { t st. } \end{gathered}$	('lumly.
\because	1-1 it.	Fial.	$\begin{gathered} 1-4 \text { ei.cnim. } \\ 1-1 \text { st. } \end{gathered}$	Fair,	$\begin{gathered} 1-4 \text {-i,-cum. } \\ 1-4 \text { st. } \end{gathered}$	Clandy.	4.4 st.	CImmdy.	$\begin{gathered} 1-1 \cdot i \cdot-\text { c.min. } \\ 1-4 \text { st. } \end{gathered}$	Fair,
3	$\begin{gathered} 1-4, i, \cdots 1 m . \\ 1-4 \text { st. } \end{gathered}$	Fitir.	$\begin{aligned} & 1-4 \text { ci-evn". } \\ & 1-4 \text { st. } \end{aligned}$	Fair.		Clomily.	4-1 st.	Clomuly	$\begin{gathered} 3-1 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.
4	$\begin{aligned} & 8-4 \text { (i.-cmin. } \\ & 1-1 \text { st. } \end{aligned}$	Clomly	$\begin{gathered} 1-1 \text { ci.-cum. } \\ \text { st. } \end{gathered}$	Fair.	$\begin{aligned} & 1.4 \text { ci.-c1111.. } \\ & 1-4 \text { bt. } \end{aligned}$	Clomly	4-1 int.	C'loudy	$\begin{gathered} \because-1 \text { como., } \\ 1-4 \text { st. } \end{gathered}$	Chondy:
5	$\begin{gathered} \therefore \text { - } 1 \text { ci.-cum. }, \\ 1-4 \text { st. } . \end{gathered}$	C'luuty.	$\begin{aligned} & 1-4 \text { ci.-rulu. } \\ & 1-4 \text { st. } \end{aligned}$	Fuir.	$\begin{gathered} 1-t \text { ei-enum., } \\ \text { "-i st. } \end{gathered}$	Clomily.	$4-4$.	C'lonily.	$\begin{gathered} ?-4 \text { culu., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy,
15	$\begin{aligned} & 1-+ \text { ci.-cıuu., } \\ & 3-1 \text { st. } \end{aligned}$	Clondy	1-1 ci.-cım.	Fair.	$\therefore 1$ st.	Clomily.	4.1 st.	Cloudy.	$\begin{gathered} 3.4 \text { (ilme, } \\ 1-4 \text { st. } \end{gathered}$	CIondy.
7	f-1 st.	Clundy,	$\begin{gathered} 1-4 \text { ci.-cinio. } \\ 1-4 \text { st. } \end{gathered}$	Fair,	4.4 st.	Clomes.	4-4 st.	Clonily	$\begin{aligned} & 3-4 \text { cum., } \\ & 1-1 \text { st. } \end{aligned}$	Clourdy,
R	1-4 st.	Clouty.	$\begin{gathered} \text { 1-1 ci.-cum. } \\ \text { 1-1 st. } \end{gathered}$	Fair.	4-4 st.	Clourly.	4-4 st.	Chondy.	$\begin{gathered} 3.4 \text { cmin. } \\ 1-4 \mathrm{st} . \end{gathered}$	Clondy.
!	4-4 st.	(1)wnly.	1-1 ist.	Clear.	4-4 st.	Clomily	4-4 st.	Clondy	$\begin{gathered} 3-4 \text { cami. } \\ 1-4 \text { st. } \end{gathered}$	Clundy.
10	4-1 st.	Cloudy.	1-4 st.	Clear.	$4-4 \mathrm{st}$.	Clondy	4.4 st.	Clourly.	$\begin{aligned} & \because-1 \text { cume, } \\ & \because-4 \text { st. } \end{aligned}$	Cloudy.
11	4-4 st.	Lt. snow.	1-4 st.	Clear.	4-4 st.	Clondy.	44 st.	Clondy.	4-4 st.	Clondy.
Nomb.	4-4 st.	Lt. snow.	1-4 st.	Clear.	4-4 st.	Cloudy.	4-1 st.	Cluady,	f. 4 st.	Cluody.
$1^{\text {b }}$	1-1 st.	Lt. snow.	1-4 st.	Clab.	4-4 st.	Cloudy.	4-4 st.	Clondy.	$\begin{gathered} 1-4 \text { cum., } \\ \underset{\sim}{-1} 1 \text { st. } \end{gathered}$	Cloudy.
2	1-1 st.	Lt. nnow.	$1-4$ st.	Fair.	4-4 st.	Cloudy	$4-4$ st.	Clouily,	3-4 st.	Cloudy.
3	41 st.	Lt show.	4 ta .	Clondy	$\begin{aligned} & \text { 1-4 ai-cum. } \\ & \text { :3-4 st. } \end{aligned}$	Cloudy.	4-4 st.	Clordy.	$3-4$ st.	Clondy.
4	1.1 st.	Lt. -пा\%	1-1 st.	(1tonly	4-1 st.	(londy	d-1 ist.	CIonty	$\begin{gathered} 1-1 \text { ri...s. } \\ 1-4 \text { t. } \end{gathered}$	Pair.
$\stackrel{\square}{5}$	1.1 st.	Clomaly	$\therefore 1$ it.	(']anne:	1.1 st.	Clouly.	4-4 st.	Clondy.	$\begin{gathered} 1.4 \text { cim. } \\ 1-4 \mathrm{st.} \end{gathered}$	Fair.
i	$\left\|\begin{array}{c} 1-1 \text { ci.-chlo. } \\ 3-1 \text { st. } \end{array}\right\|$	Clondy.	$4-4$ st.	Clomly.	4.485	Cloudy.	4-4 st.	Clondy.	0	Clear.
7	$\begin{aligned} & \because 4 \text { ci-cam. } \\ & 1-4 \text { st. } \end{aligned}$	¢10.mb:	$\begin{gathered} 1-1 \text { ci.-cinm. } \\ 1-4 \text { st. } . \end{gathered}$	Fair.	$\begin{aligned} & 1-4 \text { i.-cmm, } \\ & \quad \because 4 \text { st. } \end{aligned}$	Clouly.	3-4 st.	Cloudy.	0	Clear.
\cdots	$\begin{gathered} ?-1 \text { (-i.-enm, } \\ 1-4 \text { st. } \end{gathered}$	Clomers.	$\begin{aligned} \because-1 & \text { ri.-cum }, \\ & 1-4 \mathrm{nt.} . \end{aligned}$	Fair.	$4-4$ st.	('loudy.	$2-4 \mathrm{ci}, 1-4 \mathrm{st}$.	Clomer	1-4 ci.-cım.	Fair.
9	$\begin{gathered} \text { 2-4 i.i.enom., } \\ 3-4 \text { st. } \end{gathered}$	CIondy		Fair,	t-1 st.	(10nuly.	$\begin{gathered} 1-4 \text { cmm. } \\ 3-4 \mathrm{st.} \end{gathered}$	Clomily	$1-4$ ci.-cnm.	Fair.
10	$\begin{gathered} \because \text { i, i.-e.min. } \\ 1-4 \mathrm{st} . \end{gathered}$	Clomer	$\begin{gathered} 2-4 \text { (i.-cum., } \\ \text { 1-4 } \times t . \end{gathered}$	Fair.	1.1 st.	C'lumbr.	$4-4 \mathrm{st}$.	Clome	1-1 st.	Fair.
11	$\left\lvert\, \begin{gathered} \because 1 \\ 1-i-\cot 111 \\ 1-4 \end{gathered}\right.$	Clonds	4-1 st.	Fait,	4-4 st.	Clonds.	4-4 st.	Clanly		F'air.

Day.	DECEMBER, 1871.									
	1.		2.		3.		4.		5.	
Hour.									$\begin{aligned} & \vec{B} \\ & \text { n } \\ & 0 \end{aligned}$	
$0^{\text {b }}$	1-4 ci.-cum.	Fair.			1-4 st.	Hazy.	4-4 st.	Clouds.	3-4 st.	Cloudy
1	1-4 ci.	Fair.		3-4 st.	Clourly.	44 st.	Clouds.	4-4 st.	Cloudy.
2	1-4 ci..cum.	Fair.			3-4 st.	Cloudy.	4-4 st.	Cloudy.	3-4 st.	Cloudy.
3	1-4 cum.	Fair.	$\begin{gathered} 3-4 \text { ci.-cum., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	3-4 st.	Clondy.	3-4 st.	Cloudy.	$\begin{gathered} 1-4 \text { ci.-cum., } \\ 3-4 \text { st. } \end{gathered}$	Cloudy.
4	1-4 ci.-cum.	Fair.	$\underset{\substack{3-4 \\ 1-4 \\ 1-4 \\ \text { st. }}}{ }$	Cloudy.	3-4 st.	Cloudy.	4-4 st.	Cloudy.	$\begin{gathered} 1-4 \text { ci.-cumı. } \\ \vdots-4 \text { st. } \end{gathered}$	Cloudy.
5	$\begin{gathered} 1-4 \text { ci.-cuuuı, } \\ 1-4 \text { st. } \end{gathered}$	Fair.	4-4 ci.-cum.	Cloudy.	3-4 st.	Clondy.	4-4 st.	Cloudy.	$\begin{gathered} 1-4 \text { ci..cum. } \\ 2-4 \text { st. } \end{gathered}$	Cloudy.
6	1-4 st.	Fair.	$\left\lvert\, \begin{gathered} 3-4 \text { ci.-cnm., } \\ 1-4 \mathrm{st} . \end{gathered}\right.$	Cloudg.	3-4 st.	Clondy.	4-4 st.	Cloudy.	1-4 ci.-cum.	Fair.
7	3-4 st.	Cloudy.	$\begin{gathered} 1-4 \text { st., } \\ 3-4 \text { cum.-st. } \end{gathered}$	Cloudy.	1-4 st.	Hazy.	4-4 st.	Cloudy.	$\left\lvert\, \begin{gathered} 1-4 \text { ci.-cum., } \\ 1-4 \text { st. } \end{gathered}\right.$	Fair.
8	$3-4$ st.	Cloudy.	$\left\lvert\, \begin{gathered} 1-4 \text { st., } \\ 3-4 \text { cum.-st. } \end{gathered}\right.$	Cloudy.	1-4 st.	Fair.	4-4 st.	Cloudy.	$\begin{gathered} 1-4 \text { ci.-cum. } \\ \underset{2}{ }-4 \text { st. } \end{gathered}$	Cloudy.
9	3-4 st.	Clondy.	$\begin{gathered} 3-4 \text { ci.-cumı., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	1-4 st.	Hazy.	3 4 st.	Cloudy.	$2-4$ ci.-cum.	Fair.
10	$3-4$ ci.	Hazy.			1-4 st.	Hazy.	$4-4$ st.	Cloudy.	2-4 st.	Fair.
11	2-4 ci.	Hazs.			1-4 st.	Hazy.	4-4 st.	Cloudy.	2-4 st.	Fair.
Noon.	1-4 st.	Hazy.			$\begin{gathered} 1-4 \text { ci.-cum. }, \\ 3-4 \text { st. } \end{gathered}$	Hazs.	4-4 st.	Cloudy.	3-4 st.	Clouds.
$1^{\text {b }}$					4-4 st.	Cloudy.	4-4 st.	Cloudy.	2-4 st.	Fair.
2				3-4 st.	Cloudy.	4-4 st.	Clondy.	3-4 st.	Cloudy.
3					4-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
4					4-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
5					4-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
6					3-4 st.	Cloudy.	3-4 st.	Clondy.	4-4 st.	Cloudy.
7					2-4 st.	Fair.	3-4 st.	Cloudy.	3-4 st.	Clondy.
8					3-4 st.	Clondy.	$3-4$ st.	Cloudy.	4-4 st.	Cloudy.
9					3-4 st.	Clondy.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
10					3-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Clondy.
11					4-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Cloudy.

Day.	DECEMBER, 1871.									
	6.		\%		8.		9.		10.	
Hour.	$\begin{gathered} \text { spuop jo } \\ \text { pu!耳 pas qumomy } \end{gathered}$								$\begin{aligned} & \text { Amonnt and lime } \\ & \text { of clouds. } \end{aligned}$	
$0^{\text {b }}$	4-4 st.	Cloudy.	1-4 8 t .	Fair.	1-4 st.	Fair.	2-4 st.	Fair.	2-4 st.	Fair.
1	4-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.	$2-4 \mathrm{st}$.	Fair.	2-4 st.	Fuir.
2	4-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Fair.	2-4 st.	Eair.
3	4-4 st.	Cloudy.	0	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Fail.
4	4-4 st.	Cloudy.	1-4 st.	Fiair.	1-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Eair.
5	4-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.	$2-4 \mathrm{st}$.	Fair.	2-4 st.	Fair.
6	$1-4 \mathrm{st}$.	Fair.	1-4 st.	Frair.	1-4 st.	Fair.	2-4 st.	Fuir.	2-4 st.	F'air.
7	0	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.
8	$1-4 \mathrm{st}$.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.
9	0	Clear.	0	Clear.	$1-4 \mathrm{st}$.	Fair.	$2-4 \mathrm{st}$.	Fair.	1-4 st.	Fair.
10	0	Clear.	0	Clear.	$1-4 \mathrm{st}$.	Fair.	3-4 st.	Fair.	1-4 st.	Fair.
11	0	Clear.	0	Clear.	0	Clear.	3-4 st.	Cloudy.	1-4 st.	Fair.
Noon.	0	Clear.	0	Clear.	1-4 st.	Fair.	4-4 st.	Cloudy.	1-4 st.	Fair.
$1^{\text {h }}$	0	Clear.	0	Clear.	1-4 st.	Fair.	3.4 st.	Cloudy.	1-4 st.	Fair.
2	0	Clear.	0	Clear.	1-4 st.	Fair.	4-4 st.	Clondy.	3-4 st.	Cloudy.
3	0	Clear.	0	Clear.	1-4 st.	Fair.	4-4 st.	Clonảy.	4-4 st.	Cloudy.
4	0	Clear.	0	Clear.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
5	0	Clear.	0	Clear.	1-4 st.	Fair.	3-4 st.	Clondy.	4-4 st.	Cloudy.
6	0	Clear.	0	Clear.	1-4 st.	Fuir.	4-4 st.	Cloudy.	4-4 st.	Clourly.
7	0	Clear.	0	Clear.	1-4 st.	Fair.	4-4 st.	Lt. snow.	4-4 st.	Cloudy.
8	1-4 st.	Fair.	1-4 st.	Fair.	$2-4$ st.	Fair.	4-4 st.	Cloudy.	3-4 st.	Cloudy.
9	1-4 st.	Fair.	1-4 st.	Fair.	$\because-4$ st.	Fair.	4-4 st.	Lt. snow.	$2-4$ st.	Fair.
10	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	2.4 st.	Fair.
11	1-4 st.	Fair.	1-4 st.	Fuir.	1-4 st.	Fair.	3-4 st.	Cloudy.	4-4 st.	Cloudy.

Day.	DECEMBER, 1871.									
	11.		12.		13.		11.		15.	
Date.					Z B 3 3 3					$\begin{gathered} 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$
0^{11}	4-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Lt. suow.	1-4 st.	Fair.
1	4-4 st.	Clondy.	4-4 st.	Clouds.	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	$1-4 \mathrm{st}$.	Fair.
2	2-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Clondy.	4-4 st.	Cloudy.	1-4 st.	Fair.
3	3-4 st.	Cloudy.	4-4 st.	Cloudy.	2-4 st.	Fair.	3-4 st.	Cloudy.	1-4 st.	Fair.
4	3-4 st.	Cloudy.	3-4 st.	Clonds.	2-4 st.	Fair.	2-4 st.	Fair.	4-4 st.	Clouds.
5	3-4 st.	Cloudy.	2-4 st.	Fair.	2-4 st.	Fair.	4-4 st.	Cloudy.	1-4 st.	Fair.
6	3-4 st.	Clondy.	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Hazy.	1-4 st.	Fair.
7	3-4 st.	Cloudy.	3-4 st.	Cloudy.	1-4 st.	Fair.	3-4 st.	Hazy.	$1-4 \mathrm{st}$.	Fair.
8	3-4 st.	Cloudy.	4-4 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Hazy.	1-4 st.	Fair.
9	4-4 st.	Cloudy.	4-4 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Hazy.	1-4 st.	Fair.
10	4-4 st.	Cloudy.	4-4 st.	Cloudy.	3-4 st.	Cloudy.	3-4 st.	Cloudy.	1-4 st.	Fair.
11	3.48 st .	Clouds.	$2-4$ st.	Fair.	3-4 st.	Cloudy.	3-4 sti.	Cloudy.	1-4 st.	Fair.
Noon.	34 st.	Cloudy.	1-4 st.	Fair.	3-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.
$1^{\text {b }}$	3-4 st.	Cloudy.	0	Clear.	2-4 st.	Hazy.	2-4 st.	Hazy.	1-4 st.	Fair.
2	3-4 st.	Clouds.	0	Clear.	4-4 st.	Hazy.	2-4 st.	Hazy.	2-4 st.	Fair.
3	3-4 st.	Clourly.	0	Clear.	4-4 st.	Clouds.	1-4 st.	Fair.	2-4 st.	Fair.
4	4-4 st.	Clondy.	0	Clear.	2-4 st.	Fair.	2-4 st.	Hazy.	3-4 st.	Clondy.
5	4-4 st.	Cloudy.	0	Clear.	2-4 st.	Hazy.	2-4 st.	Fair.	3-4 st.	Cloudy.
6	4-4 st.	Cloudy.	0	Clear.	2-4 st.	Fair.	$1-4 \mathrm{st}$.	Fair.	3-4 st.	Cloudy.
7	3-4 st.	Cloudy.	0	Clear.	4-1 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Fair.
8	$3-4$ st.	Clouds.	1-4 st.	Fair.	4-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.
9	$2-4 \mathrm{st}$.	Fair.	2-4 st.	Finir.	4-4 st.	Lt. suow.	$2-4$ st.	Fair.	2-4 st.	Fair.
10	2.4 st.	Fair.	0	Clear.	4-4 st.	Clondy.	2-4 st.	Fair.	1-4 st.	Fair.
11	3-4 st.	Clondy.	4-4 st.	Hazy.	4-4 st.	Lt. show	Q-4 st.	Fair.	1-4 st.	Fair.

Day.	DECEMEER, 1871.									
	16.		17.		18.		19.		20.	
Hour.										
0^{4}	2-4 st.	Hazy.	4-4 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Fair.	3-4 st.	Clouds.
1	4-4 st.	Clondy.	4-4 st.	Clondy.	1-4 st.	Fair.	2-4 st.	Fair.	2-4 st.	Fair.
2	4-4 st.	Cloudy.	4-4 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Fair.	2-4 st.	Fair.
3	4-4 st.	Cloudy.	4-4 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.
4	4-4 st.	Cloudy.	3-4 st.	Cloudy.	1-4 st.	Fair.	4-4 st.	Cloudy.	1-4 st.	Fair.
5	$2-4 \mathrm{st}$.	Hazy.	3-4 st.	Cloudy.	1-4 st.	Fair.	4-4 st.	Clourly.	1-4 st.	Fair.
6	3-4 st.	Cloudy.	2-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Hazy.	1-4 st.	Fair.
7	2-4 st.	Hazy.	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Cloudy.	1-4 st.	Fair.
8	2-4 st.	Hazy.	$1-4 \mathrm{st}$.	Fair.	1-4 st.	Fair.	3-4 st.	Cloudy.	1-4 st.	Fair.
9	2-4 st.	Hazy.	2.4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Cloudy.	1-4 st.	Fair.
10	3-4 st.	Cloudy.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clondy.	1-4 st.	Fair.
11	2-4 st.	Hazy.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	1-4 st.	Fair.
Noon.	2-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Cloudy.	4-4 st.	Clondy.	1-4 st.	Fair.
$1^{\text {b }}$	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Cloudy.	4-4 st.	Hazy.	1-4 st.	Fair.
2	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clondy,	4-4 st.	Hazy.	1-4 st.	Fair.
3	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clondy.	4-4 st.	Hazy.	2-4 st.	Fair.
4	1-4 st.	Finit.	1-4 st.	Fair.	3-4 st.	Cloudy.	4-4 st.	Clourly.	3-4 st.	Clondy.
5	2.4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	3-4 st.	Clouds.
6	2-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Hazy.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
7	3-4 st.	Hazy,	1-4 st.	Fair.	2-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Hazy.
8	2-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
9	2-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Eair.	4-4 st.	Cloudy.	4-4 st.	Clondy.
10	3-4 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Fair.	4-4 st.	Cloudy.	3-4 st.	Cloudy.
11	3-4 st.	Cloudy,	1-4 st.	Fair.	2-4 st.	Fair.	4-4 st.	Cloudy.	3-4 st.	Cloudy.

Day.	DECEMBER, 1871.									
	21.		22.		23.		24.		25.	
Hour.	$\begin{gathered} \text { spnopejo } \\ \text { pп! pue qunomy } \end{gathered}$		puị $\begin{gathered}\text { spnop jo } \\ \text { pue quamy }\end{gathered}$		$\begin{gathered} \text { spnofo jo } \\ \text { pa!y pue fanotay } \end{gathered}$					
$0^{\text {b }}$	2-4 st.	Fair.	2-4 st.	Fair. ${ }^{\text { }}$	1-4 st.	Hazy.	4-4 st.	Cloudy.	0	Clear.
1	0	Clear.	1-4 st.	Fair.	2-4 st.	Hazy.	4-4 st.	Cloudy.	0	Clear.
2	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.	0	Clear.
3	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Clondy.	0	Clear.
4	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Clondy,	3-4 st.	Cloudy.	0	Clear.
5	1-4 st.	Fair.	1-4 st.	Fair.	$1-4 \mathrm{st}$.	Fair.	3-4 st.	Cloudy.	0	Clear.
6	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	1-4 st.	Fair.
7	0	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Lt. suow.	1-4 st.	Fair.
8	0	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Lt. snow.	1-4 st.	Fair.
9	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Cloudy.	4-4 st.	Lt. suow.	2-4 st.	Fair.
10	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clouds.	4-4 st.	Cloudy.	$\begin{aligned} & 1-4 \text { ci.-st., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.
11	1-4 st.	Fair.	0	Clear.	4-4 st.	Cloudy,	$\begin{gathered} \text { 1-4 ci.-cum. } \\ 2-4 \text { st. } \end{gathered}$	Cloury.	3-4 st.	Fair.
Noon.	1-4 st.	Fair.	0	Clear.	4-4 st.	Cloudy,	$\begin{aligned} & 1-4 \mathrm{ci}, \\ & 1-4 \text { st. } \end{aligned}$	Fair.	2-4 st.	Fair.
$1{ }^{\text {h }}$	0	Clear.	0	Clear.	4-4 st.	Cloudy.	$\begin{aligned} & \text { 1-4 ci.-cumu., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	2-4 st.	Fair.
2	0	Clear.	0	Clear.	4-4 st.	Cloudy.	$\begin{gathered} 1-4 \text { ci.-cumı. } \\ 1-4 \text { st. } \end{gathered}$	Fair.	2-4 st.	Fair.
3	0	Clear.	0	Clear.	4-4 st.	Cloudy.	$\begin{aligned} & 2-4 \text { ci.-cum., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	2-4 st.	Fair.
4	0	Clear.	0	Clear.	4-4 st.	Clondy.	$\begin{aligned} & 1-4 \text { ci.-crun., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	$\cdots-4$ st.	Fair.
5	2-4 st.	Fair.	0	Clear.	4-4 st.	Cloudy.	$\left\{\begin{array}{c} 1-4 \text { ci.-cum. } \\ 1-4 \mathrm{st} . \end{array}\right.$	Fair.	0	Clear.
6	2-4 st.	Fair.	0	Clear,	4-4 st.	Cloudy.	$1-4 \mathrm{ci} .$ $1-4 \mathrm{st} \text {. }$	Fair.	0	Clear.
7	2-4 st.	Fair.	0	Clear.	4-4 st.	Cloudy.	$\begin{gathered} \text { 1-4 ci.-cum. } \\ 1-4 \text { st. } \end{gathered}$	Fair.	0	Clear.
8	1-4 st.	Fair.	0	Clear.	4-4 st.	Cloudy.	1-4 ci.-cum.	Fatir.	0	Clear.
9	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	$\begin{aligned} & \text { 1-4 ci.-cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	1-4 st.	Fair.
10	2-4 st.	Fair.	1-4 st.	Hazy.	4-4 st.	Clouds.	$1-4$ st.	Fair.	2-4 st.	Fair.
11	2-4 st.	Fair.	1-4 st.	Hazy.	4-4 st.	Cloudy.	0	Clear.	4-4 st.	Fair.

Das.	DECEMBER, 1871.									
	26.		27 .		28.		29.		30.	
Hour.	$\begin{gathered} \text { spuop } 10 \\ \text { pa!y pue funouy } \end{gathered}$		$\begin{gathered} \text { spuop jo } \\ \text { pary pue quanomy } \end{gathered}$						0 30 0 0 0 0 0 0 0	
$0^{\text {h }}$	4-4 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Fair.	2-4 st.	Fair.	0	Clear.
1	4-4 st.	Cloudy.	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.	0	Clear.
2	3-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.
3	3-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.
4	$\begin{gathered} 1-4 \text { ci.-cım. } \\ 3-4 \text { st. } \end{gathered}$	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.
5	$\begin{gathered} 1-4 \text { ci.-cum., } \\ 3-4 \text { st. } \end{gathered}$	Cloudy.	3-4 st.	Cloudy.	0	Clear.	1-4 st.	Fair.	1-4 st.	Fair.
6	$\left\{\begin{array}{c} 1-4 \text { ci.-cum., } \\ 3-4 \text { st. } \end{array}\right.$	Clouds.	3-4 st.	Cloudy.	0	Clear.	1-4 st.	Fair.	1-4 st.	Fair.
7	$\begin{gathered} 2-4 \text { ci.-cum. } \\ 2-4 \text { st. } \end{gathered}$	Clouds.	4-4 st.	Hazy.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.
8	$\begin{aligned} & \text { 1-4 ci.-cum. } \\ & 3-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Hazs.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.
9	$\begin{aligned} & \text { 2-4 ci.-cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Cloudy.	$\begin{gathered} \text { 1-4 ci.-cum., } \\ 1-4 \text { st. } \end{gathered}$	Hazy.	1-4 st.	Fair.	1-4 st.	Fair.
10	$\begin{gathered} 3-4 \text { ci.-cum., } \\ 1-4 \text { st. } \end{gathered}$	Clonds.	$\begin{aligned} & 1-4 \text { ci.-cum., } \\ & 3-4 \text { st. } \end{aligned}$	Clouds.	1-4 st.	Fair.	0	Clear.	1-4 st.	Fair.
11	$\begin{aligned} & 3-4 \text { ci.-cnm., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	$\begin{gathered} 1-4 \text { ci-cumm., } \\ 3-4 \end{gathered}$	Clondy.	1-4 st.	Fair.	0	Clear.	1-4 st.	Fair.
Noon.	$\begin{aligned} & \text { 2-4 ci.-cum., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Clonds.	2-4 st.	Fair.	0	Clear.	0	Clear.
$1^{\text {b }}$	3-4 ci.-cum.	Cloudy.	4-4 st.	Cloudy.	$\begin{gathered} \text { 2-4 ci.-cum., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	0	Clear.	0	Clear.
2	3-4 ci.-cum.	Clondy.	0	Clear.	2-4 st.	Fair.	0	Clear.	0	Clear.
3	1.4 st.	Fair.	0	Clear.	2-4 st.	Fair.	0	Clear.	0	Clear.
4	0	Clear.	0	Clear.	1-4 st.	Fair.	0	Clear.	0	Clear.
5	0	Clear.	0	Clear.	3-4 st.	Cloudy.	0	Clear.	0	Clear.
6	0	Clear.	0	Clear.	3-4 st.	Clondy.	0	Clear.	0	Clear.
7	0	Clear.	0	Clear.	4-4 st.	Cloudy.	0	Clear.	0	Clear.
8	0	Clear.	0	C'lear.	4-4 st.	Clourly.	0	Clear.	0	Clear.
9	0	Clear.	0	Clear.	4-4 st.	C'londy.	0	Clear.	0	Clear.
10	0	Clear.	1-4 st.	Fair.	3-4 st.	Clonds.	0	Clear.	0	Clear.
11	1-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Cloudy.	0	Clear.	0	Clear.

Day.	DECEMBE	, 1871.	JANUARY, 1872.							
	31.		1.		玉.		3.		1.	
Honr.										
$0^{\text {b }}$	1-4 st.	Fair.	1-4 ci.-cum.,	Fair.	0	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
1	1-4 st.	Fair.	$\begin{gathered} \text { 1-4 ci.-eumı., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	0	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
2	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clondy.	4-4 st.	Cloudy.
3	1-4 st.	Fair.	2-4 st.	Fair.	0	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
4	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
5	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
6	1-4 st.	Fair.	$2-4$ st.	Fair.	$\begin{gathered} 1-4 \text { ci -cum. } \\ 1-4 \text { st. } \end{gathered}$	Fair.	4-4 st.	Cloudy.	2-4 st.	Fair.
7	0	Clear.	2-4 st.	Fair.	$\begin{gathered} 1.4 \text { ci.cum. } \\ 1-4 \text { st. } \end{gathered}$	Clondy.	4-4 st.	Cloudy.	1-4 st.	Fair.
8	1-4 st.	Fair.	1-4 st.	Fair.	$\begin{gathered} 2-4 \text { ci.-cum., } \\ 1-4 \text { st. } \end{gathered}$	Clondy.	4-4 st.	Cloudy.	1-4 st.	Fair.
9	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Cluady.	4-4 st.	Cluady.	1-4 st.	Fair.
10	1-4 cum.	Fair.	$\begin{aligned} & \text { 1-4 ci.-cum., } \\ & 1-4^{*} \text { st. } \end{aligned}$	Cloudy.	$\begin{aligned} & 1-4 \text { ci.-cum., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	4-4 st.	Cloudy.	0	Clear.
11	1-4 cum.	Fair.	$\begin{aligned} & 1-4 \text { ci -cumu., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	1-4 st.	Fair.	4-4 st.	Cloudy.	0	Clear.
Noon.	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	0	Clear.
$1{ }^{\text {b }}$	1-4 st.	Fair.	2-4 st.	Fair.	2-4 st.	Fair.	4-4 st .	Cloudy.	0	Clear.
2	1-4 st.	Fair.	$\begin{aligned} & 1-4 \text { ci.-cum. } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	2-4 st.	Fair.	4-4 st.	Cloudy.	0	Clear.
3	1-4 st.	Fair.	$\begin{aligned} & \text { 1-4 ci.-cnm. } \\ & 2-4 \text { st. } \end{aligned}$	Hazy.	2-4 st.	Fail.	4-4 st.	Cloudy,	0	Clear.
4	1-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Fair.	4-4 st.	Cloudy.	0	Clear.
5	1-4 st.	Fair.	1-4 st.	Clear.	3-4 st.	Cloudy.	4-4 st.	Cloudy.	1-4 st.	Fair.
6	1-4 st.	Fair.	0	Clear.	3-4 st.	Cloudy.	4-4 st.	Cloudy.	0	Clear.
7	1-4 st.	Fair.	0	Clear.	3-4 st.	Cloudy.	4-4 st.	Cloudy:	0	Clear.
8	1-4 st.	Fair.	0	Clear.	3-4 st.	Clouly.	4-4 st.	Clondy.	1-4 st.	Fair.
9	1-4 st.	Fair.	0	Clear.	4-4 st.	Cloudy.	4-4 st.	Cluady.	1-4 st.	Fair.
10	$\because-1$ st.	Fair.	0	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudy.	1-4 st.	Fair.
11	$\begin{gathered} 1-4 \text { ci.-cum. } \\ 1-4 \mathrm{st} . \end{gathered}$	Fair.	0	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudy.	1-4 st.	Fair.

Day.	JANUARY, 1872.									
	5.		6.		\%		8.		9.	
Hour.	$\begin{gathered} \text { spnopo jo } \\ \text { puty pue funour } \end{gathered}$		$\begin{gathered} \text { spnop yo } \\ \text { pu!y pue quiouy } \end{gathered}$		$\begin{aligned} & \text { Amount and kind } \\ & \text { of clouds. } \end{aligned}$					
$0^{\text {h }}$	1-4 st.	Fair.	3-4 st.	Cloudy.	0	Clear.	1-4 st.	Fiar.	0	Clear.
1	2-4 st.	Fair.	2-4 st.	Fair.	0	Clear.	1-4 st.	Fair.	0	Clear.
2	2-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	0	Clear.
3	2-4 st.	Fair.	1-4 st.	Fair.	0	Clear.	0	Clear.	0	Clear.
4	3-4 st.	Cloudy.	1-4 st.	Fair.	0	Clear.	0	Clear.	0	Clear.
5	3-4 st.	Clondy.	1-4 st.	Fair.	0	Clear.	1-4 st.	Fair.	0	Clear.
6	3-4 st.	Cloudy.	1-4 st.	Fair.	0	Clear.	1-4 st.	Fair.	0	Clear.
7	4-4 st.	Cloudy.	1-4 st.	Fair.	0	Clear.	1-4 st.	Fair.	0	Clear.
8	4-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	0	Clear.
9	3-4 st.	Clondy.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	0	Clear.
10	3-4 st.	Clouds.	1-4 st.	Fair.	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.
11	3-4 st.	Cloudy.	1-4 st.	Fair.	0	Clear.	2-4 st.	Fair.	1-4 st.	Fair.
Noon.	3-4 st.	Clondy.	1-4 st.	Fair.	0	Clear.	$2-4$ st.	Hazy.	1-4 st.	Fair.
$1^{\text {b }}$	3-4 st.	Cloudy.	1-4 st.	Fair.			3-4 st.	Lt. snow.	1-4 st.	Fair.
2	3-4 st.	Cloudy.	1-4 st.	Fair.			3-4 st.	Lt. snow.	1-4 st.	Fair.
3	2-4 st.	Fair.	1-4 st.	Fair.			3-4 st.	Lt. suow.	0	Clear.
4	$2-4$ st.	Fair.	1-4 st.	Fair.			3-4 st.	Hazy.	0	Clear.
5	2-4 st.	Fair.	1-4 st.	Fair.			3-4 st.	Lt. snow.	0	Clear.
6	2-4 st.	Fair.	1-4 st.	Fair.			3-4 st.	Hazy.	0	Clear.
7	2-4 st.	Fair.	1-4 st.	Fair.			1-4 st.	Fair.	0	Clear.
8	2-4 st.	Fair.	1-4 st.	Fair.			1-4 st.	Fair.	0	Clear.
9	3-4 st.	Cloudy.	2-4 st.	Fair.			1-4 st.	Fair.	0	Clear.
10	4-1 st.	Hazy.	0	Clear.			0	Clear.	0	Clear.
11	$3-4$ st.	Cloudy.	0	Clear.			0	Clear.	0	Clear.

3

Day.	JANUARY, 1872.				FEBRUARY, 1872.					
	30.		31		1.		4.		3.	
Honr.			$\begin{aligned} & \text { Auount ams kind } \\ & \text { of clouls. } \end{aligned}$		$\begin{aligned} & \text { 3 } \\ & \text { 3 } \\ & 3 \\ & 3 \end{aligned}$					
(1)	: 2 -4 st.	tlazy.	- -4 st.	Cloudy.	1-4 st.	Fair.	$1-4$ st.	J`air.	$1-4 \mathrm{st}$.	Fair.
1	2.1 st.	Cloudy.	$2-4$ st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.
2	i-1 st.	Hazy.	$\begin{gathered} 1-4 \text { ci.-cımв. } \\ \because-4 \text { st. } \end{gathered}$	Cluady.	1-4 st.	Fair.	1.14 st .	Fair.	1-4 st.	Fair.
3	4-4 st.	Cloudy.	$\begin{gathered} 2-1 \text { ci.cnm. } \\ 2-1 \text { st. } \end{gathered}$	Clondy.	3-4 st.	Fair.	1-4 st.	Fair.	0	Clear.
4	4-4 st.	Cloudy.	$\begin{aligned} & 2-4 \text { ci-cum. } \\ & :-4 \text { st. } \end{aligned}$	Clonds:	$2-4$ st.	Fair.	1-4 st.	Fair.	0	Clear.
5	4-4 st.	Cloudy.	$\begin{aligned} & \because-4 \text { ci.-cnm. } \\ & \because-4 \text { st. } \end{aligned}$	Clondy.	$2-4$ st.	Fair.	2-4 st.	Fair.	0	Clear.
G	4.4 st.	Clondy.	$\begin{gathered} 1-4 \text { ci.-cum. }, \\ z-4 \text { st. } \end{gathered}$	Clondy.	3 -1 st.	Fair.	3-4 st.	Cloudy:	0	Char,
7	1-4 st.	Cloudy.	-4 st.	Fair.	$\therefore-4$ st.	Fair.	3-4 st,	Cloudy.	11	Cliar.
γ	$4-1$ st.	Cloudy.	2-4 et.	Fair.	2.4 st.	Fair.	4.4 st.	Cloudy.	0	Clear.
9	4-4 st.	Clondy.	$\because-4$ st.	Fair.	$2-4$ st.	Fair.	t-4 st.	Cloudy.	0	Clear.
10	4-4 st.	Cloudy.	-4 st.	Fair.	$2-4$ st.	Fair.	$3-1$ st.	Cloudy.	11	Clear.
11	4 - $\mathrm{st}^{\text {, }}$	Flazy.	2-4 st.	Fair.	9-4 st.	Fair.	4-4 st.	Cloudy.	0	Clear.
Nooll.	$2-4$ st.	Наzy.	$2-4$ st.	Fair.	2-4 51.	Fair.	4-4 st.	Cloudy.	11	Clear.
1^{11}	$3-4$ st.	Hazy.	1-4 st.	Fair.	2-1 st.	Fiar.	44 st.	Clondy	0	Clear.
2	2-4 st.	Hazy.	1-4 st.	Fair.	$2-4$ st.	Fair.	3-4 st.	Cloudy	0	Clear.
3	2-4 st.	Hazy.	1-4 st.	Fair.	U-4 st.	Fair.	2-1 st.	Hazy,	0	Clear.
4	24 st.	Fair.	1-4 st.	Fair.	$2-4$ st.	Fair.	$\cdots-1$ st.	Hazy.	0	Clear.
J	1-4 st.	Fair.	1-4 st.	Fair.	2.4 st.	Fair.	S-4 st.	Hazy,	${ }^{1}$	Clear.
6	1.4 st.	Hazy.	1-4 st.	Fair.	$2-4$ st.	Fair.	2-4 st.	Fair.	0	Clear.
7	1-4 st.	Hazy.	1.4 st.	Fair.	1-4 st.	Hazy.	$2-1$ st.	Fair.	0	Clcar,
8	2-4 st.	Fuir.	1-4 st.	Fair.	1-4 st.	Hazy.	1-4 st.	Fair.	$1-4 \mathrm{st}$.	Fair.
9	$2 \cdot 4 \mathrm{st}$.	Hazy.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.
10	$2-1$ st.	Hazy.	1-1 st.	Fair.	1-4 st.	Fair,	?-1 st.	Fair.	1-4 int.	Fiair.
11	3.4 st.	Hazg.	1-4 st.	Fair,	1-4 st.	Fair.	1-1 st.	Fair.	1-4 st.	Fair.

Day.	FEBRUARY, 1872.									
	1.		5		6.					
Honr.		State of meather.								
0^{4}	1-4 st,	Filis.	1-4 st.	Hazy,	$1)$	Clear.	1-4 st.	1Fasy.	1-4 st.	fillr.
1	1-4 st.	Fair.	1-4 st.	Fill	1-4 st.	Fair.	$1-4$ st	Four.	1-4 st.	Fair.
2	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fiair.	$1-4$ st.	14a/3	1-4 st.	Fiall.
3	$2-4$ st.	11:30,	$\because 1$ st.	Fair.	$\because-4$ st.	Hazy:	1-4 st.	Fair,	$\because-1$ st.	Has,
4	2-4 int.	Hazy.	d-I st.	11:3	$3-1$ st.	Clomily	1.1 st.	Fair.	2 L st.	Fair,
\therefore	Q-4 st.	Hazy,	$\because-1$ st.	Hazy:	4-4 st.	C'luady:	11	Clear.	$\because 4$ st.	Pair.
i	2.4 st.	Fair.	1-4 st.	F'uir.	4.4 st.	(lomdy.	0	(l)ar.	1.1 st.	Fair.
2	8.4 st	Fair.	1.4 st .	Fair.	$1-4$ bt.	('loudy	0	(1) ${ }^{\text {arar }}$	$1 .+\mathrm{m}$	Fair.
Q	1-4 st.	Fair.	$1-4$ st.	Fair.	1.1 st.	C'loudy,	1)	Clear.	$\because-4$ st.	Fair.
3	1-4 st.	Fair.	$1 .+\frac{1}{\text { st. }}$	Fair.	3-1 st.	- luars.	11	Clear.	: 1 st.	Hazy.
10	$\begin{gathered} 1-4 \text { cj-culu. } \\ \because-\frac{1}{2} . \end{gathered}$	Clouds.	1.4 st.	Fial:	$3-4$ st.	Cloudy.	$1)$	Clear.	$4-4$ st.	Cluady.
11	$\begin{aligned} & 1-4 c i,-c<1 \\ &=1 \text { st. } \end{aligned}$	Clundy	1-4 st.	F'ar ${ }^{\prime}$	$\begin{gathered} 3-\text { fi.-cumu. } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	9	Cleat	$\begin{gathered} 1-4 \text { ei.-c.1mm., } \\ \because-4 \text { st. } \end{gathered}$	Clondy.
Nuon.	'1 st.	F'air.	$1-4$ ci.cellis.	Fair.	$\begin{gathered} 1-4 \text { ci,-cum. } \\ 1-4 \text { st. } \end{gathered}$	Fair	0	' 'lear.	$\begin{gathered} \text { 2-4 еі. -сиш., } \\ 1.4 \mathrm{st} . \end{gathered}$	Hazs.
$1^{\text {H }}$	$\begin{aligned} & 1-4 \text { enlin,-st., } \\ & 1-4 \mathrm{st} . \end{aligned}$	Fuir.	1-1 (1.-clum.	Fair.	1-4 st.	Par.	13	Clear.	$\begin{gathered} \because-1 \text { ci. cunn. } \\ 1-4 \mathrm{st} . \end{gathered}$	Fair.
2	$\begin{gathered} 1-4 \text { com.-st. } \\ 1-4 \text { st. } \end{gathered}$	Fuir.	11	Clear.	1-4 st.	Fair.	11	Clear.	1-4 st.	Fuir.
3	$1-4$ st.	Fair:	11	Clear.	1-4 st.	F:ar.	0	Clear.	1-4 st.	Fiair.
4	$1-4$ st.	Fair.	11	Clear.	1-4 st.	Fatir,	0	Clear.	I-4 st.	Fail.
\therefore	1-1 st.	Fair.	0	Clear.	0	Clear.	0	Clear.	$1-4$ ist.	Hazs:
6	1-4 st.	Fuir.	0	Cluar.	0	Clear.	0	Clear.	1-4 st.	Hazy.
7	$1-\frac{1}{\text { st }}$.	Fair.	11	(1) ${ }^{\text {arar }}$	0	('lear.	0	Clear.	0	Clarar
8	$1-1$ st.	Fair,	0	Clear	0	Clear.	0	Clear.	1-4 st.	Fair.
:	0	C'latr.	I-1 st.	loair.	0	Clear	0	Clear	0	Clear.
10	I-1 st.	Hass.	$1-1$ st.	Fiair.	1-1 st.	1Iazs.	0	Clear.	1-4 s^{2}.	Fair.
11	1-1 it.	Fitir,	11	'llar.	I. 1 st.	Hazs.	1-1	Fair.	1-4 st.	Hazy,

Dap.	FEBRUARY, 1872.									
	9.		10.		11.		12.		13.	
Honr.	$\begin{aligned} & \text { Amount and kime } \\ & \text { of clourls. } \end{aligned}$								$\begin{aligned} & \text { limimit and homd } \\ & \text { wif clomis } \end{aligned}$	
$0^{\text {h }}$	$1-4$ *ธ.	Hazs.	1-4 st.	Fair,	?-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Hazy.
1	1.4 -t.	Hazs.	$1-4$ st	Fair.	Q-4 st.	Fair.	1-1 st.	Fair.	Q-4 st.	Hazг.
$?$	$4-4$ st.	Cloudy.	1-4 st.	Fair.	9-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Hazs.
3	4-4 -t.	Clonds 5 .	?-4 st.	Fair.	P-4 st.	Faile.	1-t st.	Fair,	$2-1$ st.	Hazs.
4	$\because 4$ st.	Hazy.	$2-4$ st.	Fair.	$2-4$ st.	Fair.	-1 st.	Itazs.	2-4 st.	Hazs.
\therefore	$4-4$ st.	Clonds.	: $: 14$ st.	Cloudy:	$2-4$ st.	Hazy.	3-4 st.	Clouds.	$3-4$ st.	Clounds.
i	4-4 st.	Cloudy.	$\begin{aligned} & 1-4 \text { ci.-cnm. } \\ & \because-4 \text { st. } \end{aligned}$	Cloudy.	2-4 st.	Fair.	$\therefore-\frac{1}{4}$ st.	(1.1010]s.	: -4 st.	Clourly:
7	2i-1 st.	Cloudr.	$\begin{gathered} 1-t \text { ci.-chm. } \\ \because-4 \text { st. } \end{gathered}$	Cloude.	$2-4$ ct.	Fair.	4-4 st.	Clouds.	t-4 st.	Cloudy.
\vdots	$\begin{aligned} & 1-4 \text { ci.-ctum.. } \\ & \because 4.4 . \end{aligned}$	Clonds.	$\begin{gathered} 1-4 \text { ci-cum. } \\ \because-4 \text { st. } \end{gathered}$	Clamis.	$3-1$ it.	Clumits.	4-4 st.	Clonds.	4-4st.	Chomer
9	$\begin{gathered} 1-4 \text { ci.-cum. } \\ 1-4 \text { st. } \end{gathered}$	Fair.	$\begin{gathered} 1-4 \text { ci.-cum.. } \\ \because-4 \text { st. } \end{gathered}$	Cloudy.	f-4 st.	Clondy	$4 \cdot 4$ st.	Clouds.	4-4 st.	Clumbs.
10	1-t ci.-cum.	Fair.	$\begin{gathered} 1-4 \text { ci.-cum. } \\ 1-4 \$ t . \end{gathered}$	Clondy.	+ 4.4 st.	Clouds.	$\begin{gathered} 1-1 \text { ci.-cum., } \\ \because-4<t . \end{gathered}$	Clouds:	4-4 st.	Clouds.
- 11	$\begin{aligned} & 1-4 \text { ci.-clum., } \\ & \because .4 \mathrm{st} . \end{aligned}$	Clonds.	Q-4 st.	Hazs,	1-4 it.	Clondy.	$\begin{aligned} & \text { 1-1 ci.-cum., } \\ & \text { Q-4 st. } \end{aligned}$	Clondy.	O-1 it.	Fair.
Noon.	$\begin{gathered} 1-4 \text { ci.-comm. } \\ \because-1 \text { st. } \end{gathered}$	Cloudy.	0	Hazs.	4-4 st.	Clonds.	$\begin{gathered} 3-4 \text { ci.-cum., } \\ 1-4=1 . \end{gathered}$	Clantr:	1-4 st.	Fair.
$1{ }^{\text {b }}$	$\begin{aligned} & 1-4 \text { ci.-cum. } \\ & \because-4 \text { st. } \end{aligned}$	Clondy	24 st.	Hazs.	4.4 st.	Clouds:	$\begin{gathered} 1-1 \text { ci.-cum. } \\ 1-4 \mathrm{it.} . \end{gathered}$	F.ir.	1-4 st.	Fair,
$?$	$\begin{aligned} & 1-4 \text { ci.-cuen. } \\ & 9-4 \text { st. } \end{aligned}$	Cloudy.	$\begin{aligned} & 1-4 \text { ci.-cum. } \\ & \because-4 \mathrm{st} . \end{aligned}$	Clomis.	S-4 st.	Cloudy.	$1-4$-t.	Fair.	"	Clear
3	44 st.	Cloudy.	1-4 st.	Clouds.	- -1 st.	Fair.	1-4 st.	Fair.	0	Clear.
4	$14 . t$	Cloudr.	- -1 st.	Fiar.	Q-4 it.	Fair.	1-4 st.	Fair.	\because	Clear.
i	t-4 st.	Clonsts.	- 4 st.	Hazs.	1.4 it.	Fair.	1-4 st.	Fair.	U	Clear.
6	1-4 t .	Hazs.	$\because-4$ st.	Fair.	2-4 st.	Hazs.	1-4 st.	Fair.	0	Clear.
7	1-1 st.	Fair.	2.4 st.	Fair.	1-1 st.	Fair.	1.4 st.	Fair	19	Clear.
z	1-4 st.	Hazr.	$\because-1$ st.	Hazs.	$2-4$ st.	Fair.	1-4 st.	Fair.	u	Clarar
9	1.4 st.	Fair.	24 st.	Fair.	1-4 st.	Fair.	1-4 st.	Hazr.	${ }^{4}$	(]par.
10	1.4 st.	Hazs.	P-4 st.	Hazs.	l-4 st.	Fair.	1.4 st.	Hazt.	U	Clear.
11	1-4 st.	11a\%5.	S-4 st.	Fair.	1-4 st.	Fair.	O-4 st.	Hazs.	O-4 st.	Fair.

Day.	19		FEBRUARY, 1872.$21 .$				22.		23.	
Honr.	$\begin{aligned} & \text { Amonnt and kind } \\ & \text { of clomes. } \end{aligned}$									
(1)	44 st .	Comly.	U-4 st.	Fair.	$\begin{gathered} \text { 1-4 ci.-cum., } \\ \boxed{2}-4 \text { st. } \end{gathered}$	Cloudy	1-4 st.	Fair.	1-1 st.	Fair.
1	3) 4 st.	Clouis.	1-4 st.	Fair.	Q-1 st.	Fuir.	1-4 st.	Fair.	24 st.	Fair.
\because	4-4 st.	Clouly	U-4 st.	Fair.	$2-1$ st.	Fair.	1-1 st.	Fair.	l-4 st.	Fair,
3	: $3-1$ st.	Clondy.	4-4 st.	Clondy.	1-4 st.	Fair.	1-4 st.	Fair.	$\because+4$ st.	Faic.
4	4-4 st.	Clonds.	4-4 st.	Clondy.	$\begin{aligned} & 1-4 \text { ci., } \\ & \text { I-4 st. } \end{aligned}$	Fair.	1-1 st.	Filir.	?-4 st.	Fair.
\%	$4-4$ st.	('londy	4-1 int.	Lt. snow. ?	$3-4$ st.	Lt. snow.	1-4 st.	Fair.	3-4 st.	Clondy.
1 i	4.4 st.	('londs.	$4-4$ st.	Lt. snow.	1-4 st.	Hazy.	1-4 st.	Fair.	3-4 st.	Clouty.
7	4-1 4.	Lt. snow.	4-4 nt.	Clondy.	1-4 int.	Fair.	1-4 st.	Fair.	: -4 st.	Clourly.
8	4-4 st.	Lt. snow.	4-4 st.	Cloudy.	1-4 st.	Fair.	1-4 wt.	Fair.	4-4 st.	Clondy.
9	+1 int.	Lt. suow.	4-4 st.	Cloudy.	1-1 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clondy
10	4-4 st.	c'louds.	4-4 st.	Cloudy.	1-4 st.	Pair.	1-4 st.	Fair.	$4-4$ st.	Clourly.
11	4-4 st.	Clourly.	4-4 st.	Clonds.	0	Clear.	1-4 st.	Fair.	4-4 st.	Clouds:
Noon.	4.1 st.	C'londy	1-1 st.	('louily.	1-1 st.	Fiair.	$1-4$ st.	Fair.	4-4 st.	Cloudy.
$1^{1 \prime}$	4-1 st.	P'air.	4-4 st.	('Ioudy.	0	C'lear.	1-4 st.	Fair.	4-4 st.	Clonds.
:	$\begin{gathered} 1-1 \text { ci.-cimu. } \\ 1-1 \text { st. } \end{gathered}$	Fair.	: $1-4$ st.	('londy)	0	Clear.	1-4 st.	Faic.	4-4 st.	Clomity.
\therefore	1.1 H.	Fair.	$\begin{gathered} 1-1, i .- \text { - } 1 \text { min. } \\ 3: 4 \text { st. } \end{gathered}$	Clouls.	11	Clear.	1-4 st.	Fain.	4-4 st.	Clondy.
4	$3-1$ st.	Fais.	3.4 st.	Cloudy	0	Clear.	1.4 st.	Fair.	4-4 st.	Clomdy
5	$\because 4.4$.	Fair.	$\therefore-4$ st.	H:LZS.	1-4 st.	Fair.	$2-1$ st.	Fair.	:3-4 st.	Clouds:
$1{ }^{1}$	\%-4 st.	Fatir.	4-1 st.	Lt. snow.	1-4 st.	Fair.	$2-4$ st.	Fair,	S-4 st.	Clomety
7	$\because 1$ st.	Fais.	4-4 st.	Cloudy.	1-4 st.	Fair.	3-4 st.	Clondy	$3-4$ st.	C'lomer
H	4-1 :5t.	Clondy :	2-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	C'londy.	3-4 st.	Clomily
$!$	$2-4$ st.	Fait.	1-4,i,-6.11u.	Fair.	I-4 st.	Fair.	$3-4$ st.	Pail.	:-4 st.	Cloudy.
10	$\because 1$ st.	Fuir.	$\because-4$ st.	Fait,	1-4 st.	Fatir.	: $3-4$ st.	Clondy	$\because-1$ st.	Tinir.
11	1-4 st.	Fair.	$\because-4$ st.	Fair.	1-4 st.	Filir.	$1-4 \mathrm{st}$.	Fait.	$\because-1$ it.	$F \mathrm{air}$.

Day．	FEBRUA	Y， 1872	MARCH， 1872.							
	29.		1.		2.		3.		4.	
Howr．	音		永		$\begin{aligned} & \text { 3 } \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$				水	
0^{10}	$2-4$ st．	Hazy．	4－4 st．	Clouly．	4－4 st．	Clowly．	1－1 int．	F＊iir．	1－4 st．	latir．
1	1－4 st．	Fuir．	4－4 it．	Clourly	$4-4$ st．	Cloudy．	d－ 4 st．	11ayy．	1－4 st．	Fait．
2	1－4 st．	Fais．	4－4 st．	Clondy．	$4-4$ st．	Clourly．	4－1 st．	Cloudy．	$1-1 \mathrm{st}$ t．	1103．
3	1－4 st．	Jair．	4－4 st．	Clandy	4－4 st．	Clowly．	4－1 st．	Clours）：	1－1 st．	Fais．
4	$2-4$ st．	Fail．	4.4 st．	Clouly．	4－4 st．	C＇londy	1－4 st．	C＇louty．	1－4 st．	Fanis．
5	$3-4$ st．	Clondy．	4－4 ist，	Clonsly．	44 st.	Cloudy	4－4 st．	（＇loundy．	1－1 st．	Fair．
6	$4-4$ st．	Clomely，	4－4 st．	Clmary	4－1 st．	Clouty：	4.4 st	Clonuly	1－1 st．	Fair．
7	1.4 st．	Cloudy：	4－4 st．	Clomily．	4－4 st．	Clomly：	$4-4$ st．	Clowly．	1－4 st．	fair．
\％	$4-4$ st．	Clondy．	4－4 st．	Clomly	$1-4$ st．	Cloudy．	4－4 st．	Cloudy．	1－4 st．	P：air．
1）	$4-4 \mathrm{st}$ ．	Chandy：	1－4 st．	Clouly	4－4 st．	Chouly	2 － 1 st．	Fair．	1－4 st．	Fair．
10	$\begin{aligned} & \text { 1-1, i.-c.um. } \\ & 3-4 \text { st. } \end{aligned}$	Cloudy．	1－4 st．	Clomly．	$2-4$ st．	Fair．	1－4 st．	Fair．	1－1 st．	Fratir．
11	$\begin{gathered} 1-\mathrm{fci}-\mathrm{c} 11 \mathrm{~m} . \\ 2-4 \text { st. } \end{gathered}$	Cloorly．	4.4 st．	Cloudy	$2-1$ st．	Pair．	1－4 4.	Fair．	1－1 st．	Fair．
Nown．	$\begin{aligned} & 1-4 \text { ci.-cum. } \\ & \vdots-4 \text { st. } \end{aligned}$	Clourly．	4．4 st．	Clondy：	1－4 st．	Filir．	11	Clear．	$\begin{gathered} 1-4 \cdot i \cdot \mathrm{c} \text { - } \mathrm{cmm} . \\ 1-4 \mathrm{st.} . \end{gathered}$	（＇lomis：
1^{4}	4－1 st．	Clomdy．	$4-4 \mathrm{st}$	Cloury：	1－4 st．	Fitit．	$\because-4$ st．	Fair．	$\begin{gathered} 1-4, i .-r 13+1 ., \\ 1-4 \text { st. } \end{gathered}$	（＇bunly：
2	$\begin{aligned} & \text { 1-4 ci.-сини., } \\ & 3-4 \text { st. } \end{aligned}$	Chouly	4．4 it．	Cloudy	$2-4$ st．	Fair．	$\because-t s t$.	Faid．	$\begin{gathered} 2-4 \text { (i.-cum. } \\ 1-4.4 . \end{gathered}$	Chouly
：	4－4 it．	Clondy	4－4 st．	Clounly．	$\because 1$ st．	Fais．	e－4 st．	F＇air．	$\begin{gathered} \because-1, i-c u 1 n ., \\ 1-4 \mathrm{st} . \end{gathered}$	Clondy．
4	$4-4$ st．	Cloudy．	4－4 st．	Clonds：	$\because-4$ st．	Fair．	$\because-1$ st．	Fair．	1－4 st．	Clomity
5	4.4 st．	Cloudy	4－4 st．	Clondy	1－4 st．	Jaiar．	2 L .1 st ．	Faim．	4－4 sit．	Clonily．
（i）	4.4 st．	Cloudy：	4－4 int．	Clomily．	1－I st．	Jair．	1－4 st．	fairs．	4－1 st．	Clonty：
7	4－4 st．	Clouds．	4－4 st．	Cloudy．	1.4 st．	Faili，	1－4 st．	Pair．	4－4 st．	Clowdy．
8	4－4 st．	Cloudy．	4－4 st．	Clondy．	1－4 st．	rair．	1－4 st．	P：air．	$4-1$ nt．	Clouty．
！	4－4 st．	Clouds．	4－4 st．	Cloudy．	1－4 st．	Paile．	1－4 st．	Fair．	4－1 81.	cloudy．
10	4－4 st．	Cloudy．	4－4 st．	Cloudy．	1－4 st．	Fair．	1－4 nt．	Fair．	$4-1$ st．	Cloms．
11	$4-481$.	Cloudy．	4.4 st．	Clondy．	1－4 st．	Filir．	1－4 8 t ，	Fair．	4－4 it．	Cloms

.

．	APRIL， 1872										
Dity．	1.		－\quad－		6.					．	
11／111\％		State of weather．	$\begin{aligned} & \text { Anumit t and kius } \\ & \text { uf cloms. } \end{aligned}$	2				State of weatlar	ت		
0^{11}	11	lar．	$4-4 \text { st. }$	（lomelys．	f－1 st．	（ lonuly．	$\therefore .1$ st．	（＇andys．	$\begin{gathered} 1-1 \text { cimm. } \\ : 1 \text { st. } \end{gathered}$	Lit．suen，	
1	11	1．4．	4-J st.	（＇lond）	$\because-1 \text { st. }$	Fail．	$\begin{aligned} & 1-\mathrm{f} \text { (i.-cnm. } \\ & 1-1 \mathrm{si} . \end{aligned}$	Fair．	$\begin{aligned} & 1-4 \text { pime. } \\ & : 1 \text { :t. } \end{aligned}$	Lt．smow．	
\because	0	（1）ala．	$4-1 \leqslant t$	＇lomis．	1.4 Nb	f：ar．	［14s．	Fair．	$\begin{gathered} 1-1 \text { elmus, } \\ \therefore 1 \text { st. } \end{gathered}$	L．t．numw．	
：	0	Cldar．	$1-1 \text { st. }$	C＇lomils．	1－4 st．	Fair．	1－4 st．	Filis．	$\begin{aligned} & 1-1 \text { rimm. } \\ & :-1 \text { st. } \end{aligned}$	14．smos．	
1	11	Clar．	$\begin{gathered} \because-1 \cdot i_{1}-411 m ., \\ 1-1-1 . \end{gathered}$	Cloudy．	$\begin{gathered} 1-1 \cdot i .-c \\| m ., \\ 1-4 \text { st. } \end{gathered}$	P．itr．	$1-4 \mathrm{st} .$	P：air．	$\begin{gathered} 1-4 \text { r.1111., } \\ \therefore-4 \text { st.. } \end{gathered}$	1．t．	
5	11	（\％ 10	$\begin{gathered} \because-1 \times i-t \cdot 11 m . \\ 1-1 \approx 1 . \end{gathered}$	（ ！ander	$\begin{gathered} 1-1+i-1+1111 . \\ \vdots-1 \text { st. } \end{gathered}$	（＇lomily：	$\begin{gathered} \because 1 \text { rimi., } \\ 1-1 \mathrm{st} . \end{gathered}$	C＇lomaly	$\begin{aligned} & 1-4 \text { rum., } \\ & . \because 1 \text { s. } \end{aligned}$	Lt．silun	
$1 i$	11			（＇lorndy）	$\begin{gathered} 1-1 \text { ri.-c.mm, } \\ \because-4 \times 1 . \end{gathered}$	（＇londs＇．	$\begin{gathered} \therefore-1 \text { culu., } \\ 1-4 \text { sit. } \end{gathered}$	（＇lonily，	$\begin{aligned} & 1-4 \quad \text { culn, } \\ & \therefore i-1 \text { st. } \end{aligned}$	Lt．sumw．	
7	11	（ ${ }^{\text {andar }}$		（＇loudy	$\begin{array}{ll} \because-1 & \text { ci. } \\ 1-1 & \leqslant t . \end{array}$	Clondr	$\begin{gathered} \therefore 1 \text { cilan., } \\ 1-1 \text { st. } \end{gathered}$	（＇lum）${ }^{\text {a }}$	$\begin{gathered} 1-1 \mathrm{cmme}, \\ : 1 \mathrm{nt} . \end{gathered}$	1．1．sumw	
४	11	(r\|an.	$\begin{gathered} : 1 \text { cumi, } \\ 1-4 \times 1 . \end{gathered}$	Clondy	$3-1$－	J＇air．		Fair．	4－4 st．	1．t．snow．	
4	11	Cloar．	$\begin{gathered} 1-1 \text { mim., } \\ \text { :i-4 st. } \end{gathered}$	（Cundy	$\because-1$ ci．	Fair．	1－4 ei－cmm． 1－1 cmm．，	（＇lundy	4－1 st．	Lt．sияw．	
10	11	Clasils	4.4 nt．	（＇loudy，	1－1 st．	Fitir．	$\begin{gathered} 1-4 \text { st. } \\ 3-4 \text { ei.eculin. } \\ 1-4 \text { count. } \end{gathered}$	Fair．	4－1 st．	Lt．sumw．	
11	11	（ 1 leirs．		Clondy，	$\because-1$ ci．	Fair．		Fail．	$\begin{aligned} & 3-1 \text { com. } \\ & 1-1 \text { st. } \end{aligned}$	1．t．sumw．	
Nuon．	$1)$	（＇17：an＇．	$\begin{gathered} \because-1 \text { cllin., } \\ 1-4 \mathrm{nt} . \end{gathered}$	Lt．Mmomb．	$\begin{aligned} & 1-1 \text { ei., } \\ & 1-4 \mathrm{st} . \end{aligned}$	Fair．	$\begin{gathered} 1-4 \text { ci.-1.1mu., } \\ 1-4 \text { st. } \end{gathered}$	Pair．	$\because-1$ cilli．	（＇10．4］：	
1^{17}	11		$\begin{aligned} & 1-1 \text { imm. } \\ & 3-4 \text { it. } \end{aligned}$	It．suow．		＇londy		Finir．	？－1 cum．	Fiair．	
\because	11	Claiar	$\begin{gathered} 1-1 \text { rome, } \\ ; i-1 \text { s. } \end{gathered}$	（＇10mely．	$\begin{aligned} & 1-4 \mathrm{ci} ., \\ & : \therefore 1 \mathrm{dt} . \end{aligned}$	Clunty	$\begin{aligned} & 3-1 \text { colli., } \\ & 1-4 \text { st. } \end{aligned}$	Clanidy．	$\begin{gathered} 1.4 \mathrm{mm.}, \\ 1-1 \mathrm{st.} \end{gathered}$	Finis，	
\because	11	Clatir．		Lt．－пи，	$\therefore-1$.	chamly	$\begin{gathered} 3-1 \text { riln. }, \\ 1-4=t . \end{gathered}$	Clomely	$\begin{aligned} & \therefore-\frac{1}{c} \mathrm{cmm} . \\ & 1-1 \mathrm{st} . \end{aligned}$	r＇sunds．	
4	11	Clains．	$\begin{gathered} \because-1 \text { ، } 111 . \\ \because-1 \text { m. } \end{gathered}$	Lt．sum．	4－1：1．	（ bumely：	$\begin{gathered} \because-1 \text { (.1111.. } \\ 1-4 ~ s 1 . \end{gathered}$	（1antis：	$\begin{gathered} \therefore-1 \text { (allu1. } \\ 1-4 \text { st. } \end{gathered}$	Lt．－\ハッ以：	
5	11	（1）：ar．	$\begin{gathered} \therefore 1 \text { rim. } \\ 1-4 \cdots t . \end{gathered}$	1．t．smow．	4－1 si	［1016］．	$\begin{aligned} & \because 4 \text { 1.11m., } \\ & 1-4 \text { st. } \end{aligned}$	1．t．sumw．	$\begin{aligned} & 3-4 \text { imm., } \\ & \text { I-4 st. } \end{aligned}$	L．リぃい．	
6	$\begin{aligned} & 1-1 \mathrm{it} ., \\ & 1-1 \mathrm{st.} \end{aligned}$	Fair．	$\begin{gathered} 3-1 \text { wime, } \\ 1-1 \text { it. } \end{gathered}$	（＇lundy．	$4-4$ ：	（＇lomily．	$\begin{gathered} 1-4+\cdots m . \\ \therefore: 4: 1 . \end{gathered}$	Lt．show．	$\begin{gathered} \therefore-1 \text { (.1111. } \\ 1-1 \text { st. } \end{gathered}$	Lt．ヶmon．	
7	$\begin{aligned} & 1-1 \text { ri. } \\ & 1-4 \text { st. } \end{aligned}$	Pair．	$\begin{gathered} \therefore 1 \text { cim1. } \\ 1-4 \text { st. } \end{gathered}$	Clomly.	1－1 it．	＇＇lumily．	$4-4.1$	Lt．stow．	$\begin{aligned} & \therefore-1 \text { (11nn., } \\ & 1-4 \text { st. } \end{aligned}$	Lt．вим	
＊		J＇air．	$\begin{gathered} : 1 \text { ellul., } \\ 1-1 \mathrm{mt.} \end{gathered}$	Clomuly.	4．1 st．		$11 \mathrm{tr}$	Lt．sillow．	$\begin{gathered} 3-1 \text { c. } 11 \mathrm{~m}, \\ 1-4 \times 1 . \end{gathered}$	1，t．nnum．	
！	$\begin{gathered} 1-1 \text { ،i. -rums., } \\ \because-1 \text { st. } \end{gathered}$	Fair．	$\begin{gathered} 1-1 \text { r1111., } \\ \therefore 1 \times 1 . \end{gathered}$	('lourdy.	4－4 $\times 1$.	（＇lumbly	$4-1 \text { st. }$	Lt．shiotr．	$\begin{gathered} 1-4 \text {, imm., } \\ : i-4: 1 . \end{gathered}$	（＇］ands．	
11	$: 3 \text { st. }$	Clomily.	$4-1 \times f .$	（＇loudy．	4－4．t．	Clound．	$\begin{aligned} & 1-1 \text { cime, } \\ & \because-1 \text { it. } \end{aligned}$	Lt．slow	1-4 st.	（＇lourly．	
11	1.1 st．	（＇manty．	4－4．t．	Clontry	1－4＊t．	Chomes．	$\begin{gathered} 1-4 \text { cmm., } \\ \because-4 \mathrm{nt} . \end{gathered}$	Lt．niow	＋－1 5 st．	Cloms	

17	APRIL， 1872.									
	${ }^{1}$			15.		16.		17．		\cdots
						$\frac{1}{x}$			为	
，10	${ }^{1-1}$ st．	（1）．ux．		Fint．	＂	＂rear	，	4，		（1）
1	＋4．4．	Tland．	星我	E．int	＂	（1）．．．	＂	，		
\sim	14.	Houls．	14 c	ع．．．	＊	（1）．	＂	11．．．		
：	．	（10）	14 ci	Fitir	＂	Crent	＂	cme	＂	Nat
4	1 d．	mis：	${ }^{\prime}$	Clear．	－	clear．	＊	cment	＂	chat
＂		vis．		$\mathrm{cl}_{\text {case }}$	－	（1）n	\cdots	（enn	＂	cliat
6	${ }^{1}$	Tomars．	，	clen．	＂	（1）n＋	＂	${ }_{\text {clara }}$	い	Finf
：	1.4 ci．	为	${ }^{\prime}$	clant	。	${ }^{\text {cleat }}$	＂	（1）a	H．1．	E，in
＝	14.15	${ }^{\text {chama }}$ ．	＂	（1）．r．	＂	Cleat	＂	\％1ar	\cdots	IVin
9	1.1 ci	${ }^{\text {Clownes．}}$	＂	le．e．	＂	（1）NT	＂	（1）N	W．	E．in
${ }^{10}$	b	\％ew	＊	Clear．	＂	（1）．	＂	clear	1.4	
${ }^{11}$	fil	\％ex mix	\bigcirc	Hen．	${ }^{\circ}$	${ }^{\text {cherst}}$	＂	${ }^{1 / 2}$	1.	fint
Xoon．	，itait	Clomely．	\cdots	crent	＂	clean	＊	corn	い＊	Fat
${ }^{\prime \prime}$	$4{ }^{4}+$	\％enit	＊	Char．	＊	${ }^{\text {clam }}$	＊	\％rys	い	
＊		Pair．	＂	Cleent	＊	lven	＂	Hata	\cdots	
：	＋1＊	vain	＂	Clers．	－	${ }^{\text {ctenen }}$	${ }^{\prime}$	ctent	14\％	Fitit
＋	\cdots	p．a	－	（1）．u．	－	lent	0	Gean	＂	（t）rn
5	${ }^{2.4} \mathrm{ci}$ ci．	Fint	－	Clime	＂	Clien	－	${ }_{\text {clant }}$	＂	chen
${ }^{\circ}$	14.6	E：itit	－	\％os．	＂	${ }^{\text {comen }}$	＂	cram	145	Pat
：	\bigcirc	cran	－	$\mathrm{Cl}_{\text {ceas }}$	＂	cline	＂	${ }^{\text {clerer }}$	14	P．in
＊	＂	${ }^{\text {clew．}}$	＂	Cleart	\cdots	${ }^{\text {clean }}$	＂	clane	11.5	
9	${ }^{\prime}$	${ }^{\text {charan }}$	＂	Cras．	0	（tear	。	Client	Herst	bime
${ }^{11}$	i．	Fint	＂	Crars	＂	（tars．	＂	（1）nen	1，\％ist	．Pi．in
1	14tit	Pan	\bigcirc	Oen	\cdots	Clis．	．	Clar．	1.14 \％．	Pivir

			MAY，	72.				JUNE，	1872.	
Hour．	析	$\stackrel{\Xi}{\Xi}$		艺						3333
	\ni	\approx								
	＋	$=$								
	きき	3								
	三									
（1）＇	11	Cltar	1－1	Fair．	1.1 ci	F＇air．	$\begin{gathered} 1-1 \text { rimin., } \\ \because-1 \text { int. } \end{gathered}$	Clomily	Z1－1 st．	＇lomrly．
1	0	Clenar	1－4 ci．	Nrair．	1－4（i．	Fair．	3－1	C＇louly	$2-1 \text { (} 1111,$	
\because	0	Clesir．	1－1 ci．	f＇air．	1－1 ci．	Fuir．	1 l－i．－chnt．， －I st	（＇lount：	$3-4 \mathrm{nt}$ ．	（＇lowd）．
：	11	Clair．	1－1 ei．	S＇air．	1．－1 i．	Jrair．	$\because+1 \text { cimn., }$	C＇londy	$\begin{aligned} & \text { Cinm. st. } \\ & ::-1 \mathrm{sin} . \end{aligned}$	Clowd．
4	11	Clear．	（ii．	（＇lear．	1－4 ei．	Fair．	$\begin{gathered} 1-1 \text { cmun., } \\ : 1 \text { st. } \end{gathered}$	Clomily	1－1 s．	（lanl）．
5	9	Clear．	11	（＇lear．	1－1 st．	F＊air．	＋1 1 s．	（10nul）．		C＇lunty．
1.	11	－${ }^{\text {aram．}}$	nt．	Clear．	1－1 ic．	Fair．	4－4 st，	Cloudy	$\begin{aligned} & \because-1 \text { cunr. }, \\ & \because-4 \text { st. } \end{aligned}$	C＇loudy．
7	11	Clear．		（16ar．	1－1 ist．	F゙ar．	4－1 st．	Cloudy．	$\begin{aligned} & 9-4 \text { comm, } \\ & \cdots-1 \text { nt. } \end{aligned}$	（＇lomily．
\checkmark	0	C＇luar	0	clars．	$1-1 \text { ci., }$	Fair．	4－1 st．	Clondy		（＇lunds）
9	11	（＇10：11．	st．	（＇lear．	$\begin{aligned} & 1-4 \text { ui, } \\ & \because-1 \text { st. } \end{aligned}$	C＇loudy	4 － 1 st．	Clondy．	$\begin{aligned} & \text { 1-4:i. comm. } \\ & \because-4 \text { st. } \end{aligned}$	Clondy．
10	11	Clear．	1－4 31.	Fum．	$\begin{array}{cc} \because-1 & \text { i. }, \\ 1-1 & \text { si, } \end{array}$	Clondr）	4－1 s ．	1．t．M1100．		（＇loudy．
11	11	Clear．	$1-1 \mathrm{ci}$ ，	fair．	$\begin{aligned} & \because-1 \\ & \cdots-1 \\ & 1-1 \end{aligned}$	Clunciy：	$\begin{gathered} 1-4 \text { rimin, } \\ 3-1 \mathrm{st} . \end{gathered}$	Lt．smon．	$\begin{aligned} & 1-4 \text { ci.-cimm. } \\ & : \therefore 1 \text { comm. } \end{aligned}$	Clowdy．
N（x） 11.	11	Clear．	1－1 $1 . i$	Frair．	$\begin{aligned} & 1-1 \text { ri., } \\ & 1-1 \text { cılol. } \end{aligned}$	rour．	$\begin{gathered} 1-1 \text { cmur. } \\ : \therefore-1 \mathrm{st.} \end{gathered}$	Lt．stmm．		＇louds．
$1{ }^{1 /}$	11	Clear．	1－1 ri．	J＇ai¢．	$\begin{gathered} \because-1 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Clondy．	$\begin{aligned} & 1.4 \text { c.llill. } \\ & i-4 \text { st. } \end{aligned}$	（＇10nme 5		Clomdy
\because	11	（lasir．	（＇1．	（19：1s．	$\begin{aligned} & 1-4 \text { ci., } \\ & \vdots-1 \text { cum. } \end{aligned}$	Clouty．	1－1 ri，am？ cums．，ibl list．	Clomers．	$\begin{aligned} & 1-4 \text { i.i.c.um. } \\ & 1-4 \text { coum. } \end{aligned}$	Fair．
：	1－4 st．	Rair．	1－1 ci．	1rair．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \cdot 11 \mathrm{n} . \end{aligned}$	Fair．		（\％mily		Pair．
1	1－1（i．and ci．c．1111．	Fair．	（＇i．	（1）	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { st. } \end{aligned}$	Pair，	$\therefore \mathrm{tamm}$ ．	C＇louds．	$\begin{gathered} 1-1 \text { (i.-c.1m. } \\ 1-4 \text { colm. } \end{gathered}$	Fars．
5	$\begin{aligned} & \text { 1-1 ci, aml } \\ & \text { ci, -1 } 1111 . \end{aligned}$	Pair．	$1)$	（＇lamir．	$\begin{aligned} & \because-1 \text { (i.-сиии. } \\ & 1-4 \text { cum. } \end{aligned}$	c londy．	$\begin{aligned} & \because 1 \text { (1וn) } \\ & \because-1 ~ 4 . \end{aligned}$	C＇louds：	$\begin{aligned} & \text { 1-1،i.-rom. } \\ & 1.4 \text { com. } \end{aligned}$	Fair．
6	$\begin{aligned} & \text { 1-1 ci, anul } \\ & \text { ci.-st. } \end{aligned}$	1＇air．	（ 1.	（＇liar．	$\because-1$ ri，and ri．－ctull．， $1-1$ cim．	（ lomily．	$\begin{gathered} \because-1 \text { comn., } \\ \because-1 \quad t . \end{gathered}$	C＇lomils．	1－1 ci．erum．	Fair，
7	1－4 $\times \mathrm{i}$	1atr．	1 I i．	F＇air．	$\begin{gathered} 1-4 \text { (1.-1. } 11111 . \\ \because-1 \text { c/llt1. } \end{gathered}$	Clonly	$\begin{aligned} & 1-4 \text { colli., } \\ & \therefore-1 \text { st. } \end{aligned}$	Clonty．	1－1 ci．－ctum．	Frair．
\checkmark	1 1－4（i）	Prair．	1－1 in．	Fraix．	$\begin{aligned} & \therefore 1 \text { rill., } \\ & 1-4 \mathrm{At} . \end{aligned}$	－＇londy	1－1： 1.	Cloud ．	（＇i．	（17ratr．
！	1－1 ci．	frair．	1－4 ci．	Fials．	$\begin{gathered} \therefore-4 \text { cimin. } \\ 1-4 \text { st. } \end{gathered}$	（＇lonory	$\begin{array}{lll} \because & 1 & \text { rlmur, } \\ \because-.4 & s t . \end{array}$	Clourly．	（ 1.	（ l c：ar．
10	，1－1	Fair．	1－4．i．	Fair．	3－4 411110	Clonicl：	$\begin{aligned} & \because 1 \text { (} 11 m^{2}, \\ & \because-4 \mathrm{n} . \end{aligned}$	（19m1）：	$\left\{\begin{array}{l} 1-4 \text { ci. and } \\ \text { st. } \end{array}\right.$	1rar．
11	$1-4$ ei．	Fair，	1－1 1 ei．	Fair．	$\begin{aligned} & 1-\frac{1}{1} \text { rim.. } \\ & \because-1 \text { st. } \end{aligned}$	（＇londy	1－1 ist．	Closury	$\left.\right\|_{\text {i- }} ^{1-4, ~ a n c l}$	Paip．

Day．										
Homr．		Statr of weathers．	音	State of wather．	Ambint ：1mi Kimit of clourts．		$\begin{aligned} & 3 \\ & \\ & \\ & 3 \end{aligned}$		$\begin{aligned} & \text { 合 } \\ & \end{aligned}$	
0^{4}	$\begin{aligned} & 1-1 \text { ci., } \\ & : 3 \text { - cum. } \end{aligned}$	（＇lobuly：	$3-4$ st．	Clondy．	4.4 st．	Clowl_{5}	4.4 st．	Clowl？	： 4 cum．	Clonds．
1	1－1 •i．，り－4 comm．and rallil．－st．	Clouds．	$\because 4$ ci．	Fail．	$\begin{aligned} & 2-4 \text { ri. } \\ & 1-4 \text { it. } \end{aligned}$	Clunils．	4－4 st．	Clouds．	$\begin{aligned} & 1-4 \text { ci.-cnm. } \\ & \because-4 \text { cum. } \end{aligned}$	（＇londy．
1 2	$\begin{gathered} 1-4 \text { ri. and } \\ \text { ri..-it., } 1-4 \end{gathered}$	Fuir．	$2-4 \mathrm{ci}$	Fair．	$\because-1 \mathrm{ci}$	Fair．	$4-1$ nt．	Li．snow．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { cam. } \end{aligned}$	Fair．
3	culli． 1－4（2llit． illid int．	Fair．	$\begin{aligned} & \because-4 \text { ci. and } \\ & \text { comm. } \end{aligned}$	Fuir．	$\because-4$ ci．	Fair．	4 － 1 st．	Lt．smow．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { chus. } \end{aligned}$	Hair．
4	$\because-t \text { i. i. amd }$	Fair．	$\because-4$ ci．and （＇min．	Fair．	$\because-1 \times i$ ，	Fais，	1－1 st．	Lt．suotr．	\because－ 4 chm．	Fair．
5	－：-1 ciont．	（＇lumly．	$1-4 \text { ci. and }$ © 1111 ．	Fair．	$\because-1 . i$	Jatar．	4－4 st．	Lt．spow．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { cnul. } \end{aligned}$	Fair．
1		（＇lumis	1－4 cimm．	Fair．	$2-1$.	Fitir．	4－4 st．	Lit．show．	$\begin{gathered} 1-4 \text { ri. and } \\ \text { st. } \end{gathered}$	Fair．
7	$\begin{gathered} : 1.1 \text { inlin. } \\ 1 . .1 \text { st. } \end{gathered}$	（＇lombly	1.4 cmm ． and -i ．	Fiair．	$\begin{aligned} & 1-4 \cdot i, \\ & \therefore-4 \cdot 1 m i . \end{aligned}$	Clouds	＋－4 st：	Lt．ハヵッハ．	$\begin{gathered} 1-4 \\ \begin{array}{l} \text { i. and } \\ \text { st. } \end{array} \end{gathered}$	Fair．
\checkmark	1－1（11111．	＇lumer		Joins．	$\begin{gathered} 1-1 \text { ri., } \\ \because-1 ، 11 m . \end{gathered}$	Clumis：	$\begin{aligned} & 1-4 \text { winn. } \\ & \because-1 \text { st. } \end{aligned}$	L．minw．	$\begin{gathered} 1-1+i \cdot i .: 11,1 \\ \text { st. } \end{gathered}$	J＇air．
9	$\begin{gathered} 3-4 \text { rimi, } \\ 1-4 s t . \end{gathered}$	Chondy	： H ctum．	Cloudy，	$\begin{aligned} & 1-4 \mathrm{ci}, \\ & 2-4 \mathrm{cum} . \end{aligned}$	C＇luarys．	$\begin{aligned} & 1-4 \text { cimi., } \\ & 3-4 \text { st. } \end{aligned}$	Clondy．	$\begin{aligned} & \text { 1-1 } 4 \cdot i \text { : :mel } \\ & \text { c'um?. } \end{aligned}$	Fair．
10	$\because-4 \mathrm{st} .$	Fuir．	： 1 cum．	Clourls．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { cumm. } \end{aligned}$	Faid．	4－4 st．	Clondy．	1－4 ci．and cum．	Fitir．
11	1－1 nt．and cllin．	Pair．	$3-1 \mathrm{cum}$ ．	Clunily	$\begin{aligned} & 1-4 \text { ci. aud } \\ & \text { cinm. } \end{aligned}$	Fait．	4－4 st．	Clmats．	$\begin{aligned} & 1-4 \text { ci. and } \\ & \text { chlol. } \end{aligned}$	Fair．
Nimil．	1－4 ci．，1－1 st． allid cinn．	Fair．	1－1 crim．	Fair．	$\begin{aligned} & \text { 1-1 ،i. andl } \\ & \text { rum. } \end{aligned}$	Fiair．	$\begin{aligned} & \because-4 \text { cmm., } \\ & \because-4 \text { st. } \end{aligned}$	Clonrly．	$\begin{gathered} 1-4 \text { ci. :ılıl } \\ \text { st. } \end{gathered}$	Fair．
$1^{\text {b }}$	$\begin{gathered} \because-4 \text { ci. and } \\ \text { i..-st., } 1-4 \end{gathered}$	Cloudy：	1－4．11m．	Finir．	$\begin{aligned} & 1-4 \text { ri., } \\ & \because-4 \text { cum. } \end{aligned}$	（ 1 lomis．	$\begin{aligned} & 3-4 \text { cim. }, \\ & 2-1 \text { st. } \end{aligned}$	Lt．suow．	$\begin{aligned} & 1-1 \mathrm{ci} \text {. and } \\ & \text { st. } \end{aligned}$	Fair．
2	$\begin{aligned} & \because-1 \\ & \because f .1 \\ & \because \end{aligned}$	Clomily．	$1-1 \mathrm{cmm}$ ．	Fair．	：3－4 cum．	Cloundy．	4－4 st．	Lt．suows．	$\begin{aligned} & 1-4 \text { ci. and } \\ & \text { st. } \end{aligned}$	f：air．
：	$\begin{aligned} & 1-1 \text { ri., } \\ & : \dot{1} \text { st. } \end{aligned}$	（land）	1－1 cım．	Pair．	1－1 cum．	Clonds	$\begin{aligned} & \text { 2-4 cum., } \\ & \because-1 \text { st. } \end{aligned}$	C＇louty．	$\begin{aligned} & 1-4 \text { ei. and } \\ & \text { st. } \end{aligned}$	Fair．
4	$41 \text { st. }$	Clonds	1－4 •－i．：und ci．－cum．	Ping.	$\begin{gathered} \therefore-1 \text { cumn., } \\ 1-1 \text { nt. } \end{gathered}$	（＇lumety：	：i－1 cum．	Cloudr．	$\begin{aligned} & 1-1 \text { ei. and } \\ & \text { st. } \end{aligned}$	Pair．
i		Clouly，	1－4 ifi．：mul ci．－ctim．	Fair．	$\begin{gathered} \therefore-4 \text { cmm. } \\ 1-4 \mathrm{st} . \end{gathered}$	Clondy．	$\begin{aligned} & 1-4 \text { ci.-еими, } \\ & 2-4 \text { cum. } \end{aligned}$	C＇londy．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { st. } \end{aligned}$	Fait．
${ }^{6}$	$\left\{\begin{array}{l} \because-1 \text { ri., } \because-1 \\ \text { comn and at. } \end{array}\right.$	Clondy．	$1-1 \mathrm{ci} .$	Fair．	$\begin{aligned} & \because-1 \text { cimn., } \\ & \because-4 \text { st. } \end{aligned}$	Lt．suotr．	1－4 ci．c．mm， － 4 collo．	Clomds．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { st. } \end{aligned}$	Fair．
7	l－4 ri．，9－4 （＇Iltor．almist．	Clundy	$\cdots-1 \mathrm{ci}$ ．	Fair．	4.4 st．	Cloudy	1． 4 ci－comm．， 3－4 cull．	Clonds．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { st. } \end{aligned}$	Fair．
K	$\begin{aligned} & 1-1 \text { ri. . 1-1 } \\ & \text { 1-1111., } \because-1 \text { st. } \end{aligned}$	Cloms．	$\because 1 \mathrm{ci} .$	Fiair．	$\begin{gathered} 1-1 \text { rmm., } \\ 3 \cdot-4 \times 1 . \end{gathered}$	Clonils	$\begin{aligned} & 2-4 \text { •וnm., } \\ & 2-4 \text { st. } \end{aligned}$	C＇londy．	$\begin{aligned} & 1-1 \\ & 1-1 \\ & 1 . \\ & \text { st., } \end{aligned}$	Fair．
9 111	$\begin{gathered} \because-1 \text { inm. } \\ \because-1 \mathrm{st} \end{gathered}$	Clomal	$\begin{aligned} & 1-1 \text { ri. and } \\ & \text { rilim. } \end{aligned}$	Finir．	$1-1 \mathrm{k} .$	Cloudy ．	1－4 ci．－cnmo． ：）－4 cum．	Cloury	$\because-4$ ci－emm． and cumı．， 1－4 st．	Clonly．
	$1-4 \mathrm{sit}$.	Lt．sumw．	e－1 ci．， 1－4 cum．	Clonde．	$4-4 \text { st. }$	Clondy．	4－4 cum．	Clondy．	$\begin{aligned} & \text { P-4 cum., } \\ & 1-4 \text { st. } \end{aligned}$	Clondy．
11	4－1 st．	Lt．snow．	4.4 st．	（＇lond）	4-4 st.	Clondy．	1－1 ci－cum．， $\because-4$ cum．	Clondy．	；－if cher．	Clomes．

Das．	JUNE， 1872.									
	18.		19		20.		21		2	
Honr．		$\begin{aligned} & = \\ & \\ & \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & \text { Anomit imul kime } \\ & \text { of clousls. } \end{aligned}$		$\begin{aligned} & \text { Amonnt and kint } \\ & \text { of clonds. } \end{aligned}$					
0^{4}	1－4 cum．， $3-4 \mathrm{st}$	Clomily：	$\begin{aligned} & 2-4 \text { com. } \\ & \because-4 \text { st. } \end{aligned}$	Clomely．	4－4 ist．	Clondy．	：i－4 $1 . \mathrm{i} . \mathrm{cmm}$ ． 1－4 clim．	C＇lomdy	$\begin{aligned} & 1-1 \text { ci., } \end{aligned}$	Cloudy．
1	4－4 st．	Clmaly：	$\begin{aligned} & 1-1 \text { st., } \\ & 3-4 \text { cnow. } \end{aligned}$	Cloudy．	4.1 st．	Clourly．	\because－сі．－сит． 2－4 chm．	Clondy．	$\begin{gathered} 3-4 \mathrm{ci} . \\ 1-1 \\ \hline \text { st. } \end{gathered}$	Clomly．
\because	4－4 sit．	L．sımw．	$\begin{aligned} & \text { 1-4 st. } \\ & 3-4 \text { cum. } \end{aligned}$	Clomals．	$\begin{aligned} & 1-1 \text { cnm., } \\ & : 3-4 \text { st. } \end{aligned}$	Clondy	$\begin{aligned} & \text { and st. } \\ & 3-t \text { como. } \\ & 1-4 \text { st. } \end{aligned}$	（＇lnners．	$\begin{aligned} & \because-1 \\ & \text { ci. } \\ & 1-1 \\ & \text { st. } \end{aligned}$	Clonds．
3	4－4	Lt．мぃいい．	$\begin{aligned} & 1-4 \text { st., } \\ & \text { ?-1 cann. } \end{aligned}$	Clondy	$\begin{gathered} 1-1 \text { rimin. } \\ : ;-4 \mathrm{st} . \end{gathered}$	Clomily	$\begin{aligned} & 9-1 \text { cim. } \\ & 1-1 \text { nt. } \end{aligned}$	（＇lumis．	$\begin{aligned} & 1-4 \text { ri., } 1-4 \\ & \text { chun. and st. } \end{aligned}$	Fair．
4	4－1 nt．	Lt．sumw．	$\begin{aligned} & 1-4 \text { st.. } \\ & 3-4 \cdot 3111 . \end{aligned}$	（＇iondy	$\begin{gathered} 1-1 \text { cum., } 1-1 \\ \text { ri., 1-4 } \end{gathered}$	（＇ancty：	$\begin{aligned} & \because-1 \text { (rim., } \\ & 1-4 \text { nt. } \end{aligned}$		$\begin{aligned} & 3-4 \text { ci. and } \\ & \text { i.-cım., } 1-4 \end{aligned}$	Clomit．
5	1－4 cmm． ：i－t st．	Lt．snow．	$\begin{aligned} & 1-4 \text { st. } \\ & 3-4 \text { com. } \end{aligned}$	Clomils	$\therefore-1$ ci．	Cloudy	$\begin{gathered} 1-1 \text { cmm. } \\ : 3-4 \text { st. } \end{gathered}$	（churly．	$\begin{aligned} & 1-4 \text { vi., : }:-4 \\ & \text { culn., } 1-4 \text { st. } \end{aligned}$	－10nuly．
（ ${ }^{\text {d }}$	$1-4$ cum． $3-4 \mathrm{st}$.	Lt．snow．	1－4 st．， 3－4 cmin．	Clouds．	： 1.1 ci．	Clondy，	$\begin{aligned} & 1-4 \text { cum. } \\ & \text { is- } 4 \text { st. } \end{aligned}$	Chourly．	$\begin{aligned} & 1-4 \text { ci., } \\ & 2-4 \text { cimin. } \end{aligned}$	Clomly
7	$\begin{aligned} & 9-4 \text { como. } \\ & \because-4 \text { st. } \end{aligned}$	（＇lncty．	$\begin{aligned} & 1-4 \text { st., } \\ & 3-4 \text { cum. } \end{aligned}$	Clouls．	$\begin{gathered} 1-4 \text { cum. } \\ \vdots-4 \text { ci. } \end{gathered}$	Cloudy．	$\begin{aligned} & 1-4 \text { cmmu., } \\ & \therefore-4 \text { st. } \end{aligned}$	C＇londy．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { cum. } \end{aligned}$	Fair．
E	$\begin{aligned} & 1-4 \text { cmm, } \\ & 3-4 \text { st. } \end{aligned}$	（ ${ }^{\text {cham］}}$ ，	$1-4$ st．， ：3－4 cim．	Clomas．	$\begin{gathered} 1-1 \text { ci., } \\ \because 1 \text { com. } \end{gathered}$	Clomily．	$\begin{aligned} & 1-4 \text { chmo. } \\ & : i-4 \text { st. } \end{aligned}$	Clondy．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { c.mm. } \end{aligned}$	Fair．
9	$\begin{aligned} & 1-4 \text { cum., } \\ & \text { :3-1 st. } \end{aligned}$	Clonus．	$\begin{aligned} & \text { Ci.-cum. } \\ & \text { :i-1 cum. } \end{aligned}$	（lonty：	$\begin{aligned} & 1-1 \mathrm{ci}, \\ & : 1 \text { inn. } \end{aligned}$	（＇lomily．	1－1，i．－cmm．， 1－I cum．，	Cloudy：	$\begin{aligned} & 1-1 \text { ci.., } \\ & 1-4 \text { cum. } \end{aligned}$	Pair．
10	$\begin{aligned} & 1-1 \text { chlin.. } \\ & : 3-1 \text { st. } \end{aligned}$	Clonis．	$3-4 \mathrm{cmm}$ ．	Clomis：	$\begin{aligned} & 1-1 \text { ri., } \\ & \text { :i-t cuin. } \end{aligned}$	（ 10nly	$\begin{gathered} \therefore-1+i-\operatorname{c} 1111 . . \\ 1-4 \mathrm{st} . \end{gathered}$	Clundy．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { rum. } \end{aligned}$	Pair．
11	1－4ci．－cım．， ＇2－1 cillo．	（＇lumily．	$\begin{aligned} & 1-1 \text { ci., } \\ & 8-1 \text { cum. } \end{aligned}$	Clowity．	$1-4 \text { ci., }$ $3-4 \text { cıun. }$	c＇londy．	$\begin{aligned} & 2-4 \text { enm., } \\ & 0-4 \text { st. } \end{aligned}$	Clonds．	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-1 \text {. onn. } \end{aligned}$	Fair．
Num．	$\begin{gathered} 1-4 \cdot(\cdot 1 ., 1-4 \\ \text { chun., } z-4 \text { st. } \end{gathered}$	C＇Iouts．	1－1 ci．， $3-1$ collo，and nt．	Cloudy	$\begin{aligned} & 1-4 \text { ci., 1-4 } \\ & \text { cum., 1-4 st. } \end{aligned}$	Clondy	$\begin{aligned} & 2-1 \text { ci., } \\ & 2-4 \text { st. } \end{aligned}$	Clondy：	$\begin{aligned} & 1-1 \text { ri. and } \\ & \text { cum. } \end{aligned}$	Jair．
$1^{\text {h }}$	$\begin{aligned} & \text { e-1 } 1 \text { immi, } \\ & 2-1 \text { st. } \end{aligned}$	Clomety：	$1-4 \text { ci., } \check{y}$ chun, and st.	（＇lontly	$\begin{gathered} 1-1 \text { ri., } 1-1 \\ \text { cım., } 1-4 \text { st. } \end{gathered}$	Clomer	$\begin{aligned} & 1-4 \text { ci., :i-4 } \\ & \text { cam. amist. } \end{aligned}$	（lonils．	1－4 （i．	1＇air．
2	$\begin{aligned} & 2-1 \text { cum. } \\ & 0.4 \text { st. } \end{aligned}$	（19046）	3.4 cmm ．	Clomly．	$\begin{aligned} & 1-4 \text { ci., } 1-4 \\ & \text { titin., } 1-4 \text { st. } \end{aligned}$	（＇lomdy	$\begin{aligned} & 1-4 \text { ci., } 3-4 \\ & \text { cum. and st. } \end{aligned}$	Clondy．	1－1 ci．	Fair．
3	$\begin{aligned} & 1-4 \text { ci., } ?_{4}^{4} \\ & \text { chm. and st. } \end{aligned}$	Clondy．	$\begin{gathered} \text { S-4 }-\mathrm{i} . \text { comu. }, \\ 1-4 \text { st. } \end{gathered}$	Clamdy	$\begin{aligned} & \because-4 \text { comm., } \\ & 1-\frac{1}{4} \text { st. } \end{aligned}$	Chourly．	$2-4$ ci．， $2-1$ cum．andst．	Clourly．	1－4 ci．	Puir．
4	$4 \text { ci., } 2-4$ mo，and st．	Clondy．	$\begin{aligned} & 1-4 \text { ci. and } \\ & \text { i.-c:111, } 2-1 \end{aligned}$	Clomly：	$\begin{aligned} & \because-4 \text { cimm., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy．	$\begin{aligned} & \because-4 \text { ci., } 2-1 \\ & \text { como and st. } \end{aligned}$	Clourls．	1－4 ci．	Fiar．
5	$\begin{aligned} & 1-4 \text { cim. } \\ & a-1 \text { nt. } \end{aligned}$	Clontly．	cult．and st． 2－4 ci．amd ti．－c！lin．，1－4	Clondy：	1－4 ci．and	Clonily．	$\begin{aligned} & \because-1 \text { •i., } 2-1 \\ & \text { cum, and st. } \end{aligned}$	Clourly，	$1-4 \mathrm{ci}$	Vair．
\mathfrak{G}	$\begin{aligned} & 1-4 \text { r.1111, } \\ & \therefore \because-1 \text { st. } \end{aligned}$	Clomily．	$\begin{gathered} \text { st. } \\ :-1-1 \mathrm{cnm} . \\ 1-4 \mathrm{st.} \end{gathered}$	Clonity．	（•17！1，and st． 1－4 ci．and ci．－cum．．．．．－4	Clondy．			$1-4$ ci．and st．	Pair．
；	－ $4-4$ st．	（＇10ndr：－	1－4（i．－rımin．，	Clomaly．	cillin amist． ： $1-1 \mathrm{cmm}$ ．	C＇londs．			1－1 ci．and	Fiair．
K	$\begin{array}{ll} 1-1 & \text { ri., } \\ \therefore-1 & \text { st. } \end{array}$	（＇lomis．	$\begin{aligned} & 3-4 \mathrm{st} . \\ & 44 \mathrm{st} \end{aligned}$	Clomis：	$3-1 \mathrm{cmm}$ ．	Clouly．			('i.	Clras．
1	1－4 ci．	Clonds．	1－4，¢i．－cimm．	Clonds：	：－1 cmm．	Clouty．			Ci．	Clear．
11	$\begin{aligned} & 3-1 \\ & 1-4 \\ & 1-4 \end{aligned}$	Clumis．	$\begin{aligned} & 8-4 \text { st. } \\ & 4-4 \text { st. } \end{aligned}$	Clouly．	$1-4 \mathrm{ci}$ ．and ci．－cum．，号－4	Clomils．			1－1 i．	Fair．
11	j－1 st．	Clomis．	4－4 st．	Clomis．	cum． 1－4 ci．and ci．cum． $2-4$ cum．	Clondy．	$\begin{aligned} & 2-1 \text { ci. } \\ & 1-4 \text { st. } \end{aligned}$	Fair．	1－4 ci．	Fitr．

Day.	JUNE, 1872.						JULY, 1872.			
	28.		29.		30.		1.		2.	
llonr.			$\begin{aligned} & \text { Amomit and kind } \\ & \text { of clowls. } \end{aligned}$	3 3 0 0 0 0 0					$\begin{aligned} & \text { B } \\ & \\ & 3 \\ & 3 \end{aligned}$	
6^{3}	$\begin{aligned} & 1-\frac{1}{\text { ci. and }} \\ & \text { ci.-cum., } 1-4 \\ & \text { cumm. } \end{aligned}$	Fair.	1-4 ci.-st.	Pair.	0	Clear.	1-4 ci.	Fair.	0	Clear.
1	$\begin{aligned} & 2-4 \text { ri., } \\ & 1-4 \text { cum. } \end{aligned}$	Coudy.	$\begin{aligned} & 1-4 \text { ci., } \\ & : 3-4 \text { st. } \end{aligned}$	Pair.	St.	Clear.	$\begin{aligned} & 1-4 \mathrm{ci} \text {. and } \\ & \text { st. } \end{aligned}$	Fuir.	11	Clear.
\because		Cloudy:	Ci,-st.	Clear.	st.	Clear.	$\begin{aligned} & 1-4 \text { ci, and } \\ & \text { st. } \end{aligned}$	Fair.	0	Clear.
3	$\begin{aligned} & 0-4 \text { ci. } \\ & 1-4 \text { cum. } \end{aligned}$	Cloudy.	$\begin{aligned} & \text { Ci. and ci.- } \\ & \text { st. } \end{aligned}$	Clear.	it.	Clear.	- - 4 ci.-st.	Fair.	0	Clear.
4	3-4 ci. and ci.-cum.	Cloudy	Ci.-st.	Clear.	St.	Clear.	2-4 ci.-st.	Fair.	0	Clear.
5	1-4 ci., $1-4$ ctm.	Fais,	Ci. aud st.	Clear.	st.	Clcar.	- 1 ci.-st.	Fair.	11	('latr'
6	$\begin{gathered} 1-4 \text { ci. } \\ 1-4 \text { ci.-st. } \end{gathered}$	Fair.	st.	Clear.	St.	Clear	1-4 ci.-st.	lair.	0	' 'lear.
7	$\left\lvert\, \begin{gathered} 3-4 \text { ci., } 1-4 \\ \text { st. and ci.-st. } \end{gathered}\right.$	Clondy.	St.	Clear.	Ci.-st.	Clear.	st.	Clear.	0	Clear.
צ	$\begin{aligned} & 2-4 \text { ci., } \\ & 1-4 \text { cum. } \end{aligned}$	Clondy.	St.	Clcar.	1-4 ci.st.	Fair.	1-4 st.	Fuir.	11	Clear.
9	$\begin{aligned} & 1-4 \text { ci,-st., } \\ & 3-4 \text { st. } \end{aligned}$	Clondy	St.	Clear.	C'i. and st.	Clear.	1-4 ci.	Fair.	11	Clear.
10	$\begin{gathered} 1-4 \text { ci, and } \\ \text { ci.-st., } 3-4 \text { st. } \end{gathered}$	Clondy.	0	Clear.	Ci, and st.	Clear.	1-4 ci.	Fair.	0	Clear.
11	$\begin{gathered} 1-4 \text { ci. and } \\ \text { (i.-st., } 3-4 \text { st. } \end{gathered}$	C'londy.	0	C'lear.	Cum.and st.	Clear.	0	Clear.	11	Clear.
Noou.	$\begin{gathered} 1-4 \text { ci. and } \\ \text { ci.-st., } 3 \text { f st. } \end{gathered}$	Clondy.	0	Clear.	St.	Clear.	0	Clear.	11	Clear.
$1^{\text {b }}$	$\left\lvert\, \begin{aligned} & 1-4 \text { ci. and } \\ & \text { ci.-st., } \because-4 \text { st. } \end{aligned}\right.$	C'lunty.	11	Clear.	St.	Clear.	$1)$	Clear.	1	Clear.
2	$\begin{aligned} & 1-4 \text { ci. audl } \\ & \text { ci.st., } 2-4 \text { st. } \end{aligned}$	Clondy.	11	Clear	$\underset{\text { st. }}{\text { s. } 4 \text { coum. }}$	Fuir,	0	Clear.	11	Clear.
3	4-4 st.	Cloudy.	0	Clear.	$\underset{\text { st. }}{\substack{\text { cnma } \\ \text { st }}}$	Fair.	0	Clear.	11	Cluar.
4	$4-4$ st.	Clondy.	0	Clcar.	0	Clear.	0	Clear.	11	Clear.
5	4.4 st.	Cloudy.	0	Clear.	0	Clear	0	Clear.	0	('le:rr.
6	$\therefore-1$ st.	Clondy.	Cum.	Clear.	1-4 ci.	rair.	0	Cicar.	11	' 'lear.
7	2-4 st.	Fair.	St.	Clear.	1-1 ci.	Fair.	0	Clear.	${ }^{1}$	Clear.
\checkmark	$\begin{aligned} & 1-1 \\ & 1-4 \mathrm{ci}, \\ & 1 . \end{aligned}$	Fair.	St.	Clear.	1-4 ci.	Fair.	0	Clear.	11	Clear.
0	$1-4$ ci. and cunt.	Fair.	St.	Clear.	Ci.	C'lear	0	Clear.	11	Clear.
10	$\begin{aligned} & 1-4 \text { ci, and } \\ & \text { st. } \end{aligned}$	Fair.	St.	Cleas:	11	Clear.	0	Clazar.	0	Clear.
11	$\begin{aligned} & 1-1 \\ & 1-1 \\ & 1 . \\ & \text { st. } \end{aligned}$	Fair.	St.	Clear.	11	Clatir,	0	Clear.	11	Clear.

Day．	JULY， 1872.									
	13.		14.		15.		16.		1%	
llour．	$\begin{aligned} & \text { Amoment and kind } \\ & \text { of clouds. } \end{aligned}$	$\begin{gathered} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { 总 } \\ & \text { 采 } \\ & 3 \\ & 3 \\ & 3 \end{aligned}$				B 3 3 3		$\begin{aligned} & \text { 寻 } \\ & \text { 和 } \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
$0^{\text {h }}$	$\begin{aligned} & 4-4 \mathrm{cam} . \text { and } \\ & \text { st. } \end{aligned}$	Clondy．	$\begin{aligned} & \text { st. } 1 \text { cum. aud } \\ & \text { st. } \end{aligned}$	C＇lourly．	$\begin{gathered} 2-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	C＇loudy．	3－4 st，aud com．	Cloudy．	4.4 st．	Lt．raiu．
1	$\begin{aligned} & \text { 4-4 curu, and } \\ & \text { st. } \end{aligned}$	C＇loudy＇	$\begin{gathered} 3-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	C＇loudy．	$\begin{gathered} 1-4 \text { cum., } \\ 3-1 \text { st. } \end{gathered}$	Clouly．	3－I st．and cull．	Clouly	1－1 st．	Lt．rain．
¢	$\begin{aligned} & 14 \mathrm{com} \text { st. and } \\ & \text { st } \end{aligned}$	Clondy．	$\begin{aligned} & 2-1 \text { cum. } \\ & 1-4 \text { st. } \end{aligned}$	Clondy．	1－4 st．	Cloudy．	$\begin{aligned} & 3-4 \text { cime, } \\ & 1-4 \text { st. } \end{aligned}$	Clondy．	1－1 st．	lainand show．
3	$\begin{aligned} & t-4 \underset{\text { cnm, aud }}{\text { st. }} \end{aligned}$	Clouily．	4－4 st．	Lt，suow．	$4-4$ st．	Clouis．	$\begin{aligned} & 2-1 \text { cime, } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy：	4－4 st．	R：4inamal snow：
t	$\begin{aligned} & 1-1 \mathrm{cmm.} \text { aurl } \\ & \text { st. } \end{aligned}$	Clonily．	1－1 st．	Lt．snow．	4－4 st．	Lt．rain．	$\begin{aligned} & 1-4 \text { cum. and } \\ & \text { st. } \end{aligned}$	Cloudy．	1.1 st．	Lt．snow．
5	4－4 st．	Clonly．	4－4 st．	Lt．suow．	$\begin{gathered} 1-4 \text { cmm., } \\ 3-4 \text { st. } \end{gathered}$	Clouds．	$4-4$ cum．	Cloudy．	f－I st．	Lt．snow．
0	4－4 st．	Clondy．	d－4 st．	Lt．snow．	$\begin{aligned} & 1-4 \text { cum. } \\ & 3-4 \text { st. } \end{aligned}$	Clondy．	1－4 cum．	C＇Ioudy，	4－4 st．	Lt．suow．
7	4－4 st．	Clouds．	4－4 st．	Lt．snown，	$1-4 \text { cum., }$	Cloudy．	$4-4 \mathrm{cum}$ ．	C＇louily．	1－4 st．	Lt．show．
8	$\begin{aligned} & 1-4 \text { ci., 2-4 } \\ & \text { cum., 1-4 st. } \end{aligned}$	C＇lonily．	4－4 st．	Clouty．	$\begin{gathered} 2-1 \text { culu., } \\ 2-4 \text { st. } \end{gathered}$	Cloudy．	1－4 ci．， 3－4 cum．	Cloudy．	1－4 st．	Clourly．
9	$\left\{\begin{array}{l} \text { ci.. } 1-4 \text { cum. } \\ 3-4 \text { st. } \end{array}\right.$	C＇louds．	$\begin{gathered} 1-4 \text { cnm., } \\ 3-4 \text { st. } \end{gathered}$	Cloudy．	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy．	$\begin{gathered} 2-4 \text { st., } \\ 2-4 \text { cum. } \end{gathered}$	Cloudy．	4－4 st．	Cloudy．
10	1－4 ci．， 2－4 сиш．	Cloudy：	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Clourly．	$4-4 \mathrm{cum}$ ．	C＇londs．	$\begin{aligned} & 1-4 \text { ci., } 3-4 \\ & \text { cum. andst. } \end{aligned}$	Clounly．	1－4 st．	Cloudy．
11	Ci．，4－4 cum．	Clondy．	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Clondy．	1－1 st．， 3－4 culu．	Cloudy．	$\begin{aligned} & 1-4 \text { ci., } 3-4 \\ & \text { cum. and st. } \end{aligned}$	Cloudy．	1－1 st．	Cloudy．
Noon．	1－4 st．， $2-4$ cum．	Clondy．	$\begin{gathered} 1-4 \text { cnm., } \\ 3-4 \text { st. } \end{gathered}$	Cloudy．	$\underset{2}{2}+\frac{1}{2} \text { cum. }$	Clouds．	$\begin{aligned} & 1-4 \text { ci. and } \\ & \text { ci.-cum.. }-4 \end{aligned}$	Cloudy	4－4 st．	Cloudy．
1^{14}		Clondy．	$\begin{aligned} & 2-1 \text { cum., } \\ & \text { :-1 st. } \end{aligned}$	Clondy．	$\begin{aligned} & 2-4 \text { cum., } \\ & 9-4 \text { st. } \end{aligned}$	Clondy．	cum．and st． 1－4 ci．andi сі．－cumı．，2－4	Cloudy．	$\begin{aligned} & 1-4 \text { cum. } \\ & 3-4 \text { st. } \end{aligned}$	Cloudy：
$\stackrel{2}{ }$	1－4 ci．and ci．－cum．，1－4	Clouty，	3－4 cum．	Clouty．	$\begin{aligned} & 9-4 \text { cuus., } \\ & \because-4 \text { st. } \end{aligned}$	Clouly．	cum，aut st． ？－4 cum．， 2－4 st．	Clondy．	$\begin{gathered} 1-4 \text { cnm. } \\ 3-4 \mathrm{st} \end{gathered}$	Clondy．
3		Cloudy	$\begin{aligned} & 2-1 \text { cums., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy．	$\begin{aligned} & 1-4 \text { st., } \\ & 3-4 \text { cum. } \end{aligned}$	Cloudy．	$\begin{aligned} & 2-1 \text { cuml., } \\ & 2-4 \text { st. } \end{aligned}$	Clourly．	$\begin{gathered} 1-1 \text { cum., } \\ : 3-4 \text { st. } \end{gathered}$	Clourly．
4	$\begin{aligned} & 9-1 \text { cum., } \\ & \stackrel{-1}{2} \text { st. } \end{aligned}$	Clondy．	$\begin{gathered} 9-4 \text { cum. } \\ 2-4 \text { st. } \end{gathered}$	C＇loudy．	$1-4 \text { ri, }$ 3－4 culu．	Cloudy．	$\begin{aligned} & 2-4 \text { cum. } \\ & 2-4 \text { st. } \end{aligned}$	Clonely．	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Clourly．
5	1－4 ci．and cj．－cum．，？－4 cuin．	Clondy．	1－1 cum．， $3-4$ st．	C＇louty．	$\begin{aligned} & \because-4 \text { cum., } \\ & \because-4 \text { st. } \end{aligned}$	Clouly．	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	CIondy．	$\begin{gathered} 1-4 \text { cum. } \\ : 3-4 \text { st. } \end{gathered}$	Clomis：
6	$\begin{gathered} 2-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Clonily．	$\begin{aligned} & 1-1 \text { cum. } \\ & : 3-4 \text { st. } \end{aligned}$	Cloudy．	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy．	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Lt．raiu．	$\begin{gathered} 1-4 \text { cum. } \\ 3-4 \text { st. } \end{gathered}$	Cloudy．
7	$\begin{aligned} & 3-4 \text { cum., } \\ & 1-4 \mathrm{st.} \end{aligned}$	Cloudy．	4－4 st．	Rain．	$\begin{aligned} & 2-4 \text { cum., } \\ & \because-4 \text { st. } \end{aligned}$	Cloudy．	t－4 st．	Lt．rain．	$\begin{aligned} & 2-1 \text { cum. } \\ & 2-4 \mathrm{st} . \end{aligned}$	Cloudy．
\checkmark	$\underset{\text { st. }}{i-4} \underset{\text { cuma }}{ }$	Clouts．	4－4 st．	Clondy．	Q－4 cum．， 2－1 st．	Clouty．	4－1 st．	Lt．raiu．	$\begin{gathered} 3-4 \text { cnm., } \\ 1-4 \mathrm{st} . \end{gathered}$	Clondy．
9	3－1 cum． 1－4 st．	Clouds．	$\begin{aligned} & \cdot-4 \text { cum. aud } \\ & \text { ci., } 1-4 \text { st. } \end{aligned}$	CIoudy	$\begin{aligned} & 2-4 \text { com., } \\ & 2-4 \text { st. } \end{aligned}$	C＇londy．	$4-1$ st．	Lt．raiu．	$\begin{aligned} & 9-1 \text { cum., } \\ & \hdashline-1 \text { st. } \end{aligned}$	Cloudy．
10	$\underset{\text { st. }}{ }$	Fair．	$\begin{aligned} & 1-4 \text { спш., } \\ & 3-4 \text { st. } \end{aligned}$	clondy．	$\begin{aligned} & \because-4 \text { crmm., } \\ & 0-4 \text { st. } \end{aligned}$	Cloudy．	4－1 st．	Lt．rain．	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudj＇
11	$\text { S-1 } \underset{\text { st. }}{\mathrm{cmm} \text {. and }}$	Cloudy．	$\begin{gathered} 0-4 \text { enm., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy．	$\begin{aligned} & 3-4 \text { cum., } \\ & 1-4 \text { st. } \end{aligned}$	Clondy．	4－1 st．	Lt．rain．	4－1 st．and cum．	Cloudy．

JULY, 1872.

Das.	JULY, 1872.								AUGUST, 1872.	
	28.		29.		30.		31.		1.	
llour.		$\begin{aligned} & \text { In } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					3 3 3 3 3 3 3 3			
$0^{\text {h }}$	1-4 ci.	Fair.	$1-1$ cum.	Pair.	$\because-1$ ci.,	Cloudy.	4.4 st.	Cloudy.	1-1 st.	Clonds.
1	1-1 ci.	Fair.	('i. and com.	C'lear.	$4-1$ st.	Cloudy.	1.4 st.	Cloudy	4-4 st.	('lundy.
*	$1-4 \text { ci. and }$	Fair.	(i ${ }^{\text {. }}$	Clear.	4-1 st.	Clundy.	14 st.	Clowdy.	1-1 st.	C'lundy
3	1-4 ci. cillo., 1-4 cimm.	Fair.	1-1 ci.	Fait.	4-4 st.	Cluody.	4-4 int.	Condy.	4-1 st.	('londy.
4	I-4 ci.-cum., $1-1 \mathrm{cum} .$	F'air.	$\because-1 \mathrm{ci}$.	Fail:	4-4 st.	('londy	1-1 st.	Cloudy.	$1-1$ st.	Clondy.
5	$\begin{aligned} & \text { 1-f (i..-chum., } \\ & \text { 1-f cnum. } \end{aligned}$	Prair.	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { cumn. } \end{aligned}$	Fiar.	$\begin{gathered} \text { I-4 cilu.. } \\ 3-1 \text { st. } \end{gathered}$	Clomily	4-1 st.	Clondy.	t-4 st.	('lundy.
${ }^{6}$	$1-1 \mathrm{ci}$. $\because-\downarrow$ cum.	Clowdy	1-4 ،i., $1-1 \mathrm{clim} .$	Fair.	$\begin{aligned} & 1-4 \text { cnmi., } \\ & 3-1 \text { st } \end{aligned}$	Clomdy.	4-4 st.	Cloudy.	14 st.	('Iouty.
7	$\begin{gathered} 1-4 \text { ci. and } \\ \text { ci.-cum., } 2-4 \end{gathered}$	Clums	$\begin{aligned} & 1-1 \text { ci. and } \\ & \text { coun. } \end{aligned}$	Fair.	t-1 8t.	L.t. rain.	4-1 st.	C'loudy	4-4 ist.	('lourly.
*	: $: 4$ cum. 1-4 st.	Cloudy.	$\begin{aligned} & 1-1 \text { ci. and } \\ & \text { clull. } \end{aligned}$	Fair.	4.1 st.	Lt. raill.	d-1 st.	Clnaly	$1-1$ st.	Cloudy
9	$\begin{gathered} 3-1 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	C'loudy.	Ci., 1-4 st. aul cull.	Fair.	1-4 st.	Lt. raiu.	4-1 sit.	('lonit.	$1-1$ st.	Clourly.
10	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Cllomly.	St. and emm.	Chear.	4-4 st.	Lt. rain.	4-1 st.	Cloudy.	1-4 st.	Cloudy
11	$\begin{gathered} 1-4 \text { cum., } \\ : 3-1 \text { st. } \end{gathered}$	(londy	St.	Clear.	1-1 st.	Lst. rain.	4-1 st.	Cloudy.	1-1 st.	Clondy.
Nown.	3-4cum. and	Cloudy.	Ci.	Clear.	4-I st.	Rain.	1-1 st.	Clouly	4-4 st.	Cloridy
1^{10}	$\begin{gathered} \text { st. } \\ 2-4 \text { ci.-cum., } \\ 2-4 \text { cum. and } \end{gathered}$	Cloudy.	(1.	Clear.	4-1 st.	Rawin.	1-4 st.	Clondy.	4.4 st.	Cloudy.
9	$\begin{gathered} \text { st. } \\ \because-1 \text { cum., } \\ 2-4 \text { st. } \end{gathered}$	Clondy.	Ci.	Clear.	4-1 st.	Rain.	4-4 st.	C'londy.	1.I st.	Cloudy.
3	$\begin{gathered} \because-4 \text { cum. } \\ \because-4 \text { st. } \end{gathered}$	Clouly.	1-4 (i.	Fair.	4-4 st.	Rain.	H-1 st.	Clondy.	4.4 st.	Clondy
4	$\begin{gathered} 3-1 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	1-4 ic.	Fair.	4-4 st.	Rain.	$\begin{gathered} \because 1 \text { cunn., } \\ 24 \text { st. } \end{gathered}$	Clondy.	4 - 1 st.	'lomily.
5	1-4 ci. and ei.-cullı., - - 4	Cloudy.	1-4 ei.	Fair.	4-4 st.	Lt. raill.	$\begin{aligned} & 2-4 \text { cinn., } \\ & \because-1 \text { st. } \end{aligned}$	Clourly.	$\begin{aligned} & 2-1 \mathrm{cmm}, \\ & 2-1 \mathrm{st} . \end{aligned}$	Clomly.
6	cunt. and st. 1-4 ci., :3-4 cume adudst.	Clondy.	1-4 ci.	Fait.	4-1 st.	Clouds.	$\begin{gathered} 1-1 \text { inim., } \\ 3-1 \text { st. } \end{gathered}$	Clourly.	$\begin{gathered} \because-1 \text { comm., } \\ 2-1 \text { st. } \end{gathered}$	- 'londy.
7	$\begin{aligned} & 1-4 \text { ci., } 9-4 \\ & \text { cuan and st. } \end{aligned}$	Cloudy.	1-1 ci.	Fair.	4-4 sit.	Lt. B ain.	$\begin{gathered} 1-4 \text { cim., } \\ \underline{n}-1 \text { st. } \end{gathered}$	('louty.	$\begin{gathered} 1-4 \text { cim. } \\ 3-4 \text { st. } \end{gathered}$	Cloudy.
8	1-4 (.i. and (i.-ヶו1!n., 1-4	Clowdy.	1-4 ci.	fuir.	4 -1 st.	Lt. rain.	1-4 :i.-enm., 1-4 comu.,	Cloudy.	$\begin{aligned} & 1-4 \text { rum., } \\ & \text { י-4 st. } \end{aligned}$	Cloudy.
$!$	cum., 1-4 st. :3-1 cum., $1-4$ st.	Clondy.	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { c.llu. } \end{aligned}$	Clondy.	1-1 st.	Cloudy.	$\begin{gathered} \because-4 \text { st. } \\ 1-4 \text { si.-cum. }, \\ 3-4 \text { cum. aud } \\ \text { st. } \end{gathered}$	Cloudy.	1-4 -i.-cum. $1-4$ cums. -1 st.	Clondy.
10	$\begin{gathered} 3-4 \text { ennı., } \\ 1-4 \text { st. } \end{gathered}$	Clourly	$\underset{\text { st. }}{1-4 \mathrm{cum} . \text { aurd }}$	Clemaly	4-4 st.	Clourly.	Ci.-cum. :3-4 cillu.	Cloudy.	$\left\lvert\, \begin{gathered} 1-4 \text { ci.-cnm., } \\ \because-4 \text { cum. aud } \\ \mathrm{st} . \end{gathered}\right.$	Clouds.
11	Ci., $\because-4$ st. and cum.	Fair.	$\underset{\substack{\text { st. }}}{4.4 \mathrm{cmm}, \text { aud }}$	Cloudy.	1-1 st.	Clondy:	(ii.-cum., 3-4 cunn.	Clouly.		Cloudy.

Diy.	AUGUST, 1872.									
	-		3.				J		6.	
. Hour.									$\begin{aligned} & 3 \\ & \text { 3 } \\ & \text { 3 } \end{aligned}$	
$0^{\text {b }}$	$\begin{gathered} 1-4 \text { rimu., } \\ \because \because-4 \text { st. } \end{gathered}$	Cloudy.	$\begin{gathered} 3-1 \text { cum. } \\ 1-1 \text { st. } \end{gathered}$	Clomily.	Ci.	Clear.	Ci.-st.	(larar	4 -1 cum.	Clonily.
1	$\begin{aligned} & 1-4 \text { ci., } \\ & 8-4 \text { st. } \end{aligned}$	Cloudy	4-4 it.	(lumd)	Ci.	Cluar.	$\begin{aligned} & \text { 1-4 } 4 \text { ri-c.anu. } \\ & \text { and st. } \end{aligned}$	Filir.	$\because 1 \mathrm{cmm}$.	('londy ${ }^{\text {a }}$
,	$\begin{gathered} \because-1 \text { cimm. } \\ 1-1 \text { st. } \end{gathered}$	Cloudy:	4-4it.	Lt. rain.	Ci,	Clear.	$\begin{aligned} & 1-4 \cdot i .-4 m m . \\ & \text { and st. } \end{aligned}$	Pair.	:i-1 cım.	- lamis.
3	1-4 (i.i-c+1111). $1-4 \text { st. }$	Clouds.	4-4 st.	1,1. rain.	(i i	Cla	1-4 cam.	fair.	$\because-1$ (110)	f'ail.
4	$\begin{aligned} & 1-4 \text { st. } \\ & 2-4 \text { ci. - cimm. } \\ & 1-4 \text { cam. and } \end{aligned}$	(']unaly.	4-4 st.	1.t. rain.	Ci.	(lair.	1-4 ©i.-cum.	Fair.	$\because 1$ cum.	P'air.
5		C'loudy.	4-4 st.	Lt. rain,	('i.	Clisis.	$\because-1$ cum.	Fais.	$\because 1 \mathrm{cmm}$.	P'air.
6		Clouds.	f-i st.	Lt. railu.	Ci.	C'le:nr.	$\therefore \sim \cdot 1$ cum.	Pair.	: 1 cunt.	C'loudy
7	st.	Cloudy.	d-4 st.	L.t. rain.	C'i.	Clear.	2 4 \%m.	l'air.	: i 1 c cum.	C'lowis)
8	$\begin{gathered} 1-4 \text { st. } \\ 2-1 \text { ci.-cum., } \\ 1-1 \text { st. } \end{gathered}$	Clouds.	f-4 st.	Cloudy.	Ci.	Clvar.	1-4 ci.-st. and com.	Fair.	$\begin{aligned} & 3-4 \text { "um., } \\ & 1-4 \text { st. } \end{aligned}$	Cluady.
$!$	$\begin{gathered} 3-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Clondy.	4-4 st.	Clourly.	Ci.-st.	Clear.	$1-4 \mathrm{ci} .-\mathrm{st}$. and cum.	Fair.		l'air.
10	$\begin{aligned} & 1-1 \text { ci, - mmu., } \\ & 2-1 \text { comm., } \end{aligned}$	Clondy	4-4 st.	Clouis.	Ci.	Clear.	1-4 cio-st. and ram.	Faif.	$\begin{gathered} 1-4 \text { cmm. and } \\ \text { st. } \end{gathered}$	Fair.
11		Clondy,	4-4 st.	Cluady:	Ci.	Cleas.	$1-4 \text { fi.ant. }$ and cum.	Fuir.	C'i., 1-4	Pair.
Nuon,	$\begin{aligned} & 1-4 \text { st. } \\ & 3-4 \text { c.ma. } \end{aligned}$	Cloudy,	$4-4$ st.	C'loudy	0	Clar.	$\begin{aligned} & 1-4 \text { ci.-eum. } \\ & 1-4 \text { cum. } \end{aligned}$	Fair.	C'i.	Clear.
$1^{\text {b }}$	$\because-4$ cum.	Fair.	4-4 -t.	Clonds.	Ci.	Clear.	$\begin{gathered} 1-4 \text { сі.-вин., } \\ 1-4 \text { саш. } \end{gathered}$	Fair.	Ci.	('larar.
2	: -1.1 cmm .	Cloudy.	$4-4$ ist.	Cloudy.	Ci.	Cluar.	$3-\frac{1}{}$ cums.	Cloudy.	11	- 'lans.
?	:3-4 cum.	Cloudy.	4-4 st.	Clomis.	Ci.	(l)	$\begin{gathered} 1-4 \text { сі., } \\ \because-4 \text { сиш. } \end{gathered}$	Cloudy.	11	Clear.
4	$\because \mathrm{Cam}$ c.	Fair.	$4-4$ cum.	Fair.	Ci.	Clear.	$\begin{aligned} & \text { •1 ci, } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	1 'i.	- 'la ar.
5	$\begin{aligned} & \because+\text { culn., } \\ & 1-4 s 1 . \end{aligned}$	Clours.	$\because-1$ ci.	Fair.	Ci.	Clear.	$\begin{aligned} & \because-4 \text { ci. }, \\ & 1-4 \text { st. } \end{aligned}$	Clondy.	Cil	Cluar.
6	$\begin{aligned} & 1-4, \cdot j ., \cdot-4 \\ & c \text { ann. aud st. } \end{aligned}$	Fair.	$2-4 \text { ci. }$	Fair.	Ci.	Clear.	$\begin{aligned} & \because-1 \text { ci., } \\ & 1-4 \text { st. } \end{aligned}$	Clondy	(1.	Clear.
7	1-4 it.-cum. ?-4 Colli, allul	Clouds.	$2-4$ ci.	Fair.	C i	Clear.	$\begin{aligned} & \because-1 \text { cum., } \\ & 1-4 \mathrm{st} . \end{aligned}$	Clondy	1-1 ci.	($11 \times \mathrm{ar}$.
8		Clouds.	$\begin{gathered} 1-4 \mathrm{ci} \text {, and } \\ \text { st. } \end{gathered}$	1'air.	Ci.-st.	Clear.	$\begin{aligned} & 9-4 \text { r.nmo, } \\ & 1-4 \mathrm{st} . \end{aligned}$	Clouly.	1-1 ci.-st.	F゙air.
9	:-4 cum. $1-4 \mathrm{st}$.	Cloudy.	st.	Clear.	Ci.	Cluar.	$\begin{gathered} \because-4 \mathrm{cum} . \\ 1-4 \mathrm{st} . \end{gathered}$	Cloudy.	1-4 emme.st.	Fair.
10 11		Clouds. Cloudy.	Cij, and st. 1-1 st,		Ci.-st. (ii.	Clear. Clear.	$\begin{aligned} & 1-4 \text { cum., } \\ & 1-4 \text { st. } \\ & 1-4 \text { cum., } \\ & 1-4 \text { st. } \end{aligned}$	Fair. Fair.	$\begin{gathered} \because-\mathrm{f} \text { ci. and } \\ \text { cum. } \\ 1-4 \text { ci., } \\ 1-4 \text { citul. } \end{gathered}$	Fair. Fair.

Day.	AUGUST, 1872.									
	7.		8.		9.		10.		11.	
Homr.										
$0^{\text {h }}$	$\begin{aligned} & 3-\frac{1}{c} \text { ci., } \\ & 1-4 \text { s.t. } \end{aligned}$		$\begin{gathered} 3-1 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Clowds.	1-1 ri.-st.	Fair.	11	(114:31	11	(1):at.
1	1-1 $1 \cdot i_{\text {, }}$ $\because-4 \mathrm{cmm}$.	(1)1m1):	4.1 st.	Clouls.		Fair.	0	Cle:rer	11	Cliar.
2	: $: 4 \mathrm{cmm}$.	('1)ntity	4-1 st.	'loudy.	Ci.-c.1111.	Clear.	0	(1):3n.	11	Cllars.
3	4.4 cmm	('lunity	4-4 st.	Clomis.	Ci.cam.	Cluar.	0	Cliar.	11	Cleatr.
4	44 st.	(clomdes:	44 it.	Cloudy	C'i.-ciom.	Clisar.	11	('le:1).	11	r 'latar.
5	$\begin{gathered} 1-1 \text { (} 1 \text { mill } \\ 3-4 \text { st. } \end{gathered}$	Clondy:	0.1 st.	('10mity:	Ci.-cum.	Cliotr.	0	(1 , \%r	11	Chans.
6	+-4 st.	Clondy	$\begin{aligned} & 2-1 \text { enm. } \\ & 1-1 \text { st. } \end{aligned}$	('londy'.	1-4 ci.-ени.	frair.	0	Clear.	0	(lane.
7	$\begin{aligned} & 14 \text { cum., } \\ & : 4-4 \mathrm{st.} . \end{aligned}$	Clondy.	$1-4 \text { cum. }$	Clondy	1-4 ci.-chm.	Fair.	0	Clas.	$1)$	(1):ar.
8	1-4 st.	Clomry	$\begin{aligned} & 1-4 \text { cum. }, \\ & \because-4 \text { st. } \end{aligned}$	C'londy.	1-4 ci,-crm.	Fair.	0	Clear.	11	(1):ar.
9	$\begin{aligned} & 1-4 \text { cumn, } \\ & \text { :i-4 st. } \end{aligned}$	Chonds	$\begin{gathered} 1-4 \text { com. } \\ \therefore-4 \mathrm{st} . \end{gathered}$	Cloudy	1.4 ci,-cum.	F:art.	0	Cllat.	0	Clan:
10	$\begin{aligned} & 1-4 \text { cmm. } \\ & \because-4 \text { st. } \end{aligned}$	Clauly:	$\begin{gathered} 1-4 \text { cum. } \\ \because-4 \text { st. } \end{gathered}$	Clourly.	1-4 ci.-cmu.	Fair.	11	('luar.	0	Cle:ar.
11	$\begin{gathered} : 3-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	chants.	$\begin{aligned} & 3-4 \text { com. } \\ & 1-4 \text { st. } \end{aligned}$	(tlonils.	1-4 ci,-cum.	Fair.	st.	Clmar.	11	C'le:r.
Noon.	$\begin{aligned} & \because-4 \text { crim. } \\ & 1-4 \text { st. } \end{aligned}$	Clouly:	4-4 cum.	Cloudy.		($10 . a r$.	0	Clowr.	11	Clear.
$1^{1 /}$: 4 cam.	Cloudy	4.4 cinm.	('loudy'.	1-4 1i.-cum.	F'air.	$1)$	Clear.	$1)$	Clear.
2	: $2-4$ cum.	Cloudy	$\begin{gathered} \because-1 \text { rem., } \\ 1-4 \text { st. } \end{gathered}$	('lonis.	$\begin{aligned} & \text { 1-4 ci.-cum. } \\ & \text { and st. } \end{aligned}$	Fair.	0	r'lear.	0	Cla ${ }^{\text {a }}$
:	41 chio.	Clondy,	$4-4 \mathrm{com}$.	Clonds.	$\begin{aligned} & \text { 1-4 ri.-rilul. } \\ & \text { and st. } \end{aligned}$	Fair,	1	Clear.	11	('lear.
4	$\begin{aligned} & \text { e-1 eוm. } \\ & 1-4 \text { st. } \end{aligned}$	Clonds.	$\therefore 4 \mathrm{cum}$.	. Clourly	$\begin{gathered} 1-4 \text { ci.-cmm. } \\ \text { and st. } \end{gathered}$	Jair.	11	Clear.	0	chear.
5	$\begin{aligned} & \because-4 \text { cum., } \\ & \text { I-4 st. } \end{aligned}$	Cloudy.	$\begin{aligned} & 1-4 \text { ci-cum., } \\ & \because-4 \text { cum. } \end{aligned}$	Clouds.	$\begin{aligned} & 1-4 \text { ci--cum. } \\ & \text { and st. } \end{aligned}$	Fair.	11	Clear.	0	Clear
$1 i$	$\begin{aligned} & 2-4 \text { ،111.. } \\ & 1-4 \text { st. } \end{aligned}$	$\theta^{\text {a loualy }}$	1-4 ei.cotil. $\because-4 \mathrm{cum}$.	Clouds.	st.	Clear.	0	('lear.	11	1!e:r.
7	S- 4 crum.	(${ }^{\text {donul }}$: 3 - 1 -11m.	Cloudy.	Ci.-cum.	Clear.	0	Clear.	(1.	Clear.
8	$\begin{gathered} 3-4 \text { clum. } \\ 1-4 \mathrm{st.} \end{gathered}$	Clondy.	Ci.-rime, 3.4 cmm .	(loudx)	0	Cluar.	11	Glear.	0	('le:r.
9	$\begin{aligned} & \text { P-t emm. } \\ & \text { l-4 st. } \end{aligned}$	Cloudy.	$\begin{aligned} & 1-4 \text { rinul, } \\ & 1-4 \text { st. } \end{aligned}$	Fair,	0	Clear.	10	Clvar.	11	Clear.
10	$\underset{1-4 \text { st. }}{9+}$	Clondy.	$\begin{aligned} & \text { I-4 cımm., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	St.	Clear.	0	Clear.	it.	CTear.
11	$\begin{aligned} & \because-1 \text { cum. } \\ & \text { l-4 st. } \end{aligned}$	Cloudy.	$\begin{aligned} & 1-4 \text { cum., } \\ & 1-4 \text { st. } \end{aligned}$	l'air.	St.	Clear.	0	Clear.	St.	Clear

Day.	AUGUST, 1872.									
	12.		13.		11.		15.		16.	
llonr.			puly bue qunour							\%
$0^{\text {h }}$	$\begin{aligned} & \text { 1-4 ei.-st., } \\ & \text { st. } \end{aligned}$	Pair.	St.	Clear.	$\because-1 \text { rimu., }$	Clounty.	1-1 st.	J'ıir.	$\begin{gathered} 1-1 \text { comm. } \\ 1-1 \text { st. } \end{gathered}$	Ficir.
1	$1-4 \mathrm{ci}$.	Fatir.	Ni.	Clear.	$\begin{gathered} 1-4 \text { लim., } \\ \because-1 \text { st. } \end{gathered}$	Clondy:	1-1 st.	Pair.	$\begin{aligned} & 1-4 \text { cinn., } \\ & 1-4 \text { st. } \end{aligned}$	Pair.
3	1.1 ci	Fair.	st.	flamar.	$\begin{aligned} & 1-4 \text { rim., } \\ & 2-1 \text { st. } \end{aligned}$	Clomis.	$\begin{gathered} 1-1 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	$\begin{aligned} & \text { Ci.-cum., } \\ & \because-1 \text { st. } \end{aligned}$	Fair.
;	Ci.	Cla :ar.	St.	(llear.	$\begin{gathered} 3-4 \text { ، } 111 m, \\ 1-4 \text { st. } \end{gathered}$	('londy.	: $: 1$ com.	- 'ramly.	$\begin{gathered} \text { 1-1 cmm. } \\ 1-1 \text { st. } \end{gathered}$	Pair.
4	('i.	(14.10	St.	(llar.	4.4 cmm .	('homily		Clowl 3.	$\begin{gathered} 1-1 \text { cum. } \\ 1-1 \text { st. } \end{gathered}$	Fair.
5	$1)$	(llar.	st.	(1)Tar.	4-1.ilm.	Clondy.	$\begin{gathered} 1-1 \text { ci., } \\ \because-1 \text { cam. } \end{gathered}$	Clondy.	(i. .-si.	(Ifarar.
6	0	- 'lasar.	St .	Cleas.	$4-4$ cmur.	Clondy.	4-4 cum.	Clome ${ }^{\text {c }}$	st.	
7	Ci.	Clı:ar.	0	Cluar.	4.4 cim.	Cloudy	4 t com.	('loudy'	St.	(16.31
N	Ci.	Cluar.	St.	Clear.	$4-4 \mathrm{cmm}$.	C'louty.	4-1 cum.	Clondy	St.	Charar.
9	(ii.	Clear.	1-4 st.,	Fair.	$\begin{aligned} & 3-4 \text { cum. } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	4-4 cum.	clomdy	St.	Clmar.
10	Ci.-st.	Clsar.	1-4 ci.nst.	rair.	4-4 ،11m.	Clomily.	$\begin{gathered} 1-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	$\begin{aligned} & \text { Cii.-cmm., } \\ & 1-4 \text { st. } \end{aligned}$	Pair.
11	Cioset.	Clear.	St.	Clear.	$\begin{aligned} & 3-4 \text { cimm. } \\ & 1-4 \text { st. } \end{aligned}$	Clondy	$\begin{gathered} 1-1 \text { cum., } \\ 1-1 \text { st. } \end{gathered}$	Filil.	$\begin{aligned} & \text { Ci.-cum., } \\ & \text { 1-4 st. } \end{aligned}$	Joirs.
Nom.	($\mathrm{i} .-\mathrm{nit}$.	(imar.	1-4 ci.-st.	Piar.	4-4 chm.	clomer	$\begin{gathered} 1-4 \text { cuוu., } \\ 1-4 \mathrm{st.} . \end{gathered}$	Fail.	$9-1 \mathrm{cmim}$.	Fair.
1^{11}	Ci.	(llar.	1-4 ci.	Fair.	$4-4 \mathrm{crm}$.	Clondy	4-4 cum.	Clondy	: 1 crmm.	Fair.
2	(${ }^{\text {i }}$	('lamer.	0	('lear.	$4-4 \mathrm{cum}$.	(llondy .	4.4 cum.	('lourly.	$\because 1 \mathrm{cmm}$.	Fair.
:	Ci.	(110:m.	Ci.-st.	Clear.	4-4 cmm.	Clounly	4-1 cnm.	C'lonily.	$3-1 \mathrm{cmm}$.	Clondy.
4	Ci.	Clear.	Cii.	Clear.	3-4 cmm.	Cloudy.	4-1 cam.	Clondy.	$4-4 \mathrm{cmm}$.	Clondy.
5	Ci .	(16:ar.	J-4 ci.	Fair.	$3-4 \mathrm{cmm}$.	Cloudy.	1-1 st.	Cloudy.	$3-1 \mathrm{cum}$.	
1	Ci.-st.	Clear.	1-1 if.	Fair.	S-4 cum.	Fair.	$\because-1$ cum.	Fair.	$44 \mathrm{cum}$.	Clondy
7	Ci.	(Hear.	1-4 ci.	Fair. .	-4 cmm.	Fair.	$\begin{gathered} 1-4 \text { cum., } \\ 2-1 \text { st. } \end{gathered}$	Cloudy:	$4-4 \mathrm{cum}$.	Clondy:
H	Ci.st.	Clear.	$1-4 \mathrm{ci}$.	J'air.	$2-4$ st.	Fair.	?-4 cum.	Fair.	$\begin{aligned} & 3-4 \text { cum., } \\ & 1-4 \text { st. } \end{aligned}$	Clomery.
9	Ci.	Clear.	1-4 st.	Pair.	?-1 cmm.	F'air.	9.4 cmm.	Fair.	4-4 st.	CJondy
10	(i).	Clear.	1-4 st.	Fatr.	- 1 cum.	Fait:	2.4 "11m.	Fiair.	4-1 st.	Cloudy.
11	Ci .	Clear.	1-4 st.	Fair.	9-4 cum.	Pair.	2.4 cmm .	Fair.	4-4 st.	Clouds.

Daj̧.	AUGUST, 1872.									
	17		18.		19.		20.		21.	
Homr.	美	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Awont and kind } \\ & \text { of clowls. } \end{aligned}$		$\begin{aligned} & \text { 3 } \\ & \text { 3 } \\ & 3 \\ & 3 \\ & 3 \end{aligned}$					
0^{10}	4-4 st.	Cloudy:	11	- 'lear.	11	Clear.	$\because-4 \text { cum. }$	Cloudy.	$\therefore \mathrm{iacmm}$.	Cloudy.
1	4 -4 st.	Clouds.	0	Clear.	St.	Clear	+-4 st.	Cloudy.	: 4 curu.	Clouds.
\because	4-4 \%t.	Cloudy.	('i.	Clear.	St.	('lear.	+-1 st.	('londy ${ }^{\text {y }}$	--4 cumu.	Fair.
3	+-4 st.	Clourly.	11	(1) ride.	St.	Clear.	4-1 st.	Clondy.	$1-1 \mathrm{cam}$.	Fails.
4	4-4 st.	('lomily.	0	Clear.	$(\mathrm{i}$.	(llear.	$\begin{gathered} 3-1 \text { ci., } \\ 1-4 \text { c.unt. } \end{gathered}$	Clondy	1-1 st.	Filir.
5	4-1 st.	Clomuls.	$1)$	Clear.	Ci.	('lear.	$\begin{gathered} 2-1 \text { ci., } \\ 1-1 \text { cıun. } \end{gathered}$	C'lumis:	1-4 st.	Fair.
ϵ	+-1 st.	Clondy	11	Clear.	Ci.	('lear.	$\begin{aligned} & 3-1 \quad \cdot \cdot i, \\ & 1-4 \text { cotu. } \end{aligned}$	rimmly	$\begin{gathered} \text { 1-4 } \begin{array}{c} \text { ri. aud } \\ \text { st. } \end{array} \end{gathered}$	Fiar.
7	44 st.	c'lomis.	0	Clear.	Ci.	Clear.	$\begin{aligned} & 2-4 \text { •i., } \\ & 1-4 \text { cum. } \end{aligned}$	Clonds,	$\begin{aligned} & 1-4 \mathrm{ci}^{\text {sit. aud }} \\ & \text { st. } \end{aligned}$	Fair.
\sim	t-4 st.	('lumis:	0	Clear.	('i.	Clear.	$\begin{gathered} 3-4 \cdots \cdot, \text {. } \\ 1-4 \text { cnm,-st. } \end{gathered}$	Clonity.	$\begin{gathered} 1-4 \text { in, aurl } \\ \text { st. } \end{gathered}$	Fair.
3	4-4 st.	Clonds.	0	(clasa.	Ci.	Clear.	$9-1 \text { ci., }$	Clondy	1-4 st.	Fair.
10	4.4 \%.	Clouts.	0	('lear.	Ci.-st.	Clear.	$\begin{aligned} & 1-4 \text { ci. } \\ & \because-1 \text { cuun. } \end{aligned}$	('lonely.	$\begin{gathered} \text { ('i., } \\ 1-1 \text { st. } \end{gathered}$	Fair.
11	$\begin{gathered} 9-1 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Clomif.	11	Clear.	Ci.-st.	('lear.	$\begin{aligned} & 1-4 \text { ei. } \\ & 1-4 \text { st, } \end{aligned}$	Fair.	$\begin{gathered} \text { ('i.. } \\ 1-4 \text { st. } \end{gathered}$	Fair,
Noon.	$\because-4$ cıun,	Fair.	19	Clear.	Ci.-st.	Clows	$1-1$ st.	Fair.	Ci. and ei.cum., 1-4 st.	Fible
$1^{\text {b }}$	$1-4$ cum,	Fair.	$1)$	Cllaris.	(i.	Clear:	$1 \cdots \mathrm{st}$.	F:air.	Ci, aud ei.cum., 1-4 st.	Fait,
2	1-4 cmm.	Fair.	11	Clear.	('i.	Clear.	1-4 ci.	Fiar.	1-4 st.	Fiail.
3	Cimb	Clear.	11	(\%)ar.	1-4 (-i.-4nm.	Fair.	1-4 ci.	rair.	1-4 st.	Fair.
4	C'un.	Clear,	0	('larar.	1-4 i i-ctum.	Fiar.	1-4 (i)	F:air.	1-4 st.	Fair.
5	Cum.	Clear.	0	Cleire	1-4 ci.-cum.	Fair.	$1-1 \mathrm{ci}$,	Pair.	1-1 st.	rair.
6	C'int.	Clear.	0	Clear.	1-4 ci.-cum.	Fair.	$\because-1$ ci.	F:tir.	1-4 st.	Pair.
7	('i.	Clear,	0	Clear.	$\begin{aligned} & \because-4 \text { cnur., } \\ & \because-4 \text { st. } \end{aligned}$	Fair.	1.4 st.	Fitir.	$\because-1$ st.	Fair.
n	('i.	Clear	('i.	Cllear,	$\begin{aligned} & \because-1 \text { emm., } \\ & \because-1 \text { st. } \end{aligned}$	Fair.	$\begin{gathered} 1-4 \text { cum., } \\ 1-4 \mathrm{st} . \end{gathered}$	Fair.	U-4 st.	Fiair.
9	Ci,	(lear.	Ci.	Clear.	$\begin{aligned} & :-1 \text { imon. } \\ & \hdashline-1 \text { st. } \end{aligned}$	Fair.	1-1 cum. 1-4 st.	Faix.	$\begin{aligned} & 1-4 \text { cum. } \\ & 1-4 \mathrm{st} . \end{aligned}$	Pair.
10	('i.	Clear.	(i.	Clear.	$\begin{gathered} 1-4 \text { cimn., } \\ \text { i-4 st. } \end{gathered}$	Clomily.	$\begin{gathered} 1-4 \text { cimm. } \\ 1-4 \text { it. } \end{gathered}$	Fair.	$\begin{gathered} 1-4 \text { :1111, } \\ 1-4 \text { st. } \end{gathered}$	Fair.
11	Oi.	Clear.	0	Clear.	$\begin{gathered} 1-4 \text { enim., } \\ 3-1 \text { st. } \end{gathered}$	Clonds.	$\begin{aligned} & 1-4 \text { cmm, } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy	$\begin{gathered} 1-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Fair.

Day.	AUGUST, 1872.									
	2.		23.		24.		25.		26.	
ILonis.										
$0^{1 /}$	$\begin{gathered} 1-1 \cdot i-\ldots 1111 \\ 1-4 \mathrm{st} . \end{gathered}$	Cloury	4-4 sit.	Clowds.	11	(lear.	1-4 st.	Fair.	$\begin{aligned} & 1-1 \text { ci., } \\ & 1-1 \text { clim. } \end{aligned}$	F'rir.
1		- Inomdy	4-4 st.	Clomiy.	11	1 'lear.	1-1 st.	İair.	$\begin{gathered} 1-4 \cdot i ., \\ 1-4 \cdot 1111 . \end{gathered}$	Pais.
2	$\begin{gathered} 9-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	41 st.	Clomit	0	Clear.	it.	(16:31\%	$\begin{aligned} & 1-4 \text { ri., } \\ & 1-4 \text { c.lım. } \end{aligned}$	Fail.
;	$\begin{gathered} 1-1 \text { camı, } \\ : \because 4 \text { st. } \end{gathered}$	Lt. rain.	4-4 st,	('lomdy	0	Clear	St.	C'luar.	$\begin{gathered} 1-1 \text { (ri., } \\ 1-4 \text { ،'mul. } \end{gathered}$	Faid.
4	$\begin{aligned} & 1-4 \text { rimm, } \\ & 3-4 \text { st. } \end{aligned}$	Cloudy:	1-1 st.	('loundy'	1	Clear.	1-1 ci.	Fair.	$\begin{aligned} & 1-4 \cdot i ., \\ & 1-4 \text { cunn. } \end{aligned}$	Pair:
5	$\begin{aligned} & 1-4 \text { cum., } \\ & : 1-4 \text { st. } \end{aligned}$	C'lumls.	$4-4$ st.	('lumily:	0	Clear.	1-1 ci.	Fair.		- 10 coils.
i	$4-4$ st.	Cloudy,	4-4 st.	Clondy	0	Clear.	1-4 ci.	Fair.	$\begin{aligned} & \text { a-4 ci., } \\ & 1-4 \text { st. } \end{aligned}$	('losuly.
7	14 it.	Cloudy.	$3-1$ st.	('lundy.	11	Clear.	1-1 ci.	Fair.	$\begin{aligned} & 1-1 \text { ri., } \\ & : \because 1 \end{aligned}$	Clourly
$*$	1-4 st.	Clondy.	1-1 st.	F'ail:	0	Urar.	1-4 ci.	Fair.	1-4 st.	Cloudy.
9	4.4 \%	' 'londy,	$\begin{gathered} \text { ('i., } \\ 1-4 \text { s. } \end{gathered}$	Pair.	0	Clear.	1-4 (it,	Pair.		Cloudy.
10	$\begin{gathered} 1-4 \text { enm., } \\ \because-4 \text { st. } \end{gathered}$	C'louds.	$\begin{aligned} & \text { ('i., } \\ & 1-4 \text { sit. } \end{aligned}$	Fair.	Ci.	Clear.	1-4 ${ }_{\text {ct. }}^{\text {st. }}$	Fair.	: $\mathrm{P}-1$ st.	Clondy.
11	$\begin{gathered} : 1 \text { cmin. } \\ 1-1 \text { st. } \end{gathered}$	Clonaly.	$\begin{gathered} \text { ('i., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	Ci.	Clear.	1-4 ci.	Fair.	$1-1 \text { ci., }$ 2-4 cruı.	Cloudy.
Norin.	1.1 st ,	Lt. raill.	(1i.	Clear.	St.	Clear.	Ci.	Cluar.	$\begin{gathered} 1-1 \text { ci., } \\ \hdashline-1 \text { cum. } \end{gathered}$	('190ndis:
1^{11}	4-t st.	Lt. rain.	(1i.	Clear.	St.	('lear.	Ci.	Clear.	1-1 :i., $\because-4 \text { colin. }$	Clondy.
\because	4-1 st.	Lt. rain.	('i.	C'lear.	St.	C'lear.	Ci.	Clutirs	$1-1$ st.	(1 lombl
3	1-4 st.	Lt. rain.	${ }^{1}$	C'lear.	0	Clear.	Ci.	Clear.	4-4 st.	Clondy,
4	1-4 st.	Lt. rain.	('i.	Clear.	0	Clear.		Fair.	4-4 st.	Cloury.
5	4-4 st.	('londs)	('i.	Clu:ur.	Ci .	C'lear.	$1-4 \mathrm{cmm}$.	Fair.	$1-4 \text { cnm., }$	('loude.
$1{ }^{\text {d }}$	4-1 st,	Clondy	11	Clear.	('i.	('lear.	1-1 cum.	Fail.		Cloudy.
7	$1-1 \text { cimu. }$:i-4 st.	Cloudy.	11	Clear.	Cii.	Clear.	1-4 cum.	Fair.	$\begin{aligned} & 1-1 \text { clini., } \\ & 1-1 \text { st. } \end{aligned}$	Sair.
8	4-4 st.	Lt. vain.	(ii.	Clear.	St.	Clear.	$1-4 \mathrm{cmm}$.	Pair.	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { com. } \end{aligned}$	J'air.
$!9$	$1-1$ st.	clourly	Ci.	Clear:	C'i.	clear.	$\begin{gathered} 9-4 \text { cum., } \\ 1-4 \mathrm{st} . \end{gathered}$	J'air.		Pair.
10	4.1 st.	Clonds.	1-4 st.	Fair,	$\begin{gathered} \mathrm{Ci} . \\ 1-4 \text { st. } \end{gathered}$	Clmar.	$\begin{aligned} & \because-1 \text { cum., } \\ & 1-1 \text { st. } \end{aligned}$	Jair.	$\text { 1-4 } \begin{aligned} & \text { ci. } \\ & \text { cum. } \end{aligned}$	F'air.
11	4-4 st.	Clondy	1-1 st.	Fair.	1.4 st.	Clear.	$\begin{aligned} & 1-4 \text { (i. aud } \\ & \text { ci.-st. } \end{aligned}$	Fair.	1-4 ci.,	Fair.

$!$

The following table contains the number of hours for foll month daring which the sky was rither elean（col． 2 ），liss converl than $\frac{1}{4}(\operatorname{col} .3)$ ，one forth oremast（col．4），ete．：

The abme table show that daning the gratar portion of the time the sky was meaty motery
 during 1160．The rleares month was April，with eُt hours．The least amonnt of elear weather was experienced in July，namely，has hours．

For the salke of befter enmpanson，we express the amont of cloudiness in prombing．The

Titble 1.

	Monthes．										
\cdots	Nov．	ber．	．1：11．	Frin．	Mar．			Jmm，	Inly	Ang．	
け＊ar．	．15．7	15，2	11.7	1N：	9.8	：3． 0	29．9	11．：3	185	11．：	12，＂
\checkmark	19.10	11.0	0.0	11．	11.0	11.1	？．1	9.3	7.3	414 4	4.1
1－4	1：3．${ }^{\text {a }}$	31.7	为	：1．	H2，	11.7	19.1	12．9	¢． 1	17．4	21.5
$8-4$	10．5	16：3	？	21.5	13.9	11.4	12．2．	12.8	¢． 1	111，＂	14．
：－4	19．4	14.4	12.4	10．：	12.9	11.4	12．9	21.7	1 $\because 5$	16， 1	15．：3
44	41.6	呰 4	15．\％	24.1	准．9	\％	19．${ }^{\text {i }}$	27． 1	ת1．	（11） 9	2.7
Σ	118.11	100.11	1131.4	111\％． 0	1100.11	1 （1）． 11	1100.11	110.11	1010， 11	1181.0	1101.11
					Tulle	\because					
					Amemat	＂fl co	1 mads．				
	Montlis．		ar．	\checkmark	1－4			：-1	4－4	z	
	Nonamiluer		（i．） 1	0.1	4.15			$9 \times$	11.5		\％
	Wermbur		9	13.0	15.5		11.9	9.3	8.1		．
	Jama！y\％		11.3	11.1	\therefore－${ }^{\text {a }}$		17.3	8.8	5，		．${ }^{6}$
	Pownury．		2.6	1.10	14.9		15．6	7． 1	$\because!$		．
	Matro．		5.	11.1	1：3． 1		11.3	$\because 1 ;$	14．3		．5
	Alıil．．．．		110：3	11.1	5.7		S． 4	110． 2	11， 3		，${ }^{\text {a }}$
	Mlay．		$1 \times .8$	5.4	9.		4	13， 11	\％．${ }^{\text {c }}$		． 1
	Juns		（i，${ }^{\text {a }}$	24.3	\because		3.4	18．11	10．2		． 1
	．101y ．．．．．	．	5． 6	14.11	3.11		4.1	6.4	14.5		． 7
	Angust．	．	9.1	5in） 1	9.1		7.9	11.9	$\because 3$		． 1
		1	119.1	100．1	110.11		（10．11	1010.10	1010		．11

face of shi and state of IIEATHER at POLARLS HOUSE.

The same mode of record is ahonted in the observations made at Poharis llanse an at
 one break of one hour oceurred doning the whole time the observations were carned on.

Day．	NOVEMBER， 1872.									
	21.		22		23.					
1fomr．	$\begin{aligned} & \text { hamont and kind } \\ & \text { of clouds. } \end{aligned}$	$\begin{aligned} & 2 \\ & \\ & \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Amount and lind } \\ & \text { of clouds. } \end{aligned}$						$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
$0{ }^{4}$	$1-1$ st．	Fair．	$\begin{gathered} \text { i-f ci.-cım. } \\ 2-4 \text {.t. } \end{gathered}$	Clondy．	4－1 st．	Clondy．	St．	Char．	1－1 st．	lair．
1	$2-4 \mathrm{cum}$ ．	Fair．	$\begin{gathered} \because-4 \text { ri.-cmm. } \\ 1-4 \text { st. } \end{gathered}$	Clomiy．	4－4 st．	Clonily．	St．	Cluan	1－1 st．	Puir．
2	$\therefore-4$ cmm，and ci．－cmm．，1－4	Clourls．	$\begin{gathered} 1-4 \text { ci.-cnm. } \\ 1-4 \text { st. } \end{gathered}$	Pair，	4．1 st．	Cloudy．	st．	Clu：I\％．	1－1 st．	Poinir．
3	st． 1－1．i．．－21111．， 2－4 cım．， 1－4 st	Clonds．	$\begin{aligned} & 2-1 \text { cmin., } \\ & 1-4 \text { st. } \end{aligned}$	Fair．	：3－1 st．	Clourly．	St．	Clu：nr．	11 st ．	l＇ait＇．
4	$\begin{gathered} 2-4 \text { cinn., } \\ 1-1 \mathrm{st} . \end{gathered}$	Clomily，		Clondy：	（＇i．－cnim．， 2－4 сини．	Pair．	St．	Cloar．		P，iir．
5	$\begin{gathered} 1-4 \text { ri. cum. } \\ :-1 \text { cum. } \end{gathered}$	Clowly．	$\begin{aligned} & 2-1 \text { cum. } \\ & 1-1 \text { st. } \end{aligned}$	Clourly．	1－4．i．－cimm，路 4 com．	Clouty	Ni．	（＇la：a＇，	1－1 st．	Clouly．
6	St．	Clear．	$\left\lvert\, \begin{gathered} 9-4 \text { ci.-cmm., } \\ 1-4 \text { st. } \end{gathered}\right.$	Cloudy．	$\begin{aligned} & \text { ('i,-st., } \\ & 1-1 \text { int. } \end{aligned}$	J＇air．	st．	C＇luars．	3.1 st．	（＇lualys．
7		Fair．	$\because 1 \text { ci.-cum. }$	Clonely	Cit．－st．，	Pair．	N，	（＇16：31．	4－1 4．	（＇lowely：
H		Fair．	$\begin{aligned} & 1-4 \mathrm{nt.} \\ & \because \text { 1,mm. } \\ & \text { ci.-comon, } 1-1 \end{aligned}$	（＇lundy	1－1 st． st．	（1）：ant．	st．	Clowr	4－1 ו－	Clouts．
$!$	Ci．sst．	Cliar．		Clomity．	St．	（17：4r．	St．	（le：as．	1－1 st．	（＇lomuly．
111	（＇i．－sit．	Clear．	$\because-1 \text { ci-cum, }$	（＇lomily	St．	Clear．	St．	（\％ars	1．1 st．	Clourly．
11	Ci.-st.,	（1）${ }^{\text {ar }}$	$\begin{aligned} & \because 1 \text { cuin., } \\ & 1-4 \text { st. } \end{aligned}$	Clonily．	St．	Clear．	St．	clans．	4－1 st．	Clondy，
Nown．	$\begin{gathered} \text { ('i.-st., } \\ \text { si. } \end{gathered}$	Clear．	$\begin{gathered} 1-1 \text { ei.-cum. } \\ 1-4 \text { st. } \end{gathered}$	Pair．	$\begin{aligned} & \text { (ii.-st. and } \\ & \text { st. } \end{aligned}$	（ 1 （1at	it．	Clear．	4－4 st．	［10．us）．
$1^{\text {b }}$	$\begin{gathered} \text { Cit.st., } \\ \text { st. } \end{gathered}$	C＇luar．		Clants：	('i.-st. amd	（110：4．	St．	Chars．	41 int．	－＇lumis．
\because	1－1 st．	Fair．	$\because-1 \text { ci.-cim. }$	Clonily．	1－1 ist．	Fair．	sit．	C Blear	4 tat	
3	＂1 st．	rair．	$\because-4 \text { cman., }$	Clonty	$1-1 \mathrm{st}$ ．	Pair．	Nt．	（＇10：ar．	4.15 st	（ Inurly．
1	$\begin{gathered} 1-4 \cdot i_{i-1} \cdot m, \\ \because-1, t . \end{gathered}$	（＇lourly．	$\begin{gathered} \text { 1-t } 1 \times i_{-} \text {-cinin. } \\ 1-1 \text { st. } \end{gathered}$	Clonets．	Si．	Cb：ar．	St．	（＇lan＇．	4.1 st．	1 ＇6川い袁
．		Clamaiy．		Clomdy	St．		Nit．	Cluars	1－1 st．	（19nerly
1		（＇lanily．	$\begin{aligned} & \text { st. } \\ & \because-1 \text { i.-c.omm., } \\ & \because-4 \text { st. } \end{aligned}$	（＇korrls	St．	Clear．	St．	（＇luar．	4－1 st，	（16nus
7		Clomily	$\begin{gathered} 1-4 \text { сі.-сии. } \\ 3: 4 s^{2} . \end{gathered}$	Clumay．	sit．	（1）amp．	St．	Cland．	1 isit	（1004］）．
r			$\begin{aligned} & \text { 1-4 ci.-cnime, } \\ & \text { } \therefore=4 \mathrm{st.} . \end{aligned}$	（＇londs：	St．	（1）：ar．	Nt．	（＇Traz．	f－1 st．	Clomis．
9	$\begin{gathered} \therefore \text { ici-comm. } \\ 1-1 \text { st. } \end{gathered}$	Choms．		（＇lomily．	SI．	（＇lasis．	St．	r＇luar．	$11 . \mathrm{st}$ ．	Clouts．
10	$\begin{gathered} \therefore-4 \text { ci.-com. } \\ \text { 1-4 } \end{gathered}$	（＇tonds	＂i－f st．	（＇lunds．	St．	（ luans．	N＇t．	Clear．	4.1 st．	1 ＇lomry
11		Clunile	1－4 st．	Clomers．	St．	Clear．	St．	Clars．	$4-1$ st．	（1］andy．

10

DECEMBER, 1872

DECEMBER, 1872.

Day．	DECEMBER， 1872.									
	17.				19.					
Hour．					$\begin{aligned} & \text { ? } \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & \bar{y} \\ & y \\ & y \\ & y \\ & y \end{aligned}$			$\begin{aligned} & \text { B } \\ & \\ & \\ & \end{aligned}$	
$0^{\text {b }}$	St．	C＇lear．	St．	611：17．	St．	（ ］¢ ： 1 ，	－t．	Clear．	\bigcirc－	（）lear．
1	（＇i．：und ri．－ cumb，at．	（＇］ear．	\therefore－	Clyar．	－r．	（19：17）	－r．	Cluar．	sit．	（＇）ear．
\because	H-4 cmm, and	Fair．	S＇．	（1）：1\％．	1－4 31.	f＇uir．	nr．	Clar．	$\therefore 1$.	（10ar．
3	$\%$－belmand and ci．－cnm．，1－4 4t and	Chondy．	＜	Clear．	1－1 ci．－cum． and cum．．．	Finir．	11	Clear．	$\therefore 1$.	Clear．
4	：－tenmo and （1．－c1um，1－4	（1）nmer	St．	Cluar．	si．	Clear．	$1)$	Cla：al．	－r．	C lears．
－		Faits．	－1	（＇Jesir．	$1)$	（＇luar．	St．	＇lear．	st．	Chear．
6	l－t ci．and ri．－cum．，1－4	F＇air．	St．	（＇lear．	＂	Clame．	11	Clear．	st．	－lear．
7	st．and ci．－．t l－t ci．and ci．－cumb，1－4	F＇ails．	N゙t．	（11）	11		11	Clar．	$\therefore 1$.	Clas．
－	st．	－lioin．	Al．	C＇lear．	1－1 st．	F゙ain．	$1)$	Clar．	－1．	（ 1 ant．
9	$\begin{aligned} & \because-\frac{1}{c} \text { cima and } \\ & \text { an-cmmo. } \because-\frac{1}{4} \end{aligned}$	Friil．	E：	Clear．	$1-1 \mathrm{st}$	Fair，	11	（ 1 ）${ }^{\text {ar }}$	－1．	Clain．
111		Fiair	$\therefore 1$.	（1） A ）	1－1 int．	1：air．	St．	（\％） 14	St．	－＇lear．
11	ci．－st．ind st． 1－4（11m，inn ci．ecturn．st．	Fair．	St．	（ 1 ＋itr．	1－1 st．	Jais．	11	＇luar	St．	Clear．
Noon．	(i.--t.,	Cluan	¢f．	Clara	\therefore S	Clear．	11	（1）：015．	St．	－＇lear．
$1^{\text {b }}$	st．	Clear．	4	（1）：49．	\cdots	Clear．	－	C－air	St．	－＇lear．
\because	\therefore St	（1） 1 ：1r．	St．	（ 1 ，\％ 11.	11	1 loar．	0	Clear：	－1．	（\％）at．
3	－t．	（＇lear．	St．	（1） 1 ：11．	0		¢	（1）ar，	St．	（＇lear．
1	N．	（＇）${ }^{\text {atin）}}$	St．	Clear．	${ }^{1}$	Clear．	\cdots	Cluar．	－1．	Cleirs．
5	－t．	C\％ar．	\cdots	Clear．	11	Cluas．	81.	（＇10．ar．	St．	（16：4．
i	s	（1）：ur．	st	Clear．	$1)$	clear	－1．	（＇10．1］．	\cdots ．	Clenr．
i	St．	（ ）mar．	－1．	Clmar．	${ }^{\prime \prime}$	O＇min．	St．	（Hatr．	心。	（＇luar．
－	St．	Cla ar，	\therefore St	Cla：	11	C＇irar．	－1．	（．1） 31	1－1 01.	1 ＇air．
9	S．	Clear．	－1．	（＇lats＇	St．	（1） 1 ar	S．	（＇luar．	1－4－t．	Fair．
10	St，	（1）：	St．	（1）ar．	Sf．	（10：nr．	St．	（＇lear．	1.1 st	$1 \times$ ir．
11	cr．	Clar．	St．	（1）：ar．	－t．	（＇latr．	St．	Clusir．	1－1 nt．	l＇air．

JANUARY, 1873.
D: 1 y.

Day.	FEBRUARY, 1873.									
	J.		6.		7.		8.		9.	
Hont.		苃	$\begin{aligned} & \text { Amonnt and kiul } \\ & \text { of clouds. } \end{aligned}$			State of weather.	局			
$0^{\text {b }}$	$\begin{aligned} & :-\frac{1}{c} \text { enim., } \\ & 1-4 \text { st. } \end{aligned}$	Clouds.	1-1 st.	Fair.	$\begin{gathered} 1-4 \text { ci.-st., } \\ 1-4 \text { culu. } \end{gathered}$	Fair.	Q-4 st.	Fair.	$\begin{gathered} 1-f \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Fair.
1	$\begin{aligned} & 3-4 \text { clum. } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	1-4 st.	Fair.	t-4 st.	Cloudy.	2-4 st.	Filir.	$1-4$ com, and ci.-cum, 1-4 st.	Fair.
2	$\begin{gathered} 3-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Clouds.	rit.	Clear.	4-t st.	Lt. suow.	2-d st.	Fair.	1.4 cum. and ci.-cımin., 1-4	Fuir.
3	$\begin{aligned} & \text { N-4 cum., } \\ & \text { l-1 st. } \end{aligned}$	Clomly.	0	Clsar.	4-4 st.	Lt. snow.	S-f st.	Fair.	$\begin{gathered} 1-4 \text { cume anil } \\ \text { ci.-cinin, } 1-4 \\ \text { st. } \end{gathered}$	Fair.
4	4-4 st.	Clondy.	0	Clear.	4-4 st.	Lt. suow.	2-4 st.	Fair.	$\begin{gathered} 1-4 \text { cum. and } \\ \text { ci-cum., } 1-4 \\ \text { st. } \end{gathered}$	1rair.
5	3-4 st.	Clondy.	0	Clear.	4-4 st.	Lt. suow.	2.4 st.	Fair.	1-4 st.	Fair.
6	3-1 st.	Clonds.	1-4 st.	Fair.	4-4 st.	Lt. suow.	2-4 st.	Fair.	1-4 st.	Fair.
7	$4-4$ st.	Cloudy.	1-4 st.	Fair.	$4-4$ st.	Lt. snow.	Q-1 st.	Fair.	St.	Clear.
8	4-1 st.	Clouds.	1-4 st.	Fair.	4-4 st.	Cloudy.	2-f st.	Fair.	St.	Clear.
9	4-4 st.	Lt. suow.	1-4 st.	Fail.	4-4 st.	Cloudy.	2-4 st.	Fair.	St.	Clear.
10	4-4 st.	Lt. suow.	$\begin{aligned} & 2-4 \text { cum. } \\ & 1-4 \text { st. } \end{aligned}$	Clondy.	4-1 $\frac{1}{2}$ s.	Lt. snow.	2-f st.	Fair.	St.	Cluar.
11	4-4 st.	Lt. suow.	1-4 st.	Fair.	4-4 st.	Lt. snow.	$2-4$ st.	Fair.	St.	Clear.
Noou.	4-4 st.	Lt. snow.	1-4 st.	Fair.	4-4 st.	Lt. suow.	2.4 st.	Fair.	St.	Clear.
$1{ }^{\text {b }}$	t-1 st.	Lt. suow.	1-4 st.	Fair.	4-4 st.	Lt. sllow.	$2-4$ st.	Fair.	St.	Clear.
\because	$4-1$ st.	Lt. suow.	1-4 st.	Fair,	4.4 st.	Lt. snow.	$\begin{aligned} & 1-4 \text { chin., } \\ & \underset{\sim}{-4} \text { st. } \end{aligned}$	Cloudy.	St.	Clear.
3	$\begin{aligned} & \text { ?-4 cume, } \\ & 1-4 \mathrm{st} . \end{aligned}$	Cloudy.	St.	Clear.	1-4 st.	Lt. snow.	$4-4$ st.	C'londy	St.	Clear.
4	4-4 st.	Clouds.	1-4 st.	Fair.	4-4 st.	Lt. snow.	$4-4$ st.	Cloudy.	St.	Clear.
5	4-4 st.	Cloudy.	St.	Clear.	4-4 st.	Lt. snow.	4-4 st.	Cloudy.	St.	Clear.
6	2-4 cum., $1-f$ st.	Cloudz.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.	SI.	Clear.
τ	: 2 ¢ cıum.	Fair.	St.	Clear.	4-4 st.	Clourls.	$4-4$ st.	Clondy	St.	Clear.
8	1.4 cum.	Fair.	st.	Clear.	$3 \cdot 4$ st.	Clondy.	$4-4$ st.	Clowly	sit.	Clear.
9	$\begin{gathered} 3-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Clondy.	it.	Clear.	1-4 st.	Fair.	$4-4$ st.	Clouds.	St.	Clear.
10	$\begin{gathered} 1-4 \text { cum., } \\ 1.4 \mathrm{st} . \end{gathered}$	Fair.	$\begin{aligned} & 1-4 \text { ci.-st. } \\ & \text { and st. } \end{aligned}$	Fair.	$3-1$ st.	C'londy.	$\begin{aligned} \because-4 \\ \\ \text { anmı. } \\ \cdots-4 \text { st. } \end{aligned}$	Clouds.	it.	Clear.
11	1-1 st.	Fair.	$\begin{aligned} & 1-4 \text { ci.-st, } \\ & \because-4 \text { cum. } \end{aligned}$	Clonity.	$\because-4$ st.	Fair.	$\begin{gathered} \therefore-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	1-4 st.	Puir.

Day.	FEBRUARY, 1873.									
	15.		16.		17.		18.		19.	
Hour.			$\begin{aligned} & \bar{B} \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & y \\ & y \end{aligned}$		8				
0^{0}	st.	Clear.	st.	Clear.	2.4 st.	Fair.	st.	Clear.	1-4 st.	Fair.
1	St.	C'lear.	st .	Clear.	2-4 st.	Fair.	St.	Clear.	1-4 st.	Fair.
2	st.	Clear.	st.	Clear.	$2-4$ st.	Fair.	st.	Clear.	$1-4$ st.	Fair.
3	St.	Clear.	St.	Clear.	$2-4$ st.	Fair.	St.	Clear.	1-4 st.	Fair.
4	st .	Clear.	st.	Clear.	O-4 st.	Fair.	st.	Clear.	1-4 st.	Fair.
5	St.	Clear.	St.	C'lear.	1-4 st.	Fair.	st.	Clear.	1-4 st.	Fair.
6	st.	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	st.	Clear.	$\begin{aligned} & 1-4 \text { clun. } 1-4 \text {. } \\ & \text { st. and ci.-st. } \end{aligned}$	Fair.
\%	St.	Clear.	$\begin{aligned} & \text { 1-4 ci.-st. } \\ & \text { and st. } \end{aligned}$	Fair.	$1-4$ st.	Fair.	st.	Clear.	$\begin{aligned} & 1-4 \text { cam., } \\ & \text { st. } 1-4 \end{aligned}$	Fair.
$*$	St.	Clear.	$\begin{gathered} 1-4 \text { ci-st. } \\ \text { and st. } \end{gathered}$	Fair.	1.4 st.	Fair.	St.	Clear.	$\begin{aligned} & 1-4 \text { cum. } 1-4 . \\ & \text { st, and ci, }, \text {. } \end{aligned}$	Fair.
9	St.	Clear.	-4 st.	Fair.	1-4 st.	Fair.	st.	Clear.	$\begin{aligned} & 1-4 \text { culu.. } 1-14 \\ & \text { st. and ci.-st. } \end{aligned}$	Fair.
10	st.	Clear.	Q-4 st.	Fair.	1-4 st.	Fair.	St.	Clear.	$\begin{aligned} & 1-4 \text { cum., 1-4 } \\ & \text { st. aud ci.-st. } \end{aligned}$	Fair.
11	St.	Clear.	$2-4$ st.	Fair.	1-4 st.	Fair.	st.	Clear.	$\begin{aligned} & 1-4 \text { cum. } \\ & \text { st, } \end{aligned}$	Fair.
Noon.	st.	Clear.	2-4 st..	Fair.	1-4 st.	Fair.	St.	Clear.	$\begin{aligned} & 1-4 \text { culli, } 1-4 \\ & \text { st. and ci.-st. } \end{aligned}$	Fair.
$1^{\text {b }}$	St.	Clear.	$2-4$ st.	Fair.	1-4 st.	Fair.	St.	Clear.	$\begin{aligned} & 1-4 \text { cum. } 1-4 \\ & \text { st. and ci.-st. } \end{aligned}$	Fair.
2	st.	Clear.	2-4 st.	Fair.	1-4 st.	Fair.	St.	clear.	$\left.\begin{gathered} 1-4 \text { cilm, } \\ \text { st. and ci.-st } \end{gathered} \right\rvert\,$	Fair.
3	st.	Clear.	2-4 st.	Fair.	1-4 st.	Fair.	st.	Clear.	$\begin{aligned} & \text { 1-4 st. and } \\ & \text { ci.-st. } \end{aligned}$	Fair.
4	St.	Clear.	3-4 st.	Cloudy.	1-4 st.	Fair.	St.	Clear.	1-4 st.	Fair.
5	st.	Clear.	4-4 st.	Cloudy.	St.	Clear.	st.	Clear.	st.	Clear.
6	st.	Clear.	3-4 st.	Clondy.	st.	Clear.	St.	Cluar.	st.	Clear.
i	St.	Clear.	3-4 st.	Cloudy	St.	Clear.	1-4 st.	Fair.	st.	Clear.
\star	st.	Clear.	3-4 st.	Clundy.	St.	Clear.	1-4 st.	F'air.	st.	clear.
9	St.	Clear.	2-4 st.	Fair.	St.	Clear.	2-4 st.	Fair.	St.	Clear.
10	st.	Clear.	1-4 st.	Fair.	st.	Clear.	3-4 st.	Cloudy.	st.	Clear.
11	st.	Clear.	2-4 st.	Fair.	st.	Clear.	$2-4$ st.	Fair.	St.	C'lear.

Day．	FEBRUARY， 1873.									
	20.		21.		28.		23.		24.	
Hour．	$\begin{gathered} \text { spnofe fo } \\ \text { pu!y pue funour } \end{gathered}$		$\begin{aligned} & \text { Amount and kind } \\ & \text { of clonds. } \end{aligned}$							
$0^{\text {b }}$	St．	Clear．	St．	Clear．	St．	Clear．	4－4 st．	Lt．ェッロッ：	4－4 st．	Clondy．
1	St．	Clear．	St．	Clear．	St．	Clear．	4－4 Et．	Lt．snow．	4－4 st．	（＇lunty．
2	St．	Clear．	St．	Clear．	St．	Clear．	4－1 st．	Lt．suow．	4－4 st．	（＇1anty）．
3	St．	Cluar．	St．	Clear．	St．	Clear．	4－4 st．	Lt．snow．	3－4 st．	（＇londy，
4	St．	Clear．	St．	Clear．	$\therefore-\frac{1}{2}$ st．	Lt．suow．	4－4 st．	Hazy．	$2-\frac{1}{2}$ st．	Fair．
5	St．	Clear．	St．	Clears．	4－4 st．	Lt．snow．	4－4 st．	Lt．suow．	2－4 st．	Fair．
6	St．	Clear．	st．	Clear．	4－4 st．	Lt．suow．	4－4 st．	Lt．s．110w．	$\because-4$ st．	Fair．
7	St．	Clear．	st．	Clear．	4－4 st．	Lt．snow．	4－4 st．	Lt．snow．	4－4 st．	Lt．snow．
8	st．	Clear．	St．	Clear．	1－4 st．	Lt．suow．	4－4 st．	Lt．snow．	4－4 st．	Clondy．
9	St．	Clear．	St．	Clear．	4－4 st．	Lt．snow．	4－4 st．	Lt．snow．	4－4 st．	L．t．snow：
10	St．	Clear．	St．	Clear．	4－4 st．	Lt．sumw．	4－4 ist．	Lt．snow．	1－4 st．	Lt．suow．
11	St．	Clear．	St．	Clear．	4－4 st．	Lt．snow，	4－4 st．	Lt．suow．	4－4 st．	Lt．nnow．
Noon．	St．	Clear．	St．	Clear．	4－4 si．	Clondy．	4－4 st．	Lt．nnow．	3－4 st．aud ＂1．－st．	Clondy．
1^{12}	\cdots st．	Clear．	St．	Clear．	4－4 st．	Lt．snow．	$\begin{gathered} \therefore-1 \text { st. and } \\ c,-s t . \end{gathered}$	Cloudy．	：－4 st．and ci．－st．	Pair
2	St．	Clear．	st．	Clear．	4－4 ist．	Lt．snow．	$\begin{aligned} & 3-4 \text { st. and } \\ & \text { ei.-st. } \end{aligned}$	Cloudy．	$\begin{aligned} & z-4 \text { st. andl } \\ & \text { ci.-st. } \end{aligned}$	Pair．
3	St．	Clear．	St．	Clear．	4－4 st．	Cloudy．	2－4 st．	Hazy．	$\begin{aligned} & \text { :-4 st. and } \\ & \text { ci.-st. } \end{aligned}$	Fair．
4	St．	Clear．	St．	Clear．	4－4 st．	Lt．snow．	3－4 st．	Cloudy．	$\begin{aligned} & 1-\frac{1}{2} \text { cumn., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy．
5	st．	Clear．	St．	Clear．	4－4 st．	Lt．snow．	4－4 st．	Clouly．	：3－4 st．	Clondy．
6	St．	Clear．	St．	Clear．	4－4 st．	Lt．suow．	4－4 st．	Cloudy．	3－4 st．	CIondy．
7	St．	Clear．	St．	Clear．	$4-4$ sit．	Lt．snow．	2－4 st．	Lt．snow．	S－4 st．	Clomely
8	st．	Clear．	St．	Clear．	4－4 st．	Lt．snow．	4－4 st．	L＋．snow．	S－1 st．	Fair．
9	St．	Clear．	St．	Clear．	4－4 st．	Lt．snow．	2－4 st．	Fair．	？－4 ist．	Fair．
10	St．	Clear．	St．	Clear．	4－4 st．	Lt．snotr．	3－4 st．	Lt．snow．	2－4 st ．	Fair．
11	$s t$.	Clear．	St．	Clear．	4－4 st．	Lt．suow．	4－4 st．	Lt．snow．	2－4 st．	Fair．

	FEBRUARY, 1873.								MARCH, 1873.	
	25.		26.		27.		28.			
Homr.								\%		state of weather.
$0{ }^{\text {b }}$	P-4 8t.	Fair.	St.	Clcar.	St.	('leas.	st.	Clear.	4-4 st.	Cloudy.
I	$\because-4$ st.	Fair.	St.	Clear.	Nt.	Clanr.	St.	Clear.	4-4 int.	Cloudy.
2	2-4 st.	Fair.	St.	C'lear.	St.	Clear.	it.	Clear.	4-4 st.	Clouly.
3	2-4 st.	Juar.	St.	CHEx.	st.	('le.r.	St.	Clear.	4-4 st.	Cloudy.
4	2-4 st.	Fair.	1-4 st.	Fair.	St.	Clear.	st.	Chame	4-4 st.	Cloudy.
5	2-4 st.	Fair.	st.	Clear.	St.	Clear.	St.	C'lear.	4-4 st.	Clouly.
6	2-4 st.	Pair.	st.	Clear.	st.	Clear.	St.	c'lear.	4-4 st.	Cloudy.
7	2-4 st.	Fair.	St.	Clear.	St	Clear.	St.	Clear.	4-4 st.	Cloudy.
\otimes	?-4 st.	Fair.	St.	clear.	Sr	Clear.	St.	Clear.	4-4 st.	Cloudy.
9	2-4 st.	Hazy.	$\begin{gathered} \text { st. aud } \\ \text { ci.-st. } \end{gathered}$	Clear.	- 2 st.	lair.	$1-4$ st.	Fair.	4-4 st.	Cloudy.
10	3-4 st.	Cloudy.	St. and ci.-st.	Clear.	1-4 8 t .	l'air.	3-4 st.	Clondy	4-4 st.	Cloudy.
11	3-4 st,	Cloudy.	st.	Clear.	St.	Clear.	: $3-4$ st.	Clondy	4-4 st.	Cloudy.
Noon.	$3-4$ st.	Elinuly	St.	(10:1).	St.	Clemer	4-4 st.	Clondy.	4-4 st.	Cloury
$1^{\text {b }}$	$3-4$ st.	Clouly.	St.	Cleas.	st.	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudy
2	3-4 st.	Chundy	"St.	Clear.	St.	Clear.	4-4 8t.	Clundy.	4-4 st.	Clouds.
3	3-4 st.	Clondy,	St.	Clear.	St.	Clear.	4-4 st.	Clonds.	4-4 st.	Cloudy.
4	: i (st.	Clourly.	1-4 st.	Fair.	St.	Clear.	4-4 st.	Clondy.	4-4 st.	Cloudy.
5	S-1 st .	Cloudy.	St.	Clear.	St.	Clear.	4-4 st.	Clourly.	4-4 st.	Clondy
6	: $3-1$ nt.	Clowiy.	St.		St.	Clear.	4-4 st.	Cloudy:	4-4 st.	Cloudy
7	2-4 st.	Eair.	St.	Clear.	St.	Clear.	4-4 st.	Clondy.	3-4 st.	Cloudy
8	?-4 st.	Farim.	St.	Clear.	St.	C'le'ar.	4-4 st.	C'londes.	P-4 st.	Fair.
9	St.	Clear.	1-4 st.	Fair.	St.	Clear.	4-4 st.	Cloudy.	1-4 st.	Fair.
10	1-4 st.	Fair.	1-4 st.	Fair.	St.	Clear.	4-4 st.	Clondy.	1-4 st.	Fair.
11	St.	Clear.	1-4 st.	Fair,	St.	Clear.	4-4 st.	Cloudy.	1-4 st.	Fair.

Day.	MARCH, 1873.									
	2.		3.		4.		5.		6.	
Hour.			要						$\begin{gathered} \text { sprop fo } \\ \text { priy pue fatomy } \end{gathered}$	
$0^{\text {b }}$	1-4 st.	Fair.	St.	C! 1 ear	St.	Clear.	St.	Clear.	St.	Clear.
1	1-4 st.	Fair.	St.	C'lear.	Sto.	Clear.	St.	Clear.	St.	Clear.
2	$1-4 \mathrm{st}$.	Filir.	St.	Clear.	St.	Clear.	St.	Clear.	St.	Clear.
3	1-4 st.	Fatir.	St.	Clear.	St.	Clear.	St.	Clear.	st.	Clarar.
4	1-4 st.	Fair.	St.	C'lear.	St.	Clear.	st.	Clear.	Sti.	Clear.
5	1-4 st.	Fuir,	St.	Cluar.	St. aud ci.-st.	Clear.	St.	Clear.	St.	C'loat.
${ }^{\circ}$	1-4 st.	Fair.	St.	Cle:ar.	st. and ci.-st.	Clear.	st.	C'lear.	St.	Clear.
7	1-4 st,	Fair,	St.	Clear.	$\begin{aligned} & 1-4 \text { st. and } \\ & \text { ci.-st. } \end{aligned}$	Fair.	St.	Clear.	St.	Clear.
8	1-4 st.	Fuir.	St.	C'lear.	$\begin{aligned} & 1-4 \text { st. and } \\ & \text { ci.-st. } \end{aligned}$	Fair.	1-4 st.	Huzy.	St.	Clear.
9	1-4 st.	Fair.	$\begin{aligned} & \text { 1-4 ci.-st. } \\ & \text { and st. } \end{aligned}$	l'air.	$\begin{aligned} & 1-4 \text { st. and } \\ & \text { ci.-st. } \end{aligned}$	Fair.	1-4 st.	Hazy	St.	Cltaill
10	1-4 st.	Fuir.	$\begin{aligned} & 1-4 \text { cum. and } \\ & \text { ci.-cuanı, } 1-4 \end{aligned}$	Fair.	$\begin{aligned} & 1-4 \text { st. and } \\ & \text { ci.-st. } \end{aligned}$	Faic.	1-4 st.	Fair.	St.	Clear.
11	1.4 st.	Fair.	$\left\|\begin{array}{c} \text { st. and ci.-st. } \\ \text { l-4 cum. and } \\ \text { ci.-cunn., } 1-4 \end{array}\right\|$	Fair.	2-4 st. aud ci.-st.	Fair.	$\begin{aligned} & 1-4 \text { st. anıl } \\ & \text { ci.-st. } \end{aligned}$	Fair.	St.	Clear.
Noon.	1-4 st.	Fair,	st. alud ci-st. 1-4 cunt. and ci.-cum., l-4	Faic.	$\begin{gathered} 1-4 \text { ci. aud } \\ \text { ci.-culu., 1-4 } \end{gathered}$	Fair.	$\begin{aligned} & 1-4 \text { st. and } \\ & \text { ci.-st. } \end{aligned}$	Fair.	Nt.	Clear.
$1^{\text {b }}$	1-4 st.	Fair.	st. and ci-st. 1-4 cuus. and ci.-cum., 1-4	Fair.	st. aud ci.-st. 2-4 cmm. aud ci.-cum., 1-4	Hazy.	$\begin{gathered} 2-4 \text { st. and } \\ \text { ci.-st. } \end{gathered}$	Fair.	St.	Clear.
2	1-4 st.	Fair,	$\left\lvert\, \begin{gathered} \text { ot. aud ci.-st. } \\ 1-4 \mathrm{st.} . \end{gathered}\right.$	Fair.	$\begin{gathered} \text { st. } \\ \text { z-4 cumb. and } \\ \text { ci,-cum., } 1-4 \end{gathered}$	Hazs.	$\begin{aligned} & 2-4 \text { st. and } \\ & \text { ci.-st. } \end{aligned}$	Fair.	St.	Clear.
3	1-4 st.	Fair.	1-4 st.	Fair.	st. 2-4 cum., 1-4 st.	Hazs.	2-4 ci.-st.	Fitir.	St.	Clear.
4	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Clontiy	$\begin{gathered} 2-4 \text { ci.-st., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	st.	Clear.
5	1-4 st.	Fair.	1-4 st.	Fair.	$\begin{aligned} & 1-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	$\begin{gathered} 2-4 \text { ci.-st., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	St.	Clear.
6	1-4 st.	Faic.	1-4 st.	Fiair.	$\geq-4 \mathrm{st}$.	- Fuir.	$\begin{gathered} 1-4 \text { ci.-st., } \\ 1-4 \text { st. } \end{gathered}$	Clondy.	st.	Cluar.
7	1-4 st.	Fair.	1-4 st.	Fair.	$1-4$ st.	Fair.	1-4 ci.-st. aud st.	Fair.	St.	Clear.
8	st.	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	2-4 cum, and	Fair.	St.	Clear.
9 10	St.	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	P-4 cum, aud st.	Fatir.	St.	Clear.
10	St.	Clear.	1-4 st.	Fair,	St.	Clear.	$2-4$ st.	Fair.	St.	Clear.
11	St.	Clear.	St.	Clear.	St.	Clear.	1-4 st.	Fair.	St.	Clear.

MARCH， 1873.

Das．			8.		9.		10.		11.	
Hour． 1	E元			State of weather．	E音		$\begin{aligned} & \text { Amonut and kind } \\ & \text { of clunts. } \end{aligned}$	$\begin{aligned} & 5 \\ & \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & \text { Alumint and kinal } \\ & \text { of clomet. } \end{aligned}$	
$0^{\text {b }}$	2－4 st．	Fair．	St．	Clear．	1－4	lair	3， 3 －st．	Choudy．	4－4 calli．	londy
1	1－4 st．	Fair．	St．	Clpar．	1－4 st．	Fuir．	$3-\frac{1}{2}$ st．	Cloudy．	$\begin{aligned} & 2+4 \text { cum., } 1-4 \\ & \text { st. and } \end{aligned}$	（lomis．
2	st．	Clear．	St．	Clear．	1－4 st．	Fir．	S－1／st．	Cloudy．	$\begin{aligned} & \because-1 \text { wiml. } \\ & 1-4 \text { st. } \end{aligned}$	Clonds．
3	st．	Clear．	St．	Clear．	Cum.,	Fair．	－ 4 st．	Fair．	$\begin{gathered} 2-4 \text { cum. and } \\ \text { ci.ecmo. } 1-4 \\ \text { nt. } \end{gathered}$	（＇］nucy．
4	st．	Clear．	St．	Clear．	$\begin{aligned} & \text { 1-4 cum., } \\ & \text { l-4 st. } \end{aligned}$	Fair．	2－4 st．	Fair．		Cloudy．
5	st．	Clear．	1－4 cum．and ci．－cum．，1－4	Fair．	$\begin{aligned} & 1-4 \text { cum, and } \\ & \text { ci.-cllin. } \\ & \text { st. } \end{aligned}$	Fair．	－－-1 at．	Frair．	$\begin{aligned} & \text { st. } \\ & \text { B-4 cimn. } \\ & 1-4 \text { st. } \end{aligned}$	Clouds．
6	St．	Clear．	$\left\lvert\, \begin{gathered} \text { 8t. and cl.-8t. } \\ \text { Cit-st. } \\ \text { and st. } \end{gathered}\right.$	Clear．	4－4 st．	Cloudy	$\begin{aligned} & \text { 1-4 ci.-st. } \\ & \text { and st. } \end{aligned}$	Fair．	$\begin{gathered} 3-1 \text { cum., } \\ 1-1 \text { st. } \end{gathered}$	C＇lontly．
7	st．	Clear．	$\begin{aligned} & \text { Ci.-st. } \\ & \text { and st. } \end{aligned}$	Clear．	4－4 st．	Cloudy．	$\begin{gathered} 1-4 \text { ci.-st. } \\ \text { and st. } \end{gathered}$	wair．	$\begin{aligned} & 3-4 \\ & 1-4 \mathrm{st} . \end{aligned}$	Chmaly．
8	st．	Clear．	Ci.-st. and st.	Clear．	I－ 4 st．	Clomily．	$\begin{aligned} & 1-4 \text { ci,-st. } \\ & \text { and st. } \end{aligned}$	Fair．	2－4 cum．нин ci．．－c．1min，l－4	Cloudy．
9	St．	Clear．	$1-4 \mathrm{cmm}$ ，int 1 ci．－cune．，l－4 st．and ci．－st．	Fair．	4－4 int．	Clomly．	$\begin{aligned} & \text { Ci.-st. } \\ & \text { and st. } \end{aligned}$	Clear．		－＇lonty．
10	St．	Cluati，	st．	Clear．	4－4 st．	Clounts．	Ci．－st． aud st．	Clear．		c＇undrs．
11	st．	Clear．	St．	Clear．	4－4 st．	Clouds．	$\begin{aligned} & 1-4 \cdot(\cdot i-s t . \\ & \text { and st. } \end{aligned}$	F＇air．	$\left\lvert\, \begin{gathered} \text { st. } \\ \hdashline-4 \text { comin. :und } \\ \text { ci.-cıum., } 1-4 \end{gathered}\right.$	Clundy．
Noom．	St．	Clear．	st．	Oltar．	1－4 st．	Clondy．	$\begin{aligned} & 1-4 \text { di.-4t. } \\ & \text { and st. } \end{aligned}$	Fair．	$\begin{gathered} \text { Nt, } \\ \because-4 \text { cum, and } \\ \text { ri.-cont, } 1-4 \\ \text { mt. } \end{gathered}$	Clondy．
$1^{\text {11 }}$	sit．	Clear．	St．	Ciear．	4－4 4.	Cloudy	$1-4 \text { ci.-st. }$ and wt.	Fiair．	$\begin{aligned} & 3-4 \text { enm. } \\ & \text { 1-4 st. } \end{aligned}$	Clomily
2	St．	Clear．	St．	Clarar．	4－4 st．	Cloudy．	$\begin{aligned} & 1-4 \text { ci.st. } \\ & \text { and st. } \end{aligned}$	Fair．	$\begin{gathered} 3-4 \text { cimm. } \\ 1-4 \text { st. } \end{gathered}$	Cloudy．
3	$\begin{aligned} & \text { ('i.-st. } \\ & \text { aud st. } \end{aligned}$	Clear．	Ci．－st． and st．	Clear．	4－4 st．	Clouds．	$\begin{gathered} 1-4 \text { ci-st. } \\ \text { and st. } \end{gathered}$	Fair．		Clondy．
4	St．	Clear．	1－4 st．	F＇air．	4－4 st．	Clundy．	$\begin{aligned} & 1-4 \text { ci.-st., } 1-4 \\ & \text { cum. and st. } \end{aligned}$	Fair．	4－4 cam．	Clondy．
5	St．	Clear．	$\begin{gathered} 3-4 \text { ci.-cum. } \\ \text { t-4 st. } \end{gathered}$	Clondy．	4－4 st．	Clondy．	1－4 st．	Fair．	$\begin{gathered} 3-4 \text { "unt., } \\ 1-4 \text { st. } \end{gathered}$	Clomily
ti	st．	Clear．	$\begin{aligned} & 2-4 \text { cumb., } \\ & 2-1 \text { st. } \end{aligned}$	Clendy．	$\begin{gathered} 1-4 \text { cumn. } \\ 3-48 t . \end{gathered}$	Clours：	$\begin{aligned} & \text { Cum. and } \\ & \text { l-1 st. } \end{aligned}$	Fair．	$\begin{gathered} 3-4 \text { cimm., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy
7	st．	Clear．	－-4 st．	Fair．	4－1 st．	clomis：	$\begin{aligned} & \text { Cum. and } \\ & \text { l-4 sit. } \end{aligned}$	Pair．	$\begin{gathered} \because-1 \text {, "unu., } \\ \stackrel{2}{2}-4 \text { st. } \end{gathered}$	Choudy．
8	st．	Clear．	1－4 st．	Fair．	3－4 nt．	Clondy：	1－4 st．	Fair．	$\begin{aligned} & 3-4 \text { clum, } \\ & 2-4 \text { st. } \end{aligned}$	Clondy．
9	St．	Clear．	$2-4$ st．	Fair．	：3－4 st．	Cloudy	St．	C＇lear．	$\begin{aligned} & \because-4 \text { rimm., } \\ & \underline{y}-4 \text { st. } \end{aligned}$	Cloudy．
10	St．	Clear．	1－4 st．	Filir．	3－4 st．	Clondy．	St．	Clear．	$\begin{aligned} & 3-1 \text { cum. } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy．
11	St	Clear．	1－4 st．	Filir．	4－4 st，	Cloudy．	3－4 cum．	（＇Iondy）	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \mathrm{st.} \end{aligned}$	Clondy．

Tiny．	MARCH， 1873.											
	22.		23.		21.		25.		26.		27.	
Honr．												岁
0^{11}	St．	Clear．	it．	Clu：nr．	st．	Cloar．	$1-4$ cam． ：3－4 st．	Clomels：	st．	（ blatis	1－1 st．	Fitr．
1	st．	Clear．	St．	Cllar．	St．	Clear．	$\begin{gathered} 1-4 \text { cाוne, } \\ : 3-4 \text { wt. } \end{gathered}$	Clomis．	St．	（＇luar．	$1-1 \mathrm{nt}$ ．	l＇air．
2	St．	Clear．	St．	Clear．	St．	Clame．	3－4 st．	Clowis．	Nt．	Clars．	1－1 n t．	J＇air．
3	St．	Clear．	Si.	crear．	St．	Clatir．	：－4 st．	Clondy	Nt．	Cluar．	1－4 4.	J＇air．
4	st．	（1）：1\％	St．	C＇luar．	St．	Clear．	－-4 st ．	Filir．	Ni．	Cllars	1－4 st．	Irair．
5	St．	Clar．	St．	（＇luar．	St．	Clas．	N．	（1）${ }^{\text {aras．}}$	Nt．	（ 11 unf．	1－4 st．	1：nir．
is	St．	Clpar．	St．	Cluar．	St．	Clear．	St ．	Clear．	St．	（＇10ars，	1－1 st．	J＇iir．
7	St．	Clear．	st．	Clear．	St．	C＇14ar．	st．	Cluar．	Nt ．	Cluar．	$1-1$ st．	Pair．
8	St．	Clear．	St．		$\begin{aligned} & \text { ('in.-st. } \\ & \text { and st. } \end{aligned}$	（1）0ar．	St．	（1）：ar．	St．	（ $140: 11$ ．	1.1 st．	I＇tir．
！	St．	Clear．	St：	＇＇le int．	$\begin{aligned} & 1-\frac{1}{} \cdot \mathrm{i},-\mathrm{st} . \\ & \text { alld st. } \end{aligned}$	Fair．	St．	Clatr．	sit．	（＇19：ar．	1－1 st．	Pritis．
10	St．	Clear．	St．	（9，ar．	$\begin{aligned} & 1-4 \text { ci.-st. } \\ & \text { and rt. } \end{aligned}$	Fair．	St．	Clear．	St．	（＇lears，	$\begin{aligned} & \text { (1.-st., } \\ & \because-4 \times t .1 \end{aligned}$	Fair．
11	St．	Clear．	St．	Clear．	$\begin{aligned} & 1-4 \text { ei.-st. } \\ & \text { and st. } \end{aligned}$	Fair．	St．	Clear．	rit．	（1）an＇	$\begin{gathered} 1-1 \cdot i_{1}-4 \mathbf{t} . \\ 1-1 \text { st. } \end{gathered}$	Fiar．
Noon．	St．	Clear．	Ni．	Cluar．	$\begin{aligned} & \text { Ci.-cinin., } \\ & 1-4 \text { st. } \end{aligned}$	Fair．	St ．	（ 1 c：ar．	N1．	（＇lears，	：3－4 st．	（lomus
$1^{\text {b }}$	St．	Clatr．	St．	Clear．	$\begin{array}{r} 1-\text { frimm. :141 } \\ \text { ci.rum., } 1-4 \\ \text { st. } \end{array}$	Fair．	St．	Clear．	St．		： r 1 st st．	Clondy．
\because	St．	Clear．	St．	Clear．	$\begin{aligned} & 1-4 \text { cini., } \\ & 1-4 \text { st. } \end{aligned}$	Fiar．	$\begin{gathered} 1-4 \text { r.llu.. } \\ \text { st. } \end{gathered}$	Fair．	St．	（＇la：ar．	： 3.1 st．	Clondy．
3	St．	Cla：3）	St．	Clear．	$\begin{aligned} & 1-4 \text { cum., } \\ & 1-1 \mathrm{nt.} \end{aligned}$	Fair．	St．	（6）：ar．	sit．	（＇lain）．	3－1 st．	Clomiy
4	St．	Clear．	St．	C＇labr．	$\begin{gathered} 1-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Fair．	St．	（＇luar．	St．	Clears．		Cloudy
5	St．	（＇lear．	St．	（＇）an！	$\begin{aligned} & 1-4 \text { c.lıl., } \\ & 1-1 \text { st. } \end{aligned}$	Pair．	St．	（11：3）．	St．	（＇liors．		Clondy
6	St．	（1）${ }^{\text {ant：}}$	St．	Clear．	$\begin{gathered} \because-1 \text { enlu., } \\ 1-4 \text { st. } \end{gathered}$	Clourly．	St．	（＇14：ar．	$1-4 \mathrm{st}$ ．	l＇ıir．		（\％oms）
7	St．	Clear．	rit．	Clear．	$\begin{gathered} 1-4 \text {, "ulur., } \\ \because-\frac{1}{4} \text { is. } \end{gathered}$	（＇7andy）	St．	Claras．	1－4 st．	Fair．	1－1 st．	（ Manty
8	St．	Clear．	St．	Clear．	$\begin{aligned} & 1-4 \text { rilli., } \\ & 2-4 \mathrm{st} . \end{aligned}$	Clonuly．	St，	（11）：4．	1.4 st．	J＇air．	3－4 st．	Clourl：
9	st．	Clear．	St．	Clletr．	$\begin{aligned} & 3-1 \text { cum., } \\ & 1-4 \text { st. } \end{aligned}$	Clondy	St．	Clear．	1－1 nt．	1＇air．	$\because-1$ or	（Jomd）
10	si．	Clear．	St．	＇＇lesit，	2－4＂171．	Clourly．	St．	（＇luar．	1－4 st．	F＇air．	2－4 st．	Clondy
11	st ．	Clear．	st．	Cla゙い，	： $3-4$ st．	Clowly	St．	Cluar．	1－4 st．	Fair．	2－4 st．	Cloudy

Day.	MARCH, 1873.								APRIL, 1873.	
	28.		29.		30.		31.		1.	
Hour.										
0^{4}	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
1	1-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
2	St.	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clouds.	t-4 st.	Cloudy.
3	st.	Clear.	1-4 st.	Fuir.	1-4 st.	Fair.	4-4 st.	Clouds.	$\begin{aligned} & 1-4 \text { ci.-st., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.
4	st.	Clear.	1-4 st.	Fair.	1-4 st.	Fair,	4-4 st.	Clouds.	3-4 st.	Cloudy.
5	st.	Clear.	1-4 st.	Fair.	1-4 st.	Fair,	4-4 st.	Cloudy.	3-4 st.	Cloudy.
6	St.	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Lt. snow.	3-4 st.	Cloudy.
7	st.	Clear.	1-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Lt. suow.	3-4 st.	Cloudy.
8	St.	Clear.	$1-4$ st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	3-4 st.	Cloudy.
9	st.	Clear.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clouds.	3-4 st.	Cloudy.
10	st.	Clear.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	3-4 st.	Cloudy.
11	st.	Clear.	$2-4$ st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy,	3-4 st.	Cloudy.
Noon.	st.	Clear.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Clouds.	3-4 st.	Cloudy.
$1^{\text {b }}$	St.	Clear.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	3-4 st.	Clouds.
2	St.	Clear.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	1-4 ci.-st.,	Fair.
3	1-4 st.	Fair.	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	3-4 st.	Cloudy.
4	1-4 st.	Fair.	1-4 st.	Fair.	3-4 st.	Clouds	$\begin{gathered} 3-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	3-4 st.	Cloudy.
5	st.	Clear.	St.	Clear.	4-4 st.	Clouds.	3-4 cum., 1-4 st.	Clondy.	3-4 st.	Cloudy.
6	St.	Clear.	st.	Clear.	4-4 st.	Cloudy.	$\begin{gathered} 3-4 \text { cmm. } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	3-4 st.	Cloudy.
7	$\begin{gathered} 1-4 \text { ci.-cum. } . \\ 2-4 \text { st. } \end{gathered}$	Clouds.	2-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Clonds.	3-4 st.	Cloudy.
8	2-4 st.	Fair.	1-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Cloudy.	3-4 st.	Cloudy.
9	2-4 st.	Fair.	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Clouds.	2-4 st.	Fair.
10	$1-4$ st.	Fair.	St.	Clear	4-4 st.	Clouds.	4-4 st.	Clondy.	2-4 st.	Fair.
11	1-4 st.	Fair.	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudy.	2-4 st.	Fair.

Das.	APRIL, 1873.									
	2.		3.		4.		5.		6.	
Ilonr.		$\begin{aligned} & E \\ & E \\ & E \\ & E \\ & E \\ & 5 \end{aligned}$								
0^{17}	: 3 -4 st.	Clonds.	-4 st.	Fair.	3-4 st.	Cloudy.	1-4 st.	Fuir.	4-4 st.	Clouly.
1	:-4 st.	Clounty.	$2-4$ st.	Filir.	4-4 st.	Cloudy.	2-4 st.	Fair.	4-4 st.	Cloudy.
2	$3-1$ st.	Clonds.	2-4 st.	Fair.	4-4 st.	Clondy.	2-4 st.	Fair.	4-4 st.	Cloudy.
3	\% $3-4$ st.	Clomis.	2-1 st.	Fair.	4-4 st.	Clouty	2-4 st.	Fair.	4-4 st.	Cloudy.
4	3-1 st.	Cloudy,	$2-4$ st.	Fair.	4-4 st.	Cloudy.	3-1 st.	Clonds.	4-4 st.	Clouds,
5	$3-4$ st.	Clonty.	$2-4$ st.	Fair.	4-4 st.	Cloudy.	S-4 st.	Cloudy.	4-4 st.	Cluarly.
6	3-4 st.	Clondy.	3-4 st.	Clondy.	4-4 st.	Cloudy.	$3-4$ st.	Cloudy.	4-4 st.	Clourly.
7	2.4 st.	Fair.	3-4 st.	Clouds.	4-4 st.	Cloudy.	3-4 st.	Cloudy.	4-4 st..	Cloudy,
8	Q-4 st.	Fair.	$\mathrm{Ci} \text { i.st., }$ $1-4 \mathrm{st} .$	Fair.	4-4 st.	Clouds.	3-4 st.	Clonds.	4-4 st.	Cloudy.
9	1-4 st.	Fair.	$\begin{aligned} & \text { Ci.-st., } \\ & 1-4 \text { st. } \end{aligned}$	Fail.	$\begin{aligned} & 1-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	3-4 st.	Cloudy.	4-4 st.	Cloudy,
10	1-4 st.	Fair.	$\begin{aligned} & \text { Ci.-st., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	1-4 cum.,	Clouds.	3-4 st.	Cloudy.	4-4 st.	Clondy.
11	1-4 st.	Fair.	$1-4 \begin{aligned} & \text { ci.-cım. } \\ & \text { ci.-st. } \end{aligned}$	Fair.	$\begin{gathered} \text { Cum. and } \\ \text { ci.-cuuı., } 2-4 \end{gathered}$	Fair,	3-4 st.	Clouds.	4-4 sit.	Cloudy.
Noon.	$\underset{\substack{\text { Ci-st. and } \\ \text { st. }}}{ }$	Clear.	1-4 ci.-st.	Fail.	$\left\lvert\, \begin{gathered} \text { st. } \\ \text { Cum. and } \\ \text { ci.cum., } \\ \text { 2-4 } \end{gathered}\right.$	Fair.	3-4 st.	Cloudy.	4-4 st.	Cloudy.
1^{11}	$\begin{aligned} & \text { Ci.-st. and } \\ & \text { st. } \end{aligned}$	Clear.	2-4 ci.-st.	Fair,	$\begin{gathered} 1-4 \text { ci.-st. } \\ \text { and st. } \end{gathered}$	Fair.	3-4 st.	Cloudy.	4-4 st.	Cluady.
2	$\begin{aligned} & \text { Ci.-st, aud } \\ & \text { st. } \end{aligned}$	Cleair.	$\begin{gathered} 1-4 \text { ci.-st., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	1-I cum, and ci.-st., 1-4 st.	Fair.	$\begin{aligned} & 2-4 \mathrm{cum} . \\ & 1-4 \mathrm{st} . \end{aligned}$	Cloudy.	4-4 st.	Cloudy.
3	$\begin{aligned} & \text { Ci.-st, and } \\ & \text { st. } \end{aligned}$	Clear.	$\begin{gathered} 1-4 \text { ci.-st., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	$\because-4$ cum. and ei.-cum., 1-4	Cloudy.	$\begin{aligned} & 2-4 \mathrm{cnm} . \\ & 1-4 \mathrm{st} . \end{aligned}$	Cloudy.	4-4 st.	Clondy.
4	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	St.	Clear.	$\begin{aligned} & \text { st. } \\ & 2-4 \text { ci.-cmm. } \\ & 1-4 \text { st. } . \end{aligned}$	Cloudy.	$\begin{aligned} & ?-4 \text { cum. } \\ & 1-4 \mathrm{st} . \end{aligned}$	Clouds.	4-4 st.	C'lourly:
5	$\begin{array}{ll} 2-4 & \text { ci., } \\ 1-4 & \text { st. } \end{array}$	Fair.	1-1 st.	Fair.	$\begin{aligned} & 2-4 \text { ci., } \\ & 2-4 ~ s t . \end{aligned}$	Clondy	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Cloudy.
6	$\begin{aligned} & 2-4 \text { ri., } \\ & 1-4 \text { st. } \end{aligned}$	Fair,	1-4 st.	Fair.	$\begin{aligned} & 3-4 \text { ci. } \\ & 1-4 \text { st. } \end{aligned}$	Clounls.	$\begin{gathered} 2-4 \text { cim. } \\ 1-\frac{1}{4} \text { st. } \end{gathered}$	Clouds.	4-4 st.	Cloudy.
7	3-4 st.	Clondy:	1-4 st.	Fair.	$\begin{aligned} & 2-4 \text { ci. } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy,	4-4 st.	Cloudy.	$4-4 \mathrm{st}$.	Cloudy.
8	2-4 st.	Fair.	2-4 st.	Fair.	$\begin{aligned} & 1-4 \text { ci., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Clouds.	4-4 st.	Cloudy.
9	$1-4$ st.	Fair.	3-4 st.	Cloudy.	4-4 st.	Lt. suow.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
10	1-4 st.	Fair.	3-4 st.	Clouds.	4-4 st.	Lt. snow.	4-4 st.	Clouds.	4-4 st.	Cloudy.
11	$2+4$ st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Clouds.	4-4 st.	Cloudy.

Day.	APRIL, 1873.									
	7.		8.		9.		16.		11.	
Hour.			$\begin{gathered} \text { spnof fis } \\ \text { puyy bue qunouy } \end{gathered}$	State of weather.						3 0 0 0 0
$0^{\text {h }}$	4-4 st.	Clouds.	3-4 st.	Clondy.	1-4 st.	Fair.	St.	Clear.	St.	Cluar.
1	4-4 st.	Clouds.	e-4 st.	Fair.	1-4 st.	Fair.	St.	Clear.	St.	Clear.
2	4-4 st.	Cloudy.	2-4 st.	Fair.	$1-4$ st.	Fair.	S1.	Clear.	St.	Clear.
3	4-4 st.	Clondy	- 4 st.	Fail.	1-4 st.	Fair.	St.	Clear.	nt.	Clear.
4	4-4st.	Clouds.	$\because-4$ st.	Fair.	1-4 st.	Fair.	st.	Clear.	0	Clear.
5	4-4 st.	Cloudy.	- -4 st.	Fair.	1-4 st.	Fair.	St.	Clear.	0	Clear.
6	- 4 st.	Fair.	O-4 st.	Fair.	1-4 st.	Fair.	St.	Clear.	0	Clear.
7	$2-4$ st.	Fair.	2-4 st.	Fail.	$1-4 \mathrm{st}$.	Fair.	st.	Clear.	0	Clear.
8	2-4 st.	Fair.	Q-4 st.	Fair.	1-4 st.	Fair.	St.	Clear.	0	Clear.
9	8.4 st.	Fair.	2-4 st.	Fuir.	1-4 st.	Fiar.	St.	Clear.	19	Clear.
10	2-4 st.	Fair.	$\because-4$ st.	Faic.	1-4 st.	Fair.	$\begin{gathered} \text { Ci,-st. aud } \\ \text { st. } \end{gathered}$	Clear.	0	Clear.
11	P- 4 st.	Fair.	$2-1$ st.	Fair.	1-4 st.	Fair.	$\begin{aligned} & \text { Ci.-st. and } \\ & \text { st. } \end{aligned}$	Clear.	st.	Clear.
Noon.	$\because-1$ st.	Fair.	?-4 st.	Fair.	$1-4 \mathrm{st}$	Fair.	$\begin{gathered} 1-4 \text { ci.-st. } \\ \text { and st. } \end{gathered}$	Fair.	St.	Clear.
$1^{\text {h }}$	3-4 st.	Clouds.	Q-4 st.	Fair.	1-4 st.	Fair.	$\begin{gathered} 1-4 \text { ci.-st. } \\ \text { aud st. } \end{gathered}$	Fair.	St.	Clear.
2	$3-4$ st.	Clouds.	U-i st.	Fair.	1-4 st.	Fair.	$\begin{aligned} & 1-4 \text { ci.-st. } \\ & \text { and st. } \end{aligned}$	Fair.	st.	Clear.
3	3-4 st.	Cloudy.	- 4 st.	Fair.	1-4 st.	Fair.	$\begin{gathered} 1-4 \text { ci.-st. } \\ \text { aud st. } \end{gathered}$	Fair.	St.	Clear.
4	9-4 st.	Fair.	?-4 st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	St.	Clear.
5	4-4 st.	Clouds.	$\because-4$ st.	Fair.	1-4 st.	Fair.	1-4 st.	Fair.	St.	Clear.
6	4-4 st.	Clondy.	3-4 st.	Cloudy.	1-4 st.	Fair.	1-4 st.	Frais.	st.	Clear.
7	$4-4 \leq t$.	Clouds.	3-4 st.	Clonds.	st.	Clear	$1-4$ st.	Fair.	1-1 st.	Fair.
8	4-4 st.	Cloudy.	$2-4$ st.	Fair.	St.	Clear.	1-4 st.	Fair.	1-4 st.	Fair.
9	4.4 st.	Clouds.	O-4 st.	Fair.	St.	Clear.	st.	Clear.	St.	Clear.
10	4-4 st.	Cloudy.	?-4 st.	Fair.	St.	Clear.	St.	Clear.	$s t$	Charar
11	4-4 st.	Clouds.	O-4 st.	Fair.	St.	Clear.	St.	Clear.	1-4 st.	Filir.

Day.	APRIL 1873.									
	12.		13.		14.		15.		16.	
Hour.	$\begin{gathered} \text { spuop jo } \\ \text { buev pue quowar } \end{gathered}$	State of weather.	$\begin{aligned} & \text { Amomint aud kind } \\ & \text { of clouds. } \end{aligned}$			State of weather.				
$0^{\text {h }}$	St.	Clear.	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Clondy.
1	St.	Clear.	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Lt.snow.	4-4 st.	Cloudy.
2	St.	Clear.	$\begin{aligned} & \text { 2-4 ci. aud } \\ & \text { st. } \end{aligned}$	P'air.	4-4 st.	Cloudy.	$2-4 \text { cumu., }$	Lt. suow.	4-4 st.	Cloudy.
3	St.	Clear.	$3-1$ st.	Clondy.	4-4 st.	Lt. snow.	$\begin{gathered} 2-1 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Lt. snow.	4-4 st.	Clomly.
4	St.	Clear.	4-4 st.	Clouds.	4-4 st.	Clondy.	$\begin{aligned} & 1-4 \text { cum. } \\ & 2-4 \text { st. } \end{aligned}$	Clouds.	4-4 st.	Cloudy.
5	$\begin{aligned} & \text { Q-f ci.-st. } \\ & \text { and st. } \end{aligned}$	Fair.	4-4 st.	Clouds.	$\begin{aligned} & 1-4 \text { st., } \\ & 2-4 \text { cum. } \end{aligned}$	Cloudy.	$\begin{gathered} 1-4 \text { ci., } \\ 8-4 \text { cum., } \end{gathered}$	Cloudy.	4-4 st.	Cloudy.
6	$\begin{gathered} \because-4 \text { ci.-st. } \\ \text { aud st. } \end{gathered}$	Fair.	4-4 st.	Clouds.	3-4 cum.	Cloudy	$\begin{gathered} 2-4 \text { cum. } \\ 1-4 \mathrm{st} . \end{gathered}$	Clondy.	4-4 st.	Cloudy.
7	$\begin{aligned} & \text { 2-4 ci.-st. } \\ & \text { and st. } \end{aligned}$	Fair.	$\begin{aligned} & \therefore-4 \text { ci.-st. } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Lt. snow.	$\begin{gathered} 3-4 \text { cam., } \\ 1-4 \mathrm{st.} \end{gathered}$	Lt. snow.	$\begin{gathered} 2-1 \text { cnm., } \\ 2-4 \text { st. } \end{gathered}$	Clouds.
8	$\begin{gathered} 2-4 \text { ci.-st. } \\ \text { and st. } \end{gathered}$	Fair.	2-4 ci.-st. aud ci.-cum.	Clonds.	$\begin{aligned} & 1-4 \text { cum. } \\ & \text { i- } 4 \text { st. } \end{aligned}$	Lt. snow.	4-4 st.	Lt. snow.	$\begin{gathered} 2-1 \text { cum., } \\ 2-1 \text { st. } \end{gathered}$	Clouly
9	$\begin{aligned} & 2-4 \text { ci.-st. } \\ & \text { and st. } \end{aligned}$	Fair.	$\begin{aligned} & 2-4 \text { ci.cum. }, \\ & 9-1 \text { st. } \end{aligned}$	Clouds.	3-1 cam.	Lt. snow.	4-4 st.	Lt. snow.	$4-4 \mathrm{cmm}$.	Clourly.
10	$\begin{aligned} & \text { 1-4 ci.-st. } \\ & \text { and st. } \end{aligned}$	Fair.	$\begin{aligned} & \text { 1-4 ci.-cum., } \\ & 3-4 \text { cum. } \end{aligned}$	Cloudy.	$\begin{aligned} & \text { 2-4 cam., } \\ & 2-4 \text { st. } \end{aligned}$	Lt. snow.	4-4 st.	Lt. snow.	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Cloudy.
11	$\begin{gathered} 1-4 \text { ci.-st. } \\ \text { aud st. } \end{gathered}$	Fair.	$\begin{aligned} & 1-4 \text { ci. and } \\ & \text { ci.-st., } 9-4 \end{aligned}$	Clouts.	4-4 st.	Snow.	$3-4 \mathrm{crom}$.	Clondy.	3-4 st.	Cloudy.
Noou.	$\begin{gathered} 1-4 \text { ci.-st. } \\ \text { and st. } \end{gathered}$	Fair.	$3-4 \text { st. }$	Clourls.	3-4 st.	Suow.	2-4 st.	Fair.	St.	Clear.
$1^{\text {b }}$	1-4 st.	Fair.	3-4 st.	Clondy.	3-4 st.	Fair.	Ci.-st.	Clear.	st.	Clear.
2	1-4 st.	Fair.	4-4 st.	Lt. suor.	3-4 st.	Cloudy.	1-4 st.	Fair.	St.	Clear.
3	$1-4$ st.	Fair.	4-4 st.	Lt. snow.	$3-4$ st	Cloudy	St.	Clear.	$\begin{aligned} & \text { Cum., } \\ & \text { st. } \end{aligned}$	Clear.
4	1-4 st.	Fair.	4-4 st.	Lt. suorr.	\%-4 st.	Cloudy	1-4 st.	Fair.	$\begin{gathered} \text { Cum., } \\ \text { st. } \end{gathered}$	Clear.
5	$\begin{aligned} & \text { C'i.-st., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	4-4 st.	Lt. suow.	4-4 st.	Snow.	St.	Clear.	St.	Clear.
6	$\begin{aligned} & \text { Ci.-st., } \\ & 1-4 \text { st. } \end{aligned}$	Fail.	4-4 st.	Lt. suow.	d-4 st.	Snow.	St.	Clear.	St.	Clear.
7	$\begin{aligned} & \text { Ci.-st., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	4-4 st.	Lt. suow.	4-1 st.	Snow.	3-4 st.	Clondy.	St.	Clear.
8	St.	Clear.	4-4 st.	Lt. suow.	4-4 st.	Snor.	4-4 st.	Clourly.	0	Clear.
9	St.	Clear.	4-4 st.	Lt. snor.	4.4 st.	Suow.	4-4 st.	Cloudy.	0	Clear.
10	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Suow.	4-4 st.	Clondy.	St.	Clear.
11	St.	Clear.	4-4 st.	C'louds.	4-4 st.	Lt. snow.	4-4 st.	Cloudy.	St.	Clear.

Day.	APRIL, 1873.									
	17.		18.		19.		20.		21.	
Hour.		B 0 0 0 0 0 0 0			$\begin{aligned} & \text { Amount and kind } \\ & \text { of clouds. } \end{aligned}$		$\begin{aligned} & \text { Amount aud kind } \\ & \text { of clouds. } \end{aligned}$		$\begin{aligned} & \text { Amount and kind } \\ & \text { of clouds. } \end{aligned}$	
$0^{\text {b }}$	St.	Clear.	St.	Clear.	Ci. st. aud st.	Clear.	4-4 st.	Cloudy.	3-4 ci.-st.	Cloudy.
1	1-4 st.	Fair.	St.	Clear.	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
2	3-4 st.	Clouds.	$\begin{gathered} \mathrm{Ci}, \\ 1-4 \text { st. } \end{gathered}$	Fair.	St.	Clear.	4-4 st.	Clouds.	4-4 st.	Clondy.
3	2-4 st.	Fair.	1-4 ci.-st.	Fair.	St.	Clear.	4-4 st.	Clualy.	4-4 st.	Cloudy,
4	2-4 st.	Fair.	1-4 ci.-st.	Fair.	st.	Clear.	3-4 st.	Cloudy.	4-4 st.	Clondy.
5	2-4 st.	Fair.	$1-4$ ci.-st.	Fair.	St.	Clear.	$2-4$ st.	Clouds.	$\begin{gathered} 3-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Clondy.
6	St.	Clear.	$2-4$ st.	Fair.	$2-4 \text { cum., }$	Clondy	4-4 st.	Cloudy.	$\begin{gathered} 2-4 \text { cum. } \\ 2-4 \text { st. } \end{gathered}$	Clonds.
7	St.	Clear.	2.4 st.	Fair.	$\begin{gathered} 2-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	4-4 st.	Clondy.	$\begin{gathered} 9-4 \text { cumn., } \\ 2-4 \text { st. } \end{gathered}$	Clonds.
8	St.	Clear.	1-4 st.	Fair.	$\begin{aligned} & 3-4 \text { cumı, } \\ & 1-4 \text { st. } \end{aligned}$	Clondy.	4-4 st.	Clouty.	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Cloudy.
9	1-4 st.	Fair.	St.	Clear.	$\begin{gathered} 3-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Clonds.	4-4 st.	C'loudy.	$\begin{gathered} 3-4 \text { curn., } \\ 1-4 \mathrm{~s}^{+} . \end{gathered}$	Clondy.
10	1-4 st.	Fair.	St.	Clear.	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Clondy	4-4 st.	Cloudy.	$\begin{gathered} 3-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Clouds.
11	1-4 st.	Fair.	St.	Clear.	t-4 st.	Clondy.	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Clouds.	$\begin{gathered} 2-4 \text { cum., } \\ 2-4 \text { st. } \end{gathered}$	Clondy.
Noon.	Cum., st.	Clear.	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Clouly.	$\begin{aligned} & \text { 2-4 cum., } \\ & 2-4 \text { st. } \end{aligned}$	Clondy.
$1^{\text {h }}$	$\begin{gathered} \text { Cum., } \\ \text { st. } \end{gathered}$	Clear.	st.	Clear.	$\begin{aligned} & 2-4 \text { curm., } \\ & 2-4 \text { st. } \end{aligned}$	Clondy.	4-4 st.	Clondy.	$\begin{gathered} 2-4 \text { cum. } \\ 2-4 \text { st. } \end{gathered}$	Cloudy.
2	Cum., st.	Clear.	Ci.-st.	Clear.	4-4 st.	Clondy.	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	C'loudy:	$\begin{gathered} 1-4 \text { cum., } \\ 2-4 \mathrm{~s}^{+} . \end{gathered}$	Clouds.
3	St.	Clear.	Ci.	Clear.	4-4 st.	Clondy.	$\begin{aligned} & 2-4 \text { cumu., } \\ & 1-4 \mathrm{st} . \end{aligned}$	Cloudy.	$\begin{gathered} 2-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Clondy.
4	St.	Clear.	Ci .	Clear.	4-4 st.	Clondy.	2-4 st.	Cloudy.	2-4 st.	Fair.
5	St.	Clear.	0	Clear.	4-1 st.	Clonds.	$\begin{gathered} 2-4 \text { ci. and } \\ \text { st. } \end{gathered}$	Cloudy.	$\begin{gathered} 1-4 \text { cum., } \\ \text { l-4 st. } \end{gathered}$	Fair.
6	Cum.-st.	Clear.	0	Clear.	4-4 st.	Cluady.	1-4 ci.-st.	Clouds.	st.	Clear.
7	Cum.-st.	Clear.	0	Clear.	4-4 st.	Clouds.	3-4 st.	Clouds.	Ci.-st.	Clear.
8	Cum.-st.	Clear.	Ci.-st.	Clear.	4-4 st.	Clouds.	$\because-4$ st.	Cloudy.	Ci.-st.	Clear.
9	Cum.-st.	Clear.	St.	Clear.	4-1 st.	Lt. snow.	$2-4$ ci.st.	Cloudy.	Ci.-st.	Clear.
10	Cum.-st.	Clear.	St.	Clear.	4-4 st.	Lt. suowr.	3-4 ci.sst.	Cloudr.	Ci.-st.	Clcar.
11	St.	Clear.	St.	Clear.	4-4 st.	Lt. snow.	$3-4$ ci.-st.	Clouds.	Ci.-st.	Clear.

Day.	APRIL, 1873.									
	28.		23.		$2{ }^{2}$		25.		26.	
Honr.			$\begin{aligned} & \text { Amont and kind } \\ & \text { of clouds. } \end{aligned}$			- aqquen yo alpt		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	为	
$0^{\text {h }}$	Ci.-st.	Clear.	Ci.-st.	Clear.	3-4 ci. aud st.	Cloudy.	$\begin{gathered} 1-4 \text { cunı., } \\ 1-4 \text { ci., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	$\begin{gathered} 1-4 \underset{\text { cnm, }}{\text { st. }} \text { and } \end{gathered}$	Fair.
1	Ci.-st.	Clear.	Ci.st.	Clear.	$\begin{aligned} & 1-4 \text { ci., } \\ & 6-4 \text { st, } \end{aligned}$	Cloudy.	$\begin{gathered} \text { Cum.-ci., } \\ 2-4 \text { st. } \end{gathered}$	Fair.	st.	Clear.
2	Ci.-st.	Clear.	St.	Clear.	$\begin{aligned} & 2-4 \text { ci., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	1-4 st. and cam.	Fuir.	St.	Clear.
3	st.	Clear.	St.	Clear.	2-4 st.	Fair.	$\begin{aligned} & \text { Cum., } \\ & \text { st. } \end{aligned}$	Clear.	St.	Clear.
4	St.	Clear.	St.	Clear.	$\begin{gathered} \text { 3-4 ci--cum. } \\ \text { and ci.-st. } \end{gathered}$	Clouds.	$2-4 \mathrm{cum}$.	Fair.	st.	Clear.
5	St.	Clear.	St.	Clear.	:3-4 cum.	Clondy.	$\begin{aligned} & 2-4 \text { cum. } \\ & 1-4 \text { st. } \end{aligned}$	Clondy.	St.	Clear.
6	St.	Clear.	St.	Clear.	$3-4 \mathrm{cmm}$.	Clondy.	:3-1 cum.	Clonds.	St.	Clear.
7	St.	Clear.	st.	Clear.	$3-4 \mathrm{cum}$.	Clouty.	$3-4$ cunn.	Clondy.	St.	Clear.
8	St.	Clear.	St.	Clear.	1-4 ci.-st.	Fair.	$\begin{gathered} 1-4 \text { cutu. } \\ \text { and st. } \end{gathered}$	Fair.	St.	Clear.
9	St.	Clear.	St.	Cliar.	$1-1$ cum.	Fair.	St.	Clear.	St.	Cluar.
10	St.	C'lear.	St.	Clear.	2-4 st.	Fair.	St.	Clear.	St.	Clear.
11	St.	Clear.	St.	Clear.	1-4 st.	Fair.	St.	Clear.	1-4 st.	Fair.
Noon.	Ci.-st.	Clear.	St.	Clear.	3-4 ci.-st.	Cloudy.	St.	Clear.	1-4 st.	Fair.
$1{ }^{\text {b }}$	Ci.-st.	Clear.	- St.	Clear.	3-4 ci.st.	Cloudy.	C'i.-st. aud st.	Clear.	1-4 st.	F'air.
2	Ci.-st.	Clear.	$\begin{aligned} & \text { Ci., ci.-st., } \\ & \text { and st. } \end{aligned}$	Clear.	4-4 st.	Cloudy.	Ci.-st.	Clear.	1-4 st.	Fair.
3	Ci.-st.	Clear.	$\begin{aligned} & \text { 1-4 ci. and } \\ & \text { ci.-st., st. } \end{aligned}$	Fair.	4-4 st.	Clouds.	Ci.sst.	Clear.	1-4 st.	Fair.
4	Ci.-st.	Clear.	1-4 ci. aud ci.-st., st.	Fair.	4-4 st.	Clondy.	Ci.-st.	Clear.	1-4 st.	Fair.
5	Ci.-st.	Clear.	$\begin{aligned} & \text { 1-4 ci. and } \\ & \text { ci.-st., st. } \end{aligned}$	Fair.	3-4 ci.st.	Cloudy.	Ci.-st.	Clear.	Ci. aud st.	Clear.
6	1-4 ci.-st.	Fair.	$\begin{aligned} & 1-4 \text { ci. and } \\ & \text { ci.-st., st. } \end{aligned}$	Fair.	3-4 ci.-st.	Cloudy.	Ciost.	Clear.	Ci. and st.	Clear.
7	$1-4$ ci.-st.	Fair.	$\begin{aligned} & 1-4 \text { ci. and } \\ & \text { ci.-st., st. } \end{aligned}$	Fair.	3-4 ci.-st.	Clondy.	C'i.-st.	Clear.	St.	Clear.
8	1-4 ci.-st.	Fair.	$\begin{aligned} & \text { 1-4 ci. and } \\ & \text { ci.-st., st. } \end{aligned}$	Fair.	3-4 ci.-st.	Clondy.	Ci. st.	Clear.	St.	Clear.
9	1-4 ci.-st.	Fair.	$\begin{gathered} 2-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	3-4 ci.st.	Cloudy.	Ci.-st.	Clear.	St.	Clear.
10	C'i.-st.	Clear.	$\begin{aligned} & 2-4 \text { cum., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	-4 ci.-st.	Fair.	$1-4 \begin{aligned} & \text { cuul. } \\ & \text { st. } \end{aligned}$	Fair.	St.	Clear.
11	Ci.-st.	Clear.		Cloudy.	9.4 ci.st.	Fair.	1-4 ${ }_{\text {st. }}^{\text {cum. }}$.	Fair.	St.	Clear.

Day.	APRIL, 1873.								IMAY, 1873.	
	2%.		28.		29.		30.		1.	
Hour,			$\begin{aligned} & \text { Amount and kind } \\ & \text { of clouds. } \end{aligned}$						$\begin{aligned} & \text { Anount and kind } \\ & \text { of clouds. } \end{aligned}$	
$0^{\text {h }}$	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Cloudg.	4-4 st.	Lt. suow.	4-4 st.	Cloudy.
1	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Clonds.	4-4 st.	Lt. snow.	4-4 st.	Clondy.
2	St.	Clear.	4-1 st.	Clonds.	4-4 st.	Clouds.	4-4 st.	Lt. snow.	4-4 st.	Cloudy,
3	St.	Clear.	4-1 st.	Cloudy.	4-4 st.	Clouds.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.
4	it.	Clear.	4-4 st.	Cloudy	4-1 st.	Lt. snow.	4-4 st.	Lt. snow.	4-4 st.	Lt. suow.
5	St.	Clear.	$4-4$ st.	Cloudy.	4-4 st.	Lt. snow,	4-4 st.	Lt. snow.	$4-4$ st.	Lt.snow.
6	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Lt. snows.	4-4 st.	Lt. snow.	4-4 st.	Lt. suow.
7	it.	Clear.	$4-4$ st.	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Lt. suow.	4-4 st.	Lt. swow.
8	St.	Clear.	4-4 st.	Clouds.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	4-4 st.	Cloudy.
9	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	$4-4$ st.	Lt. suow.	$\begin{aligned} & :-4 \text { cnm }, \\ & 1-4 \text { st. } \end{aligned}$	Lt. snow.
10	St.	Clear.	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	$\begin{aligned} & \text { Q-4 cum., } \\ & 1-4 \mathrm{st} . \end{aligned}$	Cloudy.
11	St.	Clear.	4-4 st.	Clonds.	4-4 st.	Lt. snow.	4-4 st.	Clouds.	$\begin{aligned} & \text { Q-4 cum., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.
Noon.	$\begin{aligned} & 3-4 \text { cum., } \\ & \text { st. } \end{aligned}$	Cloudy:	4-4 st.	Clouds.	4-4 st.	Lt. snow.	$\begin{gathered} 1-4 \text { cum. } \\ 3-4 \text { st. } \end{gathered}$	Cloudy.	4-4 st.	Clouds.
$1{ }^{\text {b }}$	$\begin{aligned} & \text { 2-4 cume., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	1-4 st.	Clonds.	4-4 st.	Lt. suow.	$\begin{aligned} & 2-4 \text { cun1., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Clouds.
2	- 4 cum. and ci.-cam., 1-4 st.	Cloudy.	4-4 st.	Clonds.	4-4 st.	Lt. snow.	$\begin{aligned} & 2-4 \text { cum. } \\ & 2-4 \text { st. } \end{aligned}$	Lt. suow.	4-4 st.	Cloudy.
3	1-4 cum, and cio-cume, 1-4 st.	Clonds.	4-4 st.	Lt.snow.	4-4 st.	Lt. snow.	4-4 st.	Lt. suow.	$\begin{aligned} & 2-4 \text { cum., } \\ & 1-4 \text { st. } \end{aligned}$	Clondy.
4	2-4 ci.-st.	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow,	$\begin{gathered} 3-4 \text { eum. } \\ 1-4 \mathrm{st} . \end{gathered}$	Lt. snow.	3-4 cum.	Cloudy
5	3-4 ci,-st.	Clouds.	1-4 st.	Lt. snow.	4-4 st.	Lt. snow.	$\begin{aligned} & \text { 2-4 cum., } \\ & 2-4 \text { st. } \end{aligned}$	Lt. snow.	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Lt. snow.
6	2-4 ci.st.	Cloudy.	$4-4$ st.	Lt. snow.	4-4 st.	Lt. snow.	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Lt. snow.	$\begin{gathered} 1-4 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Lt. snow.
7	3-4 ci.-st.	Cloudr.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	$\begin{gathered} 1-4 \text { cunn., } \\ 3-4 \text { st. } \end{gathered}$	Lt. snow.	!-4 st.	Lt. snow.
8	$4-4$ st.	Clouds:-	4-4 st.	Lt. suow.	4-4 st.	Cloudy.	3-4 st.	Cloudy	4-4 st.	Lt. snow.
9	4-4 st.	Cloudy.	4-4 st.	Lt. suow.	4-4 st.	Lt. snow.	$3-4$ st.	Cloudy.	4-4 st.	Lt. snow.
10	4-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Lt.snow.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.
11	4-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.

Das.	MAY, 1873.									
	2.		3.		4.		5.		6.	
Hour.	$\begin{gathered} \text { spors }{ }^{30} \\ \text { part pue fanour } \end{gathered}$				$\begin{gathered} \text { spnop } 10 \\ \text { pa!r pue funouy } \end{gathered}$			State of weather.	$\begin{gathered} \text { sprofo jo } \\ \text { puly pue qunoun } \end{gathered}$	
0^{6}	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	3-4 st.	Cloudy.	$2-4$ ci.-cum., $1-4$ cum. and st.	Clouds.
1	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	4-4 st.	Lt: snow.	3-4 st.	Cloudy.	$\begin{gathered} 3-4 \text { cuml. } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.
2	4-4 st.	Lt. suow.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	3-4 st.	Cloudy.	3-4 cum.	Cloudy.
3	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	$\begin{gathered} \mathrm{Ci} \\ 2-4 \mathrm{st} . \end{gathered}$	Fair.	1-4 ci.-cum. and ci.-st.	Fair.
4	$\begin{gathered} 1-1 \text { cum., } \\ 3-4 \text { st. } \end{gathered}$	Clouds.	4-4 st.	Lt. snow.	4-4 st.	Cloudy.	$\begin{gathered} \mathrm{Ci} . \\ 2-4 \text { st. } \end{gathered}$	Fair.	1-4 st.	Fair,
5	$\begin{gathered} 2-4 \text { cum., } \\ \stackrel{y}{2}-4 \text { st. } \end{gathered}$	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Cloudy.	$\begin{gathered} \text { Ci., } \\ 2-4 \text { st. } \end{gathered}$	Fair.	1-4 st.	Fair.
6	4-4 st.	Clourly.	4-4 st.	Lt. snow.	4-4 st.	Clondy.	Ci. and ci.st., 1-4 st.	Fair.	1-4 ci.-cum. and st.	Fair.
7	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	$\begin{gathered} \mathrm{Ci} ., \\ 1-4 \mathrm{st.} \end{gathered}$	Fair.	$\begin{aligned} & 1-4 \text { ci.-cnm. } \\ & \text { and st. } \end{aligned}$	Fair.
8	4-4 st.	Clouds.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	$\begin{gathered} \mathrm{Ci} . \\ 1-4 \text { st. } \end{gathered}$	Fair.	1-4 ci.-cum. and st.	Fair.
9	. 4-4 st.	Lt. snow.	4-4 st.	Clondy.	4-4 st.	Cloudy.	2-4 st.	Fair.	$\begin{aligned} & \text { Ci.-st., } \\ & \text { st. } \end{aligned}$	Clear.
	4-4 st.	Lt. show.	4-4 st.	Cloudy.	4-4 st.	Clouds.	$2-4$ st.	Fair.	$\begin{aligned} & \text { Ci.-st., } \\ & \text { st. } \end{aligned}$	Clear.
11	4.4 st.	Lit. snow.	4-4 st.	Clondy.	4-4 st.	Clondy.	$2-4$ ci.st.	Fair.	$\begin{aligned} & \text { Ci.-st., } \\ & \text { st. } \end{aligned}$	Clear.
Noon.	4-4 st.	Lt. snow.	4-4 st.	Lt. snow ?	4-4 st.	Lt. snow.	2-4 ci.-st.	Fair.	$\begin{aligned} & \text { Ci.-cum., } \\ & \text { ci.-st., } \\ & \text { st. } \end{aligned}$	Clear.
$1^{\text {b }}$	4-4 st.	Lt. snow.	4-4 st.	Lt. snow?	4-4 st.	Lt. snow.	2-4 ci.-st.	Fair.	$\begin{aligned} & \text { Ci.-cum., } \\ & \text { st. } \end{aligned}$	Clear.
2	4-4 st.	Lf. snow.	4-4 st.	Cloudy.	4-4 st-	Lt.snow.	$2-4$ ci.st.	Fair.	$\begin{aligned} & \text { Ci., } \\ & \text { ci.rst., } \\ & \text { st. } \end{aligned}$	Clear.
3	4-4 st.	Lt. snow.	4-4 st.	Cloudy.	4-4 st.	Lt snow.	2 -4 ci.-st.	Fair.	1-4 ci.-cnm., st. and ci.-st.	Fair.
4	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \mathrm{st} . \end{aligned}$	Lt. snow.	3-4 st.	Cloudy.	4-4 st.	Lt.snow.	$2-4$ ci.-st.	Fair.	1-4 cum. and $s t$.	Fair.
5	$\begin{gathered} 2-4 \text { cum. } \\ 2-4 \mathrm{st} . \end{gathered}$	Lt. snow.	3-4 st.	Cloudy.	4-4 st.	Lt.snow.	44 cunt.	Clondy.	ci. 1-4 cum.	Fuir.
6	4-4 st.	Lt. snow.	$\begin{aligned} & 2-4 \mathrm{cum} ., \\ & 2-4 \mathrm{st} . \end{aligned}$	Lt. suow.	4-4 st.	Lt. snow.	4-4 cum.	Cloudy.	st. 1-4 cum. aud st.	Fair.
7	4-4 st.	Lt. snow.	3-4 st.	Lt.snow.	3-4 st.	Lt. snow.	4-4 cum.	Cloudy.	$1-4 \mathrm{cum}$. and st.	Fair.
8	4-4 st.	Lt. snow.	4-4 st.	Lt. suow.	$\begin{gathered} 1-4 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	4-4 cum.	Cloudy.	$2-4 \mathrm{cum}$.	Fair.
9	4-4 st.	Lt.snow.	4-4 st.	Lt. snow.	$1-4 \mathrm{st}$.	Fair.	$\begin{aligned} & 2-4 \text { cum., } \\ & 8-4 \text { st. } \end{aligned}$	Lt. snow.	4-4 cam.	Cloudy.
10	4-4 st.	Lt. snow.	4-4 st.	Lt. snow.	1-4 st.	Fair.	$\begin{aligned} & 2-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Lt. snow.	4-4 cum.	Clouds.
11	4-4 st.	Lt. suow.	4-4 st.	Lt. suow.	St.	Clear.	$\begin{aligned} & \text { 3-4 cum., } \\ & 1-4 \text { st. } \end{aligned}$	Cloudy.	4-4 cum.	Cloudy.

Day.	MAY, 1873.									
	7.		8.		9.		10.		11.	
Hour.						State of weather.			$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
$0{ }^{\text {h }}$	1-4 сиш.,	Fair.	3-4 st.	Clouds.	$1-4 \mathrm{ci},$	Cloudy.	4-4 st.	Clonds.	$4-4$ st.	Cloudy.
1	$\begin{gathered} 1-4 \text { cum. } \\ 1-4 \text { st. } \end{gathered}$	Fair.	B-4 st.	Cloudy.	$\begin{aligned} & \text { 1-4 ci., } \\ & 3-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Cloudy.
2	$1-4 \text { cum., }$	Fair.	9-4 st.	Filir.	4-4 st.	Clondy.	4.4 st.	Clouds.	f-t st.	Cloudy.
3	1-4 st.	Fair.	St.	Clear.	$4-4$ st.	Clondy.	t-4 st.	C'loudy.	t-t st.	Cloudy.
4	$\begin{gathered} \text { Cum.-st., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	st.	Clear.	4-4 st.	Cloudy.	4-1 st.	Clouds.	4-4 st.	Clouds.
5	$\begin{aligned} & 2-4 \text { cum. } \\ & 1-1 \text { st. } \end{aligned}$	Cloudy.	St.	Clear.	4-4 st.	Cloudy:	t-4 st.	Cloudy:	4-4 st.	Cloudy.
6	$\underset{\substack{\mathrm{Ci} ., 1-4 \\ \text { st. } \\ \hline}}{ }$	Fair.	st.	Clear.	4-4 st.	Clumly.	4-1 st.	Cloudy:	4-4 st.	Lt. suow.
7	$\underset{1-4 \mathrm{st} .}{\mathrm{Ci} .}$	Fair.	st.	Clear.	4-4 st.	Clouds.	t-4 st.	Cloudy.	4-4 st.	Cloudy.
8	$\underset{\text { Ci. }}{\mathrm{Cl}}$	Clear.	St.	Clear.	4-4 st.	Cloudy.	3-4 st.	Cloudy.	- 4 st.	Clouds.
9	st.	Clear.	st.	Clear.	4-4 st.	Clondy.	2-4 st.	Fair.	4-4 st.	Lt. suns.
10	st.	Clear.	st.	Clear.	4 t st.	Lt. suow.	$\begin{gathered} 1-4 \text { cunt., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	4-t st.	Lt. suow.
11	st.	Clear.	st.	Clear.	4-4 st.	Lt. snow.	$\begin{array}{r} 1-4 \text { cum. }, \\ 1-4 \text { st. } \end{array}$	Fair.	$4-4$ st.	Cloudy.
Noon.	St.	Clear.	St.	Clear.	$4-4$ st.	Lt. snow.	$\begin{aligned} & 2-1+\text { cum., } \\ & \text { st. } \end{aligned}$	Fair.	$4-4$ st.	Clonds.
$1^{\text {h }}$	St.	Clear.	St.	Clear.	4-4 st.	Lt. suow.	$\begin{aligned} & \text { Q-4 cum., } \\ & \text { st. } \end{aligned}$	Fair.	4-4 st.	Clouds.
2	St.	Clear.	st.	Clear.	4-4 st.	Lt. snow.	$\begin{aligned} & 1-4 \text { cum., } \\ & 2-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Lt. snow.
3	st.	Clear.	1-4 st.	Fair.	4-4 st.	Lt. suow.	$\begin{aligned} & 1-4 \text { cum., } \\ & 1-4 \text { st., } \end{aligned}$	Fair.	4-4 st.	Lt. snow.
4	Cum. and st.	Clear.	4-4 st.	Cloudy.	4-4 st.	Lt. snow.	$2-4 \frac{\text { cum. }}{\text { st. }}$	Fair.	4-4 st.	Lt. snow.
5	Cum. and st.	Clear.	3-4 st.	Cloudy.	4-4 st.	Lt. snow.	$\begin{gathered} 1-4 \text { cum., } \\ 2-4 \text { st. } \end{gathered}$	Cloudy.	4.4 st.	Lt. suow.
6	1-4 st.	Fair.	$\begin{gathered} \text { Cum., } \\ 3-4 \text { st. } \end{gathered}$	Cloudy.	$\begin{gathered} 3-4 \text { cum., } \\ 1-1 \text { st. } \end{gathered}$	Lt. suon:	4-4 st.	Lt. suow.	t-4 st.	Lt. snow.
7	2-4 st.	Fair.	4-4 st.	Cloudy.	4-4 st.	Lt. suow.	4-4 st.	Lt.snow.	44 st.	Lt. suow.
8	3-4 st.	Cloudy.	4-4 st.	Cloudy.	4-4 st.	Lt, snow.	4-4 st.	Lt. suow.	4-4 st.	Lt. snow.
9	3-4 st.	Cloudy.	4-4 st.	Clouds.	4-4 st.	Lt. snow.	4-4 st.	Lt. suotr.	$4-4$ st.	Lt. suow.
10	3-1 st.	Cloudy.	$\begin{aligned} & 1-4 \text { ci. } \\ & 3-4 \text { st. } \end{aligned}$	Cloudy.	4-4 st.	Lt. snow.	d-4 st.	Clondy.	4-4 st.	Lt. snow.
11	$3-4$ st.	Cloudy.	$\begin{aligned} & 1-4 \text { ci., } \\ & 3-4 \text { st. } \end{aligned}$	Cloudy.	$\begin{gathered} 1-4 \mathrm{cumn}, \\ 2-4 \mathrm{st} . \end{gathered}$	Cloudy.	4-4 st.	Clondy.	4-4 st.	Lt. suow.

Day.	MAY, 1873.									
	22.		23.		24.		25.		26.	
IIonr.			$\begin{gathered} \text { sp:opyo } \\ \text { pu! pue quaotay } \end{gathered}$		$\begin{gathered} \text { renop jo } \\ \text { pa!y pue fuomony } \end{gathered}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$				+
$0^{\text {b }}$	0	Clear.	$2-4$ st.	Fail.	$2-4 \text { cum., }$	Cloudy.	0	Clear.	0	Clear.
1	0	Clear.	2-4 st.	Fair.	$\begin{gathered} \text { Ci., } \\ 1-4 \text { st. } \end{gathered}$	Fair.	0	Clear.	0	Clear.
\because	0	Clear.	2-4 st.	Fair.	$\underset{1-4 \text { st. }}{\substack{\text { Ci. } \\ \hline}}$	Fair.	0	Clear.	0	Clear.
3	0	Clear.	$\begin{aligned} & \dot{\mathrm{O}}-1 \text { cunn., } \\ & \text { st. } \end{aligned}$	Fair.	$\begin{aligned} & 2-4 \text { cum. } \\ & \text { and st. } \end{aligned}$	Fair.	0	Clear.	Ci.-st.	Clar.
4	0	Clear.	$\begin{gathered} 3-4 \text { cumı, } \\ 1-4 \mathrm{st.} . \end{gathered}$	Cloudy.	$\begin{gathered} \text { Ci, } \\ 1-4 \text { cum. } \end{gathered}$	Fair.	0	Clear.	0	Clear.
5	0	Clear.	$\begin{gathered} 3-1 \text { cum., } \\ 1-4 \text { st. } \end{gathered}$	Cloudy.	$\begin{gathered} \text { Ci., } \\ 1-4 \mathrm{cum} . \end{gathered}$	Fair.	0	Clear.	St .	Clear.
6	0	Cluar.	44 st.	Cloudy.	$\begin{gathered} \mathrm{Ci}, \\ 1-4 \mathrm{cam} . \end{gathered}$	Fair.	0	Clear	N't.	Clear.
7	0	Clear.	4-1 st.	Cloudy.	2-4 st.	Fair.	0	Clear.	St.	Clear.
8	0	Clear.	4-4 st.	Clondy.	2-4 st.	Fair.	0	Clear.	St.	Cleır.
9	0	C'lear.	4-1 st.	Clondy.	Ci.-cum.,	Fair.	0	Clear.	St.	Clear.
10	0	Clear.	3-4 st.	Cloudy.	$\begin{gathered} \text { Ci.-cum., } \\ \text { I. }-4 \text { st. } \end{gathered}$	Fair.	0	Clear.	St.	Clasar.
11	0	Clear.	3-4 st.	Cloudy.	$\begin{aligned} & \mathrm{Ci} ., \\ & \text { st. } \end{aligned}$	Clear.	0	Clear.	sit.	Clear.
Noon.	Ci.-st.	Clear.	3-4 st.	Clondy.	1-4 st.	Fair.	0	Clear.	Ci.-chmo.	Clear.
$1^{\text {b }}$	Ci.-st.	Clear.	3-1 st.	Clondy.	1-4 st.	Fair.	0	Clear.	Ci.-cum.	Clear.
2	Ci.	Clear.	3-4 st.	Cloudy.	St.	Clear.	Ci.-st.	Clear.	C'um.st.	Clear.
3	Ci .	Clca:.	4-4 st.	Cloudy	St.	Clear.	Ci.-st.	Clear.	Crm.-st.	Clear.
4	Ci .	Clear.	4-4 st.	Clondy.	$\begin{gathered} \text { Cum., } \\ \text { st. } \end{gathered}$	Clear.	Ci.-st.	Clear.	Ci.-st.	Clear.
5	$\begin{aligned} & 1-4 \text { ci. and } \\ & \text { ci.-st. } \end{aligned}$	Fuir.	4-4 st.	Clondy.	Ci.-st.	Clear.	Ci.st.	Clear.	St.	Clear.
6	1-4 st.	Fair.	4-4 st.	Cloudy	Ci.	Clear.	Ci.-st.	Clear.	0	Clear.
7	1-4 st.	Fair.	4-4 st.	Cloudy,	(ii.	Clear.	Ci.-st.	Clear.	0	Clear.
8	1-4 st.	Fair.	4-1 st.	Cloudy.	Ci.-st.	Clear.	Ci.-st.	Clear.	0	Clear.
9	1-4 st.	Fair.	$\begin{gathered} \text { Q-4 ci.-cum. } \\ 8-1 \text { st. } \end{gathered}$	Clondy.	Ci.-st.	Clear.	Ci.-st.	Clcar.	0	Clear
10	Q-1 st.	Fair.	$\begin{aligned} & 4-4 \text { ci.-cum. } \\ & \text { st. } \end{aligned}$	Cloudy.	Ci.-st.	Clear.	Ci.-st.	Clear.	0	Clear.
11	2-4 st.	Fair.	$4-4.4$ st. cum. st.	Cloudy.	Cum.-st.	Clear.	Ci.-st.	Clear.	0	Clear.

Das.	MAY, 1873.									
	27.		28.		29.		30.		31.	
Hour.					$\begin{aligned} & \text { Amonnt and kind } \\ & \text { of clouds. } \end{aligned}$			State of weather.		8 $=$
$0^{\text {b }}$	0	Clear.	$\begin{aligned} & 2-4 \mathrm{ci}, \\ & 1-4 \mathrm{st.} \end{aligned}$	Cloudy.	$\begin{aligned} & \text { Q }-4 \text { ci.-cum. } \\ & \text { st. } \end{aligned}$	Fair.	$\begin{aligned} & \text { C'um., } \\ & \text { st. } \end{aligned}$	Clear.	$\begin{aligned} & 1-4 \text { ci.-cum., } \\ & \text { st. } \end{aligned}$	Fair.
1	St.	Clear.	$\begin{aligned} & 1-4 \text { ci., } \\ & 1.4 \text { st. } \end{aligned}$	Fair.	$\begin{aligned} & \text { Ci.-st., } \\ & 3-4 \text { cum. } \end{aligned}$	Clouds.	$\begin{aligned} & \text { Cum., } \\ & \text { st. } \end{aligned}$	Clear.	$\begin{aligned} & \text { 1-4 cum., } \\ & \text { st. } \end{aligned}$	Fair.
2	St.	Clear.	$2-4 \mathrm{ci}$.	Fair.	3-4 cum.	Cloudy.	$\begin{gathered} \text { Cum., } \\ \text { st. } \end{gathered}$	Clear.	St.	Clear.
3	St.	Clear.	$2-4$ ci.	Fair.	3-4 cımm.	Clouds.	$\begin{aligned} & \text { Cumı, } \\ & \text { st. } \end{aligned}$	Clear.	St.	Clear.
4	St.	Clear.	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \mathrm{st.} \end{aligned}$	Cloudy.	3-4 cum.	Clondy.	$\begin{aligned} & \text { Cum., } \\ & \text { st. } \end{aligned}$	Clear.	$\underset{1-4 \mathrm{st} .}{\text { ci.-st. }}$	Fair.
5	St.	Clear.	$\begin{gathered} 2-4 \text { cum. } \\ 1-4 \mathrm{st} . \end{gathered}$	Cloudy.	3-4 cım.	Clouds.	St.	Clear.	$\underset{1-4}{\substack{\text { ci.-st. } \\ \text { st. }}}$	Fair.
6	0	Clear.	3-4 cum.	Clondy.	3-4 cum.	Cloudy.	St.	Clear.	-t.	Clear.
7	0	Clear.	$\begin{gathered} \text { n-4 cum. } \\ 1-4 \mathrm{st} . \end{gathered}$	Cloudy.	St.	Clear.	St.	Clear.	$s \mathrm{t}$.	Clear.
8	0	Clear.	$\begin{aligned} & 1-4 \text { ci., } \\ & 1-4 \text { st. } \end{aligned}$	Fair.	St.	Clear.	St.	Clear.	st.	Clear.
9	St.	Clear.	st.	Clear.	St.	Clear.	St.	Clear.	St.	Clear.
10	St.	Clear.	St.	Clear.	St.	Clear.	St.	Clear	st.	Clear.
11	St.	Clear.	$2-4$ cum.	Fair.	St.	Clear.	Ci.-st.	Clear.	St.	Clear.
Noon.	St.	Clear.	2-4 ci.-cum.	Fair.	St.	Clear.	Ci.-st.	Clear.	St.	Clear.
$1^{\text {b }}$	St.	Clear.	St.	Clear.	St.	Clear.	Ci.st.	Clear.	St.	Clear.
2	Ci.-st.	Clear.	Ci.-st.	Clear.	St.	Clear.	C'am.	Clear.	st.	Clear.
3	Ci.-st.	Clear.	Ci.-st.	Clear.	St.	Clear.	Cum.	Clear.	St.	Clear.
4	1-4 ci.-st.	Fair.	St.	Clear.	Com.	Clear.	C'um.	Clear.	St.	Clear.
5	1-4 ci.-st.	Fair.	Ci.st.	Clear.	Cuni.	Clear.	$\begin{gathered} \text { Ci.-cum., } \\ \text { st. } \end{gathered}$	Clear.	St.	Clear.
6	2-4 ci.-st.	Fair.	$\underset{\text { Cuur.,-st. }}{\substack{\text { Cis. }}}$	Clear.	${ }^{\text {Cum. }}$	Clear.	$\begin{gathered} \text { Ci.-cuur., } \\ \text { st. } \end{gathered}$	Clear.	St.	Clear.
7	2-4 ci.-st.	Fair.	$\begin{gathered} \text { Ci., } \\ \text { colw.-st. } \end{gathered}$	Clear.	Cum.	Clear.	$\begin{aligned} & \text { Ci.-cum., } \\ & \text { st. } \end{aligned}$	Clear.	1-4 st.	Fair.
8	$3-4$ ci.st.	Cloudy.	$\begin{aligned} & \text { Ci., } \\ & \text { cum.-st. } \end{aligned}$	Clear.	Cum.	C'lear.	$\begin{aligned} & \text { Ci.-cum., } \\ & \text { st. } \end{aligned}$	Clear.	2-1 st.	Fail.
9	2-4 ci.-st.	Fair.	$\begin{aligned} & \text { Ci.-cum., } \\ & \text { st. } \end{aligned}$	Clear.	Cuns.	Clear.	1-4 $\begin{aligned} & \text { ci.-cum. } \\ & \text { st. }\end{aligned}$	Fair.	$\begin{aligned} & 3-4 \text { ci....t., } \\ & \text { st. } \end{aligned}$	Cloudy
10	$2-4$ ci.st.	Fair.	$\begin{gathered} 1-4 \text { ci.-cum. } \\ \text { st. } \end{gathered}$	Fair.	St.	Clear.	$\begin{aligned} & 1-4 \text { ci.-cum. } \\ & \text { st. } \end{aligned}$	Fair.	1-4 ci.-st.	Fair.
11 i	2-4 ci.st.	Fair.	$\begin{gathered} 1-4 \text { ci.-cum., } \\ \text { st. } \end{gathered}$	Fair.	$\underset{\text { st. }}{\text { Cum. }}$	Clear.	$\begin{aligned} & 1-4 \text { ci.-cum. } \\ & \text { st. } \end{aligned}$	Fair.	St.	Clear.

The following three tables contain the condensed results of the preceding record; their arrangement is the same as that giren for the amount of clonds observed at Polaris Bay.

Table 1.

Table 2.

	Months.							Σ
	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	
Clear.	4.0	5.9	0.0	0.5	0.0	1.6	12.4	3.5
\checkmark	21.4	46.9	38.9	41.7	3-29	4.5	27.9	2.4
1-4	20.6	18.3	13.9	11.9	21.5	12. ¢	8.9	15.3
2-4	10.7	7.4	15.4	14.9	9.2	11.4	9.:	11.1
3-4	9.4	6.4	6.2	8.3	11.9	15. 9	9.4	9.6
4-4	33.9	15.4	25.6	29.7	19, :	? 2.8	? 89	96.1
צ	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3.

Months.	Amount of clumis.						Σ
	Clear.	\smile	1-4	$\because-1$	3-4	4-4	
November .	1f. 1	8. 8	129	13.6	13.9	1-. 4	14.9
December	24.4	20.0	13.4	0.7	1.2	E. 7	14. 6
Jannary.	0.0	16.5	13. ${ }^{2}$	24.3	9. 6	14.3	14.6
February-.	1.7	16.0	10.3	17.3	11.5	11.5	13.2
March.	0.0	16.3	20.5	$1 \because 1$	13.2	10.8	14.6
April......	6.7	10.5	11.8	14.5	23.3	17.8	14.2
May.......	51.1	11.9	7.9	12.1	14.3	18.5	14.6
Σ.	100.0	100.0	100.0	100.0	100.0	100.0	100.0

The clonds most freqnently met with are the stratus, and, strange to sar, the cumulus; then the cirrocumulas, eirras, ant cirrostratos. The searcity of the cumulostratus aud the total absence of nimbus aro readily explained.

A fact worth noticing here is that quite frequently the cirri were obserred to deseend or to form in the lower regions; that is, in those of the cinnulus: or eren stratus. The explanation of this phenomenon is east. A most striking instance of extremely lom-hanging cirrus.clouds was obserted at Polaris Honse on May 20,1873 . At $i^{11} 30^{\mathrm{mI}} \mathrm{a} . \mathrm{m}$., a halo was notieed round the sum, as represented in the following diagram:

The onter circle was apparently restins on the groand, and its diameter, as measured by a prismatic compass, was fond to be s20 $1 \mathrm{r}^{\prime}$; that of the inner one being 48°. The inner edges of loth circles rere colored faint red, and were sharply defined. The onter edges did not show the pale-blue tint, as usual, but a dim ycllowish-white, with an ill-defined outline. Tbrough the mass of both rings, a chain of hills conld be seen, a little orer a mile distant. At the time the halo was noticed, the atmosphere was filled with minnte ice-spiculae.

A little before $8^{\text {h }}$, the upper part of the halo disappeared, and soon after the rest of the inner circle faded away entirely. At about the same time that part of the outer circle apparently resting ou the ground became invisible, and the upper (left-hand) portion was dissipated under the influence of the wind, forming distinct cirrus-clouds.

OBSERVATIONS ON OZONE.

0BSERYATIONS ON OZONE MADE AT POLARIS BAY AND POLARIS HOUSE.

IN'TRODUCTORY.

The expedition was smpplied with sereral boxes of Schoenbein's and Moffat's ozone test-papers, accompanied by their respective scales. In the observations recorded hereafter, only sehoenhein's paper was used, as that made according to Moffat seemed to be spoiled or hadly prepared, giving giving vers discondant results.

The paper was exposed in a cage constucted of fine wire ganze, and placed in the same louverboarded box contaming the varions thermometters and the psychrometer. The slips were exposed wery moming at s^{11}, and lelt in the eage until the same time the next day, when they were taken ont, dipped in ice water, and compard with the graduated siale. Sometimes we exposed three or foor papers, whe of which was taken in atter the regular interval of time had elapsed, whemet the others were loft exposed for three days or longer. In the latter case, it was sometimes found that the strips exposed more than twenty-fine homes were less tinted after having been moistemed with water than those which had been left in the cage for a shorter time.

The papers were exposed a long time in order to acomolate the small amonnt of ozone coutained in the air which wonld not act on the paper it left outcloons for a day only. In some instances, the slips that had been exposed longer than twenty four hours showed a darker color than those which had been in contact with the air for a day only; but the intensity of color shown by the former was uever egnal to the sum of the intensities of all those exposed a day each during the giveu time

In the following tables, the first colmm contains the days of the month; the second, the amonut of ozone accumulated during each twenty-four hours; the third, the mean relative humidity during the same lapse of time; the fourth and the titth, the prevailing direction of the wind and the distance traveled during the said period ; and, in the last column, the amount of clouds is to be found.

	APRIL， 1872.					MAY， 1872.					
Date．	Ozone．	$\dot{\Xi}$	Wind during last 24 hours．			Date．	Ozone．		Wind during last 24 hours．		
1	2	88.07	NW	70	4－4	1	4.5	76．84	NE	623	0
2	0.5	79.29	NE	59	1－4	2	4．5	84， 30	NE	978	0
3	0	72.90	E．	62	0	3	4	88.39	SE	30	0
4	3	75.99	NW	20	0	4	2	77.99	NE	771	34
5	3	79.02	NW	27	3－4	5	3	77.78	NE	341	$2-4$
6	0	73． 65	SE	67	3－4	6	3	N．3．84	NE	1liv	－4
7	2	77.86	SE	117	4－4	7	1	64． 61	NE	193	1－1
\forall	1.5	Encs	E	59	4－4	8	3	Xfi． 39	E	：3if	0
9	1	81.59	NW	10	4.4	9	3	＋－9．9	IV	511	1－4
10	1	44．58	SE	31	4－4	10	1.5	－6i． 71	NE	312	\checkmark
11	11.5	81.04	E	57	3－4	11	5	83.57	NE	761	3－4
12	2	71.09	E	34	$2-4$	12	4.5	Fib． 33	SIV	246	3－4
13	1	72．61	L	53	1.4	13	5.5	82.49	SW	K＊	3－4
14	1	62．78	SE	7%	3－4	14	3.5	87.0	SW	124	2－4
15	3.5	\％ 7.30	E	79	11	15	4	$8 \times .70$	SW	19\％	$\because 4$
16	1.5	75.10	E	99	0	16	5	86.37	SIV	15\％	1－4
17	0.5	75.13	SE	38	0	17	4.5	＋3． 46	SW	95	\checkmark
18	0	69.63	SE	55	1－4	18	5	82.69	E	50	1－4
19	1	77.67	E	73	1－4	19	4	80.92	SE	39	1－4
20	0.5	70.50	E	52	3－4	20	3.5	80.92	SE	58	\checkmark
21	0.5	81.84	E	92	4－4	21	4.5	77.29	NE	$1 *$	\checkmark
22	2	91.09	SW	100	4－4	22	4	77.74	NE	149	2.4
23	1	90.05	SW	468	2.4	23	5.5	S4． 40	NE	376	4－4
24	0.5	E2． 64	SW	199	4－4	24	4.5	86.91	SW	173	3.4
25	3	85.95	NE	429	2－4	25	4.5	85.95	SW	202	4－4
26						26	4	83.47	SW	85	4.4
27	0	83.44	SE	59	0	27	3	85.88	SW	184	4－4
25	1	78．98	SE	70	0	28	5	80.17	SW	137	$2-4$
29	1	84.04	E	330	$2-4$	29	3	78.72	SW	156	\checkmark
30	4	82.53	NE	650	1－4	30	5	80.33	SW	61	\checkmark
Mean．						31	2.5	83.89	SW	157	3－4
	1.3					cean．	3.8				

METEOROLOGICAL OBSERVATIONS TAKEN AT SEA.

1 м 0
»

METEOROLOGICAL OBSERVATIONS DURING THE PASSAGE.

ABSTRACT OF METEOROLOGTCAL RECORD KEPT ON BOARD THE UNITED STATES STEAMER POLARIS DURING HER PASSAGE FROM NEW LONDON TO ROBESON CHANNEL.

The following record is an abstract of the meteorological register kept during the passage of the ressel from New London, Conn., to Robeson Channel. In several of the preceding parts of this rolume, we took occasion to refer to this document, which furnishes the means to complete most of the meteorological observations for September, 1871. In regard to its arrangement, no further explanation will be needed. We merely limit ourselres to the statement that the velocity of the wind was measured by means of an anemometer, or by one of Casella's current-meters, previously alluded to. The anemometer was placed on the hurricane-deck, where it was deemed to be exposed to the free action of the wind. Up to July 23 , the column headed "Wind-Distance" gives the distance traveled since the last observation; after that date, howerer, the distances given are those traveled by the wind daring the last 34 hours.

The observations were made by Sergeant Meser and the writer, and the following abstract of the record was recovered from the papers of the former, left on board of the ressel when the separation from the ice-floe-party took place.

METEOROLOGICAL OBSERVATIONS AT NEWMAN'S BAY.

The following meteorological record mas kept during our stay at Newman's Bay when on the boat-journey north ward. The observations were mostly taken at intervals of four hours; in some instances, however, more frequently. We chose Polaris Bay mean time in order to make the observations taken at both stations more strictly comparable. The record kept by the writer exteuded originally over a longer period of time, but the only observations recovered are those given bereafter. The barometer used is a Casella pocket-instrument that had been compared with the standard at the Polaris Bay obserratory previous to our leaving the vessel and after our return to winter quarters. The thermometer indicating the temperature of the air and the psychrometer were compared also, and in every instance the corrected readings eutered in the register. The velocity of the wind was partly estimated, partly determined by means of one of Casella's current-meters. We think that our estimates are pretty reliable, as much experience had enabled us to estimate the velocity of the wind very closely. A number of experiments seemed to demonstrate that in no instance did the relocity as measured by an anemometer differ more than 4 per cent. from that based on estimation; and, as the higbest wind obserced at Newman's Bay did not exceed twenty miles per hour, the error may be considered to be very small. The quantity of ozone was determined by means of Schoenbein's test-paper, which was kept exposed in a small wire-cage made for the purpose. The solar thermometer ras a common thermometer as used to measure the temperature of the air, having its bulb aud a part of its stem blackened with India ink. The instrument was exposed ou cotton, resting on the sea-ice, as was the case with our instruments at Polaris Bay and at Polaris House. As the stand made for the thermometer fell overboard and was crusbed by the ice, we were unable to fix the instrument otherwise than by laying it on a flat box, abont six inches high, over the edge of which the stem of the thermometer projected abont fonr inches.

The latitude of our camp on the land floe was fond to be $51^{\circ} 55^{\prime} 54^{\prime \prime}$ nortb, and the longitude $4^{\mathrm{b}} 5^{\mathrm{m}} 24^{3}$ west.

REMARKS.

[^22]
DISCUSSION OF THE OBSERVATIONS TAKEN AT NEWMAN'S BAY,

Temperature.-The following table contains simultaneous olservations of the temperature of the air made at Newman's and Polaris Bays. The columns headed N give the observations made at the former; those headed P, at the latter locality.

Temperature of the "ir observed at Newman's Bay and at Polaris Bay.

The preceding table shows that on five days the mean tomperature as derived from fourhourly (or, as in one instance, from houly) ohservations was higher at Newman's Bay than at the other station; the maximum difference equaling $+3 \circ$. The five remaining days were colder, showing a maximum difference of -50.2 . By taking the mean of the series on record, it will be found that from June 14 till June 23, inclusively, the temperature at Newman's Bay was by 10.22 lower than at Polaris Bay, the difference of latitude of the two stations being 19'1. The greatest difference observed at any hour occurred on June 14 at $1^{\text {h }} \mathrm{p}$. m., when the temperature at Newman's liay was $46^{\circ} .3$, the record kept at the other more southern locality giving $38^{\circ} .3$ only.

The following table exhilnits the maxima and minima of temperature as observed at the tiro stations under consideration. At Newnan's Bay, self-registering instruments were used but not at the other locality, from which we selected the highest temperature on record for each period of time during which we had not set the index of our self-registering thermometers.

Maxima and minima of temperature observed at Norman's Bay and at Polaris Bay.

1)ate.	Maxima.		Minima.		Period of time.
	N	P	N	P	
	0	\bigcirc	\bigcirc	-	
June 13-14	50.9	37.8	30.8	33.4	
	46.7	39.5	$9 \times .9$	33. 3	From June 14, $1^{\mathrm{b}} \mathrm{p} . \mathrm{m}$. , to June $14,11^{\mathrm{h}} \mathrm{p} . \mathrm{m}$.
1.5-16	43.6	43.8		34.3	Froun June 15, 11^{h} p. m., to Juve 16, s^{h} a. m.
16-17	43. 4	39.4	39.5	34.1	From Juue 16, $11^{\mathrm{b}} \mathrm{p} . \mathrm{m}$. , to June 17, s'l $^{\prime}$ a. m.
1\%-18	319.2	31.7	31.5	29.7	From June 17, 11 ¢ p. m., to June 1-, ${ }^{\text {a }}$ a. m.
18-19	40.4	32.2	2-. 9	31.5	From Juve 18, $11^{\text {h }}$ p. m., to Jaue 19, wi a. m.
19-90	42.2	36.8	33.4	34.1	From June 19, $11^{\text {b }}$ p. m., to June 20, $8^{\text {b }}$ a. m.
211.91	3x. 2	37.2	26.8	31.6	From June 20, $11^{\text {b }} \mathrm{p}$. m., to June 21, $8^{\text {h }}$ a. m.
$\because 1-\cup$	33. 2	36.5	25.4	33.5	From June 21, $11^{\text {b }}$ p. m., to Juue 22, $8^{\text {b }}$ a. m.
Means.	41.97	37.99	31.01	32.88	,

With the exception of two instances, viz, June $15-16$ and June $21-2$, , the maximum temperature observed at Newman's Bay was higher than at Polaris Ba5; the excess amounting to $0^{\circ} .2$ and $3^{\circ} .3$ respectivels. The greatest difference between the maxima of the two stations occurred between June 13 and 14 , equaling $13^{\circ} .1$, which seems to be rather abnormal. This considerable difference may perhaps be due to the fact that the thermometer at Polaris Bay was better protected against the direct rajs of the sun thau the one at our more northern station. The instrument-shelter used there consisted of a wooden box about 18 inches long, 10 inches high, and 6 inches deep, which was fastened to a pole about 4.5 feet abore the ice. To prevent the effect of solar radiation, the box was covered with tin-foil. In June, the maximum temperature of the day at Polaris Bay occurs at 10^{h} a. m., and it is scarcely possible that in an interval of owe hour between two observations the change of temperature could have been as great as the difference between the maxima of the tro stations. If the instruments at Newman's Bay were not as well protected as those at the other locality, the minima, as observed at the former station, might reasonally be expected to be smaller than those of the latter, as the sun was circumpolar during the whole periorl. An examination of the values muder consideration shows, however, that this was only the case in thee instaces, manely, on June 15, 16, and 17, the greatest difference amounting to $5=6$. Betreen June 13 and 14, when the meatest difference existed between the maxima of the two stations, the minimum as indicated by the self-registering thermoweter at Newman's Bay was 20.6 lower than that of Polais Bay ; consequently, we might suppose that the temperatures observed at the former station were actually the true temperatures of the ar in the shade, the more so as the index correction of our instruments was ascertained previous to our departure from and again after onr return to the ressel. As mentioned before, due allowance las been made for the same.

Solar radiation.-Our observations on solar radiation made at Newman's lhay are not strictly comparable with those at the other station, as the bulb of the instrument used at the former focal. ity was naked. It is to be regretted that we did not carry a black-bulb thermometer in vacuo, as the results obtained with the same would have furnished some valuable material for comparisou with the observations on solar radiation made both at Polanis Bay and Polaris Honse. On account of want of room, we had to limit ourselves to the most necessary articles, and for this reason alone the more bulky instrmment was left behind and peference given to a common thermometer.

If we compare the readings of the naked black-bulb instruments at both stations, we shall find that in most instances the temperatures observed at Newman's Bay are higher than those at Polaris Bay. A rather abnormal difference was exbibited on June 19 at 11^{h} a. m., when the black bulb at Newman's Bay read $102^{\circ} .0$, the temperature of the air being at the time $39^{\circ} .6$, whieb would give $62^{\circ} .3$ of solar heat. At Polaris Bay, the amount of solar heat observed at the same time by means of an ordinary black-bulb thermometer and another thermometer suspemded in the shade was only 2.8. The result dericed from the reading of the instrument in vacuo at the same place wives only 210.2 of solar heat, so that the difference between the observations made at the two stations appears to be 410.1 in favor of Jewman's Biy, although the instrmment employed there was less perfect than the one made use of at the other locality. At the time of obserration, the wind at Newman's Bay was from SE., its velocity being estimated at 10 miles, the sun shining bright, although the amount of clouds was $\frac{2}{4}$; at Polaris Bay, it was blowing from W. with a velocity of 6 miles, and the amount of clouds noted was ${ }^{3}$. Whetier the suu was obscured at Polaris Bay at the moment of observa. tiou can not be ascertained.

Wints.-As we stated on one of the preceding pages, the winds in Smith Sound and Robeson Strait are rather local, and a comparison of the limited number of observations relating to this subject will corroborate this view.

On June 14, the prevailing wind at Nerman's Bay was NTH.; at Polaris Bay, it was either calm or there was a slight breeze from SE.

Juue 15, wind at Nerman's Bay 1 NW., except at 11^{h} p. w., when it was calm; at Polaris Bay, calms prevailed till $1^{\text {hi }}$ p. m.; after that time light breezes from W., SW., NE., and NT., the latter prevailing.

June 16, wind at Nemman's Bay veering from W. through SW. to S.; calm during the last tro observations; at Polaris Bay, NE. prevailing.

14

June 17, prevailing wind at both stations SW.; at Polaris Bay, the uper clouds drifting SW.; at the other station, E. and N.

Tune 18, at Newman's Bay blowing from SW. during the first four observations; during the last three from S.; during the first part of the day, direction at Polaris Bay the same as at Newman's Bay; when at the latter station the wind reered to S., it shifted to W. and SW. at the former.

Tune I!, winds at both localities variable.
Tume 20, prevailing wiud at Newman's Bay NW.; at Polaris Bay SE. and NE.
June "1, at Newmans Bar blowing from Nill. during the whole $\because t$ hours; at the other lucal. ity invariably from NE.

Jume 'ゴ, at Polaris Bay, the wind has the same direction as yesterday; at Nemman's Bay blowiug from N .

June 23 , calms prevailing at Polaris Bay; after $2^{h} 1$. m. light wind from NW., while at the other station there is a smart breeze from N .

Ozone.-The quantity of ozonecontaned in the air during the period under consideration appears to have been greater at Newman's bay than at the other station, as way be seen from the following comparison.

llatt.	$\begin{gathered} \text { Newmantis } \\ \text { Bay. } \end{gathered}$	lolatis Bay:
Jube 11.	$4 \frac{1}{3}$	3 3
15.	6	:
16.	(3_{3}	31
17.	-	5
12.	6	3
11.	9	4
$\because 1$	6	$3 \frac{1}{3}$
91	K	4
\because	7	
$2: 1$	71 $\frac{1}{2}$	

METEOROLOGICAL OBSERVATIONS DURING THE DRIFT OF THE ICE FLOE-PARTY.

The following neteorological record, containing the direction of the wind and the temperature of the air, was kept by Sergeant F. Meyer during the drift of the ice-floe-parts. It was first published in the Anmal Report of the Chiet Sigual-Officer to the Sucretary of War for the year 1833 , whence we have taken it. As might he "xpected, the record is rery seanty, resulting from insufficiency of means and the sufferings of the crew during the eventful drift.

	Date. \qquad Latitula.
	Lengiture
	Direction of wime.
	Temproture.
	Date.
	Latitule.
	Lungitade.
	Direction of wind.
	'Temperature
	Date.
	Latidnde. \qquad Longitude.
	Direction of wime
	Tunperature.

METEOROLOGICAL RECORD KEPT DURING THE RETREAT OF THE UNITED STATES ARCTIC EXPEDITION FROM POLARIS HOUSE TO IIELYILLE BAY.

The followiug meteorological record was kept by the writer during the boat-journey from Polaris Louse to Melville Bay. Circumstances did not permit the taking of observations at regular intervals, but thef wers mate whenever this could be done without inconvenience, both when ou shore and afoat, or when we encamped or were otherwise detained on the land-floe of Melville Bay.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\xrightarrow[\text { ت゙ }]{\text { ت }}\) \& \& \& \& Paprla eter
\(\qquad\)
\[
\stackrel{\circ}{2}
\] \& \begin{tabular}{l}
\[
\operatorname{lironi}-
\] \\
せI．
\end{tabular} \& \& ul． － 3 ？ 1 \& （ \({ }^{\text {Clmuis．}}\) \& 1 Hire ol c
\[
\stackrel{i}{\Xi}
\] \& ction anls．
ت \& 年 \& lemanhs． \\
\hline \multirow[t]{10}{*}{1－2，
June

4} \& h. \& In． \& c \& \bigcirc \& \bigcirc \& \& \& \& \& \& \bigcirc \&

\hline \& 51．m．． \& 3）． L^{2} \& 34．0： \& ： 4,10 \& 31.0 \& S \& \because \& Ci．－st． \& 1 \& 0 \& Clear ．．．． \& Sorfalik．

\hline \& 12 P．m． \& 99．－－ \& 29.5 \& $\because!$ \& \& 0 \& 0 \& $\because 1$ ci．－ctum． \& 0 \& 0 \& （＇larty－9 3 ． 5 \& Max．trup，40，1，min．

\hline \& 4a，m．－ \& 29．－7： 2 \& 29.8 \& \％ 8 \& 2\％． \& 0 \& 0 \& \& \& ふW゙ \& Four \& | whemation． |
| :--- |
| last alswmalion． |

\hline \& 12p．1m．－ \& 31． 014 \& $$
\because 9.5
$$ \& 9！9，5 \& ㄱ．9 \& 0 \& 0 \& \& 11 \& $1)$ \& Clouty－．＇el．5 \& show．

\hline \& 5a．m．． \& （3）． 110 \& 29．0 \& －3．0 \& 132． 1 \& SIV \& \％ \& 4.4 cmin． \& \& N13 \& Clemmy ．． \&

\hline \& Sa．m． \& 130．（1－2） \& 30 \& \％ 0 \& 14.6 \& SW \& $3)$ \& $$
\begin{aligned}
& 24 \text { cam } \\
& 1-4 \text { st } . .
\end{aligned}
$$ \& NL \& NE \& Clondy ． \& 1．月11 11

\hline \& 1 P．m．． \& （1）， 10.5 \& 29.4 \& 29.4 \& 28．01 \& SW \& $\because 11$ \& 4－4 st \& 11 \& 0 \& Lt．show． \&

\hline \& Tp． $11 .$. \& －310．010｜ \& 28． 6 \& 2－4， 6 \& 27.9 \& STV \& 1．） \& 4－4 st \& 0 \& 0 \& Lt．миைw． \&

\hline \& $11 \mathrm{~m} . \mathrm{m}$ ．－ \& －！！！¢＝－ \& － \& ｜$\because 11$ 吕 \& 为兄 \& SW \& 18 \& 4－4 st \& 0 \& 0 \& snow ．．．． \&

\hline \multirow[t]{4}{*}{0} \& 8a．mi．． \& \＃1． 500 \& ＇27．5 \& 次， \& 3．0 \& SH \& 1 \& 4－4 st \& 0 \& $1)$ \& \& Fil it． 111 ．

\hline \& 2p，m．． \& 218533 \& 고． 0 \& 2－11 \& 37.4 \& 心以 \& 10 \& $1-1$ st \& 0 \& 11 \& Chonety ．． \&

\hline \& G19．m．． \& 2！）＜－0 \& 26．${ }^{\text {a }}$ \& 軼，它 \& 20．： \& SW \& θ \& ， 3 － 4 st \& $1)$ \& 0 \& Sım＂ \&

\hline \& 12 p．m．－ \& OJ． 7×0 \& 25． 2 \& 2\％ \& 24． 5 \& S \& 15 \& － 11 \& 1 \& 1 \& Fair \&

\hline 7 \& $8 \mathrm{a} . \mathrm{m}$ ． \& 30．70－2 \& 25． 2 \& $\because 5.2$ \& $\because 4.4$ \& S \& 12 \& 4－4 st ．．－．．．．．．．． \& 0 \& 11 \& Fair．．．．．． 0 \& mg las el lumis．

\hline \& S p．m． \& 9！ 625 \& 34.0 \& 81.0 \& 31，0 \& SW \& 10 \& 1-4 (n.. ci.-cum. \& NE \& NE \& Fair \&

\hline \multirow[b]{5}{*}{8} \& Qp．m． \& 29． 0101 \& 29.0 \& 310 \& －3．2 \& S \& 15 \& ＋1st．．．．．．．．． \& 0 \& 0 \& Clourly－ \&

\hline \& $7 \mathrm{a}, \mathrm{mL}$ ． \& 20，550 \& 27.11 \& 27.0 \& ？ 3.4 \& S \& 5 \& 4－1 st \& 0 \& 0 \& Clomdy－－ 3.0 \& ing lasiol homas．

\hline \& ${ }_{5}^{1} \mathrm{p} . \mathrm{m} .-$ \& 2150．0 \& $\cdots 1.4$ \& 26.4 \& 26．0 \& S \& 1.3 \& 3－4 st \& 0 \& 0 \& Clourly \&

\hline \& 51．m．． \& \& ＇23． 5 \& ㄹ： 5 \& 3：3． 0 \& SW \& 10 \& 1－1 \& 0 \& 0 \& S10w． \& Suthmmbertam Isuand．

\hline \& $1 \because$ P．m． \& 23，51 \& 26．4 \& 36.4 \& －1． 6 \& S \& 15 \& 1－4 st \& 11 \& 0 \& Clamily \&

\hline \multirow[t]{7}{*}{9

10} \& $6 \mathrm{a} . \mathrm{m} .$. \& ‥161 \& 示 \because \& 27．3 \& 3ti． 5 \& 盛 \& 8 \& 1－1 ${ }^{\text {c }}$ \& 0 \& 0 \& Clmaly \&

\hline \& $11 \mathrm{a}, \mathrm{m} .$. \& 㫛， 519 \& ｜ 27.0 \& 27．0 \& 20．3 \& NW \& 3 \& Ci．－ctam \& NE \& 0 \& Clear \&

\hline \& 3 p .12 L \& 㫛54d： \& 85.5 \& 35．5 \& 31.0 \& NE \& 5 \& Ci，entm \& S \& 0 \& Far \&

\hline \& $6 \mathrm{p} . \mathrm{m} .$. \& 是5 5 12 \& 29.0 \& 09.0 \& 2－1． 0 \& NE \& 5 \& Ci．－c \& S \& 0 \& Eair－．．． 21010 \&

\hline \& \& \& \& \& \& 0 \& 0 \& 1－4 st．． \& \& \& \& sums．

\hline \& $10 \mathrm{p.m}$ \& ？ \& \& \& － 4 \& 0 \& 0 \& $$
\begin{aligned}
& \text { Ci.-crun } \\
& \text { D-t st }
\end{aligned}
$$ \& \& 0 \& \&

\hline \& $3 \mathrm{a}, \mathrm{m}$－－ \& 29．540 \& $\because 7.5$ \& 27.5 \& 24.0 \& E \& 3 \& $\cdots-4 \mathrm{st}$ \& 0 \& 0 \& Fair \&

\hline \multirow{5}{*}{10} \& 8 а．ш．－ \& 80．572 \& $\because 80$ \& 吅0 \& －5．3 \& E \& 5 \& Cum \& 0 \& 0 \& Tair \&

\hline \& $1 \mathrm{p} \cdot \mathrm{m}$. \& 29.612 \& 38.0 \& 32.0 \& 83.0 \& SW \& 1 \& Ci．－crim．．．．．．．．．．． \& 0 \& 0 \& Fair．．．．．30， \&

\hline \& $4 \mathrm{p} . \mathrm{m}$ ． \& 99． 60.3 \& 40.0 \& 40.0 \& 34.0 \& E \& 1 \& －4 cmin \& R \& 0 \& Fair \&

\hline \& 7 P 10．．． \& 99．fin 0 \& 25.0 \& 25． 0 \& 102． 5 \& E \& $\stackrel{2}{2}$ \& － 4 cum．．．．．．．． \& S \& 0 \& Fair．． \&

\hline \& 12 p ，m．． \& 94． 691 \& 23.0 \& 93： 0 \& 20．8 \& SW \& 10 \& 3-4 st \& N \& NE \& Clourly.. \& Tre－1］（12．

\hline \multirow[t]{4}{*}{11} \& 4 a．ma．
$3 \mathrm{p} . \mathrm{m}$. \& 99．713 \& 34.2
42.8 \& 34． \& 31． 2 \& $\underset{\mathrm{NE}}{\mathrm{E}}$ \& 3
2 \& 1－4 st．．．．．．．．．．． \& 0 \& 0

0 \& \& | Do． |
| :--- |
| Back at old camp，North－ |

\hline \& $3 \mathrm{p} . \mathrm{m} .$. \& 99．7311 \& 49.8 \& 4×8 \& 36.5 \& NE \& 2 \& St．．．．．．．．．．．．．． \& 0 \& 0 \& Clear．．．． 5 ： 0.0 \& Back at ohl camp，Morth－ numberland Islath

\hline \& 91p．ma－ \& 99， 617 \& 3.0 \& 呮 0 \& 2－5 \& NE \& 1 \& St． \& 11 \& 0 \& Clear．．．． \&

\hline \& 12 n 1m．． \& 99， 186 \& 景． 3 \& 吅： 3 \& 2－：． 0 \& SW \& $\stackrel{\sim}{2}$ \& 1－1 st ．．．．．．．．．．． \& 0 \& 0 \& Clownly ．． \&

\hline \multirow[t]{4}{*}{$1 \because$} \& Ha．me－ \& 29．74： \& ：32．0 \& 32.0 \& 30.0 \& 0 \& 0 \& 1－4 ci．and ci．－cu． \& SW \& 0 \& Clondy ．． \&

\hline \& $\therefore \mathrm{p} \cdot \mathrm{m} .$. \& 20． 005 \& 3－2 2 \& 35.2 \& 31.0 \& N \& 5 \& C－4 \& 0 \& 0 \& Fair ．．．．${ }^{\text {a }}$ ！ 7 \&

\hline \& 9p．m．－ \& 29． 6129 \& 25． 5 \& 25． 5 \& 23： 5 \& S \& \because \& 4－4 st．．．．．．．．．．． \& 11 \& 0 \& Lt．snow－ \&

\hline \& 1 $\because \mathrm{E}$ p，m－． \& \& $\cdots 1$ \& －3， 1 \& 21．0 \& K1\％ \& 5 \& 1－4 st ．．．．．．．．．．． \& 0 \& 11 \& Clondy－．－．．．． \&

\hline $1:$ \& 边．m．－ \& 29， 215 \& 33.0
3.1 \& 运， 0 \& 30．${ }^{\text {31．}} 4$ \& NL \& 3
3 \& 1－4 st \& 11 \& 0 \& Fair＿．．．．．．．． \&

\hline \multirow{4}{*}{1.1} \& 10 p .10. \& 39．5心 \& 36．0 \& 31． 0 \& 31．4 \& SE \& － \& 3－1 \& 11 \& 0 \& \& Dalryuphe Rock

\hline \& Ea，w．． \& ？134 \& 33.0 \& 33． 0 \& 31.5 \& N \& 5 \& － \& 0 \& 0 \& Cllatro．．．．．．．． \& I）${ }^{\text {a }}$

\hline \& 1 P．m．－ \& \％19，41； \& 17.4 \& 47．1 \& 41.5 \& NE \& 3 \& ， \& 0 \& 0 \& Clear．．．． 30.4 \& Wo．Dis

\hline \& 5 p ．un．．． \& 139.400 \& $4!9$ \& 11． 4 \& 10.0 \& NE \& 5 \& 0 \& 0 \& 0 \& Clear．．．．．｜． \& Wrasteubolm Islant．

\hline 15 \& ${ }^{11} \mathrm{p}$ P． mm －－ \& － 30.113 .2 \& 次 3.4 \& 37．4 \& －3．0 \& 成 \& $\frac{19}{5}$ \& Cí．．．．．${ }^{0}$ \& － \& $\stackrel{0}{\mathrm{~N}}$ \& Clear....$~$

Fair...- \& $$
\begin{aligned}
& 110, \\
& \text { Inco-llor. }
\end{aligned}
$$

\hline
\end{tabular}

HETEOROLOGICAL OBSERVITIONS IN LANCASTER SOLND, BAFFINS BAY, DAYIS STRAIT, AND THE NORTH ATLANPIC.

The metenological observations recorded hereafter were made on board the whalingsteamer Aretire, on which a portion of the boat-party had been received. Gapt. Willian Allams kindly shated his matin with us, and afforder us all the facilities for making observations one conld ask on board of a ressel. With his permission, the ship's capenter made us a box similar to the one we had used un board the Polaris, which was blaced on the quater-dere tor receive the instrmments: the latter being set up a few homes atter we had been transemed on bard.

The instruments used were the same we lad made our observations with during our retreat from Polaris llouse. On July 9, the vessl being moored to an iee flow, we hat a mod opportunity to compare the ancroid, from which the following barometric results are deriven, with

 readings.

Owing to the kindness of Commander A. II. Markham, R. N., who was a pasenger on board the Aretie, we mere emabed to make the observations bi-hourly; this gentleman usually standing on watclu from $6^{h} \mathrm{p} . \mathrm{m}$. till midnight, during which time we turned in.

In regard to the ouservations, no further explanation will be needed; re merely limit onrselves to the statement that the velocity of the wind is not based on artual measwempnt, bat is only estimated, with the exception of the first weck, durime which we nsed a small anemometric machine we had constructed with the wheets of an old clock, but which was broken som atterward by an accident.

Joly $1: 1^{-}$

4 M 1

MA Elwyn Inlet.

July

 Nu ier; water green.

Latitude, $72^{\circ} .47^{\prime} \mathrm{N}$; longitude, $91^{\circ} .00^{\prime} \mathrm{W}$, at noon.

Latitude, $72^{\circ} .37^{\prime}$ N. ; longitude, $95^{\circ} .30^{\prime}$ W., at noon.

Off Port Bowrin.

Ang. 6	2	29.674/34.5	34.5	34.0	0. 189	94.8	W	15	4-4 st.	0	0	32.5	Cloudy.	Off thr prack; water green.
	4	29.665 .34 .5	34. 5	34.0	10. 189	94.8	W	12	4-4 st	0	0	33. 0	Cloud	Do. do.
	6	29.66335 .0	35.0	34.5	0.193	94.9	W	8	: $\%$ - st	0	0	32.7	Clondy -	Among loose ice; water green.
	8	29.65035.3	35.3	34.50	0.194	95.0	W	10	3-4 st.	0	0	33.3		
	10	29.64637 .0	36.8	36.0	0.200	91.4	W	12	- 4 cumı	0	0	33.8	Cloudy	Do. do.
	Noron.	29. 60135.3	35.2	34.70	0.199	05. 0	Sty	15	$1-4$ st. $4-4$ st.	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		134.3	Cloudy	Do. do.
	2	29.68:3 36.5	36. 0	35.8	6. 191	90.0	SW	6	Ci.-st	0	0	33.8	Clear..	Do. do.
	4	29.68939.1	39.0	37.0	10.194	81.6	S	4	Ci.-st.	0	0	33.6	Clpar...	Among loose ice; water blue.
	6	29.69439 .4	39.0	37.90	90.216	90.7	s	5	1-4 st	0	0	33.5	Puir..	Do. do.
	10	29.64337.4	:3. 1	36.50	50.203	90.4	SW	12	st.	0		34. 11	(1)arar	Do. do.
	$\stackrel{10}{\text { Mid't }}$	29.64435.5	35. 5	35.0	0. 197	94.9	W	15	(!i-at.........	0	0	33, 5	Clear...	In. do.
	Mid't.	$29.09035 .0$	35.0	34.40	0.184	90.0	S	13	$\begin{aligned} & 1-4 \text { ci.-cıl.dt } \\ & \text { ci.-st. } \end{aligned}$	0	0	32. 2	Fair....	
Means..		29.66936 .21			0.196	91.88								

. HO

シ		Psre et \qquad et \qquad $\underset{=}{8}$	rom- 1 .	Ralative bumblaty	Wi $\dot{\Xi}$ E	nd.	Clourls.	Dire of cl $\stackrel{\vdots}{\vdots}$	ion ds. \qquad 			Remarks.
$\begin{aligned} & 1-3.3 \\ & \text { Ang. } 16 \end{aligned}$	h. In. \bigcirc°	${ }^{6}$								\bigcirc		
	$209.113: 4.3$	34.	$33.50 .1-8$	94.	8	29	4-4 st	0	0		Clundy	Foice: water blue. Io. do. In. do. Do. do. lhed do. Noice; water green. Do. du.
	4 20, 115:3.0	33.	33.101 .175	80.	S	0	d-1 st	0		:1.7	Fug	
	6 29.11634.5	34.4	33. $-0.1=9$	94.		93	+ 4 st	0		3-5	Clomas.	
	8 8 20, 113353	35. 3	35.00.198	95. 0	s	30	4.48	0		34.8	Clonds	
		38.	35.311 .197 36.510 .214	(14.9		-	$4-4 s t$ -4 st	10 0		35.4	Clondy	
		36. 35.	36.511. 314	a. 94.9	$\xrightarrow{\text { SE }}$	16	$4-4$ st $1-4$ cuiu	0		36.5 35.5	Clonds Hazy . .	
							1-4 ci.ost					
	$4 \quad 29.17136 .9$	36.4	35.03 .19 .2	90. 1	SE	14	3-4 1.i.st	0	0	35.4	Clondy -	
	6 P9, 16536.6	36.4	35.50 .195 3. 10.190	90.1	E	12	$3 . f \text { ci.-st ... }$	0	0	36.2	Clonds	Noict: water blne. bo. do. Do. do. Do. do.
		35.8 35.8	34.511 .190 35.110 .791	-4.9	SE	12	$\begin{aligned} & 3-4 \text { st } \ldots \\ & 3-4 \text { ci.-st. } \end{aligned}$	0	0 0	36.2 36.3	Hazy ${ }_{\text {Fair }}$	
	'Mid't. 24. 19785	35.3 34.30.1-4 -9.8 SE				15	$\begin{aligned} & \text { st. } \\ & \text { e- ci.-st . . } \\ & 1-4 \text { st } \end{aligned}$	0		36.2	Cloudy .	Do. do.
Meaus.	29.14435 .61		9. 112	20. 44								

Latitude, 23.15^{\prime} N.; longitude, $6=40^{\prime} \mathrm{W}$, at noou.

Latitude, $\sigma^{-5=}$ N.; longitude, $\operatorname{Hig}^{-} . \AA^{-1}$ W., at noou.

Latitnde, 69.14 N. ; longitude, 65-. 39^{\prime} W., at noon.

Latitude， $69^{\circ} .06^{\prime} \mathrm{N} . ;$ longitude， $65^{\circ} .09^{\prime} \mathrm{W}$ ．，at noon．

Latitulle， $69^{\circ} .40^{\prime} \mathrm{N} . ;$ longitude，65． $25^{\prime} \mathrm{W}$ ．，at noon．

Angr 27	2	29，75．534．0	33．e	33．50．105	94.7	SW	1．）	4－4 st		0	0	33.5	Cloudy	Loose ice；	water lilue．
	4	29， $66-368$	3：3． 4	33，211，18i	96.0	SW	$1 i^{\circ}$	4.4 st		0	0	33.0	Cloudy ．	Do．	do．
	6		33.0	为人リ10	96.0	SW	12	4－4 st		0	0	32， 8	Cloudy	Do．	do．
	\checkmark	2！14．433： 3	3：3：11	22，E11，1－8，	96， 0	SW	1.7	4－4 st		0	0	33.3	Lt．raio．	Do．	do．
	10	29．63034．11	34.0	33， 911.10 .7	12， 0	0	0	＋4		0	0	32.1	Fus．．．．	Do．	do．
	Nown．	29．6120．8．	34．$=$	34.50 .190	95． 11	N	10	44		0	0	32，0］	Fog	Do．	do．
	\because	29．（15－3号， 1	（3i．）． 10	34.711 .196	95.1	N	－	4－4		0	0	33． 1	Fog	Do．	do．
	4		3：3 11	ה2．－50，1－1i	$!17.0$	N	10	4－4 st		0	0	38	Fos	Do．	do．
	6	29． tinou 33.0	33．11	：2－0．17！	94． 6	N	10	4－4		0	0	33， 4	Fog	Do．	do．
		2！60132． 4	： 3.4	\％－10．175	24． 5	NW	\checkmark	$4-4 \times$		0	0	32.3	Fog．．．．	Do．	do．
	10	29． 21010330	33.0	30．50．186	92.0	W	6	$4-4$		0	0	33． 0	Fog ．．．．	Do．	do．
	Min＇t．	2！ 611933.0	33． 1	（3）－11．12	97.0	IV	14	4－4		－	0	3 S 5	Fong	Do．	do．
Meaus．．		29.64533 .50		0． 186	95.99										

630

The predding observations might vield sumb interesting lexnlts if we could eompare them with those made simultaneously on hoard the Luited States sthamers Jumiata and Tigress, that ham been sent in searel of the missing cren of the expedition. I fofortmatels, however, the observat tions made on hoard of these ressels were not fomm lit to be umal, as we were utterly mable to determine the index-corrections to be applied to the barometers, thermometers, ar prymonters, althongh we had the instruments sent to this city thomgh the lindmess of the bepartment. When they arrived, the barometer was found to be broken, and, as there was dinte a momber of themome-
 making the observations. There conld be no doubt in wand to the identity of the peyelnomeder, an there was only me sent; but, as the cmatruction of this instrment was suele that the wetholt,
 of a piece of muslin, as commonly used) had to be eutidely immersed when the instament was bebge used, we hat some sations doubts in regst to the comedness of the whembations, the
 ference prevaling which hardly varied during a day. Besides this callanity, the readings wre not taken to the tenths of a dester, but give the full degrees merely, which, as may well he imagined, i* not sufherently accurate at low temperatures. Regarding the nomenclature of the fomb, there seems to have been some misunderstandmg, as there is hardly on day withut the mention of nimbon, which, as is well known, seldom oceur in the Aretie regions; ar, at least, in the latitures where they are recorded in this mase. The fate stated above may he of sufficient wisht to exame our not giving these observations, as they wonld, perhaps, only misheal.
$1 n$ givins it brief recapitnlation and disenssion of the preceding whervations we shall begin with the

TETLDERATURE.
The following table contains the daily mean temperathes as onserced during fuly aud Augnst, 1si3; also, the dally maxima aud mimme, next to which the daly range will be lemed:

A comparison of the mean temperature of July and Angust shows that the former month was by 15 warmer than the latter，which is in conformits with the ammal march of the temperature． The mean temperature of Juls，in 1850 ，for the meau latitule， $7.32+\mathrm{N}$. ，mean longitude， 582.5 W ， according to the meteorological register kept hy the first Grimell expedition，was 359.9 ：and that of August，in the same rear， 34.8 ，meau latitude， 75.3 N ，mean longitude， 62.0 W ．；bence the dif－ ference between the two months is $1^{\circ} .1$ ，varying but slightly from that between July and August， 1si3，although the season was more open during the latter รear than in 18．30．

The following table gives the mean temperature of July and Angust for different statious of Arctic America：

Locality．	Jear．	Jnly．	Angnst．	Δ
		－	\bigcirc	\bigcirc
Winter Island	1－20	3，\％ 3	：3i， $2 \times$	－1． 5
Repulse Bay	1－47	41． 41	46，3：	－1． 4
Iglulik．．．．．		31． 5	沙为	－ 31
Felic Harlor	14．6	4． 4	40.9	＋3．3
Port kenuedy	1－3！	3！！	36.76	＋3．3
Port Bowen．	1－9	：17．$:$	碞，	＋1．
Port Leopold	1－4！	：31．11	［：3．7	＋
Grifith＇↔ Island		： 13 ，（i）		＋－3：\％
Breethy Island	1－2．in－it	：	：31．5	＋1． 4
Winter Harloor	1－0	4.4	：3． 7	＋－4．
Wellington Chamat	$1-5$	：3， 1	36.	＋1．9
Wrlsterbolm Sumbl	1－0	$410 \cdot 5$	：3i． 67	＋6，
Northumberland Sumbl	$1-\cdots$	（1．7）		＋1．${ }^{\text {a }}$

It will be seen that at ten out of the thiremenstans above menlomen，Thly is wammer than Angust，the amplitude being largest for Winter Warbor amd smalkst for lort Bowen．

 changing her position sumetimes considerably during one day，being at one time in clear water and then forcing her way through ice，it can woll be imagine that the daily range of temperature will have suffered greater modifications than of the ship hall bern stationary．The greatest range in July，amounting to 16.10 ，was fom on the enth，one ling after the maximm temperature of this month had been obsirvel ；the smallest range，of 10.6 ，weolmed threa dass later．In Anginst，we find the greatest rallge on the loth，mamely， 110.3 ；and the sumallest，of 10.0 ，on the esth．The warmest day in July had a mean temperature of 50.93 and the coldest of 280,20 ，its mage beiug
 and the lowest，of 310.60 ，on the last day of the month．

The following table gives the daily means of the atmospheric pressure during July and August; also, the maxima and minima of each day of the month, together with the daily range:

According to our tahle, the monthly meau for July is, by $0^{\text {in }} .217$, higher than that for August, the former being $29^{i n} .891$, the latter $20^{i n} .674$ only. For the mean positions in Batin's Bay, mentioned abore, the \log of the first Grimnell expedition gives the values: $29^{\mathrm{min}} .8^{\circ}$ for July and $29^{\mathrm{in} .98}$ for August. From the obsarvations of Sir Elward Belcher, taken, in 1853, in Nortlumberland Sonnd and Wellington Chanuel, we obtain for the mean barometrie pressure, in July, 29.670 , and in August, 29 ". 719 . In both instances the barometrie column was higher in the latter month than in the former. The same was the case at Port Kemedy, in 1859, and at Polaris Bay, in 187e, but mot in Baffu's Bay, in 1857, when the mean pressure during July was, by 0 in. 017 , higher than in Angust. This was also the ease at Van Rensselaer Harbor, in 185\%, and at Port Foulke, in 1861. Evidently, we might expect the mean of the former month to be higher than that of the latter, at afl the stations abore mentioned, if the series of observations were suffieiently long and nomerons. It should, Lowever, be borne in mind that the atmospheric pressure must be considerably affected by the condition of the ice in the seas surrounding the respective stations.

WINDS.
The following table gives the relative frequency and relocity of the winds, also expressed in percentages, both for July and Ingust. The vinds were recorded from eight principal points of the compass:

In July the prevailing wind was due north, white in Augnst it blew from the orposite direction, although we hat decreased both our latitude and longitude, and were consequently apmoaching Iceland. A glance at the table containing the medn atmospheric pressure shows that the latter was in strict accordance with the prevaling direction the wind, riz, higher in July than in Angust. In both months the percentage of callms follows next to that of the prevailing wind, the calms being, however, move frequent during the former month than during the latter. If we com-
 ressel ernising in Bation's aud Dlelville Bays, the prevailing winds were sontherly; and although a protion of the following month was spent in Northanberland Somud, where sumtherly winds are largely prevailing, northerly winds were moted more frequeutly than those from the opposite point of the compass. The first Grimell expedition, in 1sin, mostly met with northerly wiuds daring the two months under consideration, southerly wimds prevaliug only during the first part of July. We abstain from drawing any more comparisons, as our series of observatious are too short aud the winds too variable to emabla us to deduce any reliable results from them; besides this, we should hare to tisregard the relocities, which are given rather vaguely in the different documents that might be taken into consideration. From the detailed record it will be seen that we never experienced any storms, althongh, in several instances, the sea was very rongh and ugly; and as on such occasions we alwass noticed sudden changes of the barometric colamn, we might conclude that high winds must have been raging in the vicinity.

IIY\＆ROMETRICAL OBSERVATIONN．

The following table gives the daily and monthly means of the fore of vapor and relative bumidity，as dedneed from the preceling perametrical dmemations：

1rata．	Daily mutur			1）aily mank．			Inaily meatas．	
		lelatic： luminlity		Forer of vialor．	landra． hmminlity．		Forme of vipur．	Ralitive hmmidit，
	Inchis．	I＇erern．	1－73．	Jurlues．	L＇ar crinl．	1－7：	Inches．	Peremer
	0．199	－！！	Alp． 1	11．19\％	社，12i	Scert 1	11，19\％	！2， 3
	0． $2 \times$	！11． H_{1}		0.919	－7．－1	，	19．2以	4？－
	0．192	－ 1.1 .8	：	0．$\because 19$	（4）0 0 ）	：	11， 29.4	19， 39
	II． 13%	91． 11	1	19． 110	97.13	4	11． 0^{3}	（12．89
	10．15\％	91．${ }^{\text {a }}$	F	1）． 199	91.12	I	0． 51	（93，m9
	O． 191	吅 46	i	0． 106	91，	$1 ;$	0．	4－8，
	11． 196	9．1． 64	7	11． 2111	2\％． 0.1	7	11．： 3%	95． 61
	0．121\％	（1）$)^{-1}$	－	19． 315	37.8	；	11．$\because 1$	19， 26
	${ }^{\text {f）．} 171}$	31． in $^{\text {a }}$	9	1）．1－i	－	9	0． 3 早	94． 1
	1）．\because 里	91，：	111	1）． 119	N（ti）－	110	0.349	19．18
	0.245	！1．	11	0． $\mathrm{P}=1$	\therefore－ 7 fir	11	11．	－ 9.1
	0.257	7． 31	12	11． 190	－ 4.94	12	0．30	－1． 013
	0.250	昭，	$1: 9$	0．10\％	为为	1：i	1）． 346	－7． 19
	0． $1: 17$	（\％）1：	14	10． 194	－9．97	11	0．3の品	（11． 4 4！
	10． 197	9\％， 3	1.7	11．19：	［1： 161	1.5	0．3ir	
	10．7－3	an	$11 ;$	1）．1： 1 －	19， 41	119	0，解1	95． $1 \times$
	0．191	促－	17	0．191	94． 419	17	0，\％\％	（1i）．43
	11． 201	93，	12	11．1－！ 1	－	－．－．	，	
	11． 1 Ris	96． 66	$1: 1$	（1．15\％	（10． 3	－．．．．．		
	0.191	19．54	210	11．182	91．-10	－－1．	－	
	0． 315		21	（1）16i\％	12，号：			
	0.111	933．$\because=$	？	11． 12 \％	12． 15			
	11.194	13． 13	？	11． 114	91． 3			
	0.178	！ 01.74	$\because 1$	11． 171	91． a $^{\prime}$			
			？－	（1）． 1×2	96． 3 m			
			210	11．1－17	9．8． 17			
			㫛	O．1～1～	95．94			
Means．	－．．．－－		\because	11．12：；	5n．t？			
	－		$\because!$	（1．17\％	38			
			：11	11． 176	95.49			
			：1	11．17\％	（mis）			
	1）． 1995		Mrillis．．．	0．1－゙か	12． 6191	Meams．		

The hysrometreal conditions of the atmosphere，as observed in July and Augnt，in Lancaster Somd and Baftin＇s Bas，are similar to those of the correponding montlas at Polaris Bay，viz，the force of vapor beins greater in July than in ingast，and the relative humidity less in the former month thas is the latter．It will be remembered that the barometric mean of July was，by $0^{\text {m }} .21 \overline{7}$ ， higher than in the following mouth；but a comparison of the meau atmospluerie pressure and the mean force of rapor wonld show that onls a small amount of the higher pressure during July is due to the iufluence of the force of rapor，which wond only affect the second decimal in onr barometric mean，if the comesponding comertion was aphlied．The sudden increase of the force of rapor in September will readily he muderstood if re keep in uind that the greater portion of the seventeeu days in this month，durins which the observations were made，were spent ou our journey bomeward throngh the North Atlantic．

As in the preceding record of meteorological observations those on atmosplacric precipitation are uot giveu in detail，we propose to do this inere in the following synopsis：

Jaly 11．—Light snow during 4 hours ；amount not measurable．Wiud NE．
July 12．－Light snow during 2 hours；anount not measurable．Wind NE．

Jnly 30 ．Lhight rain trom ${ }^{-11} 40^{\mathrm{m}} \mathrm{a}$ ． m ．till noon；amount too small to be meastured．Calm．
Angnst 3．－lain during 8s hours；amomat，0in．0s．Wind Siv．
Augnst 4．－Rain dumg ：homs；amomet，vin．06．Calm．

August 8.-Rain during 13 hours; amount. Oun. Ss. Wind W., SWr., and S.
August 17.-Rain during 2 hours ; amount not known. Wind Ne.
Angnst 24 . -Light snow during $6 \frac{1}{2}$ bours ; mot measurable. Wind se.
August 22.-Light snow durius 9 hours; not measurable. Wiand SE.
Anginst 25.-Liglit rain during sid hours: amount not known. Wind SW.
Angust 26.-Light drizzling rain during 4 hours: amount not measurable. Wind sW.
Angust 27.-Light rain during $2 \frac{1}{2}$ hours ; amount not known. Wind SW.
Augnst 2 -LLight show during 1 hour : amount not measurable. Wind W.
 hours in August.

Rainfall was noted during Jot homrs, hamely, 9 in July, the rest in August. The amonnt of rain that conld be measured was $0^{\mathrm{in}} . \overline{3} 80$.

FACL OF THE SKY.

The following table gires the amomit of clonds, as observed during Jnly and August, by hous, and also expressed in percentages:

Montl.	C'lear.	\checkmark	1-4.	$\because-4$.	$\because-1$.	4-4.	Total.
July, by hours in privent....	5.	(ii)	4i	Hit	$3:$	(17)	
		?3:3	16.3	16.0	11.4	31.3	
Angust, hy hours. in per cont.		32	17	\#il	518	11\%	$\begin{gathered} 3.3 \\ 104.0 \end{gathered}$
	1.0	S. 1	13. ${ }^{\text {i }}$	15. 1	19.3	44.4	

If we calculate the mean amonnt of clonds, we obtain for

$$
\text { Inty, } \because \because \because \because, \text {, and tor Angust, } \because \sim .
$$

Consequently, it mas clearer in July than in August; during the latter mouth there is not a single instance on record when the by was perfectly clear. At Polaris Bar, Angust mas clearer than July: the mean amonnt of clonds for the latter month being $\because .6$ and for the former 1.9. Fung occurred, however, more freqnenty in Lancaster Sound and Batin's Bay during July than during Augnst, as may be seen from the following table, in which we have orouped the unmber of recorded fogs acconling to the direction of the wind observed at the time:

In July fog was obsersed on 0.3 occasions, ant in Angust on 42 onls, althongli the record for the latter month is more complete than for the former.

The mean amount of clonds at Polaris Bay and Polaris Honse having been omitted in the chapter relating to the tace of the sky, is now given bere.

IIean amount of clouns ut Polaris Bay and Polaris House, $\frac{1}{1}$ taken as unit.

					$\begin{aligned} & \overline{\#} \\ & = \end{aligned}$	$\underset{\sim}{\dot{j}}$			$\underset{\Xi}{\Xi}$	
Polaris Bay, 1-n1-ie.			1.7	2.0	9.4	$\because 0$	1.!	$\because . \geq$	9.7	1.9
Polaris House, 1s-2.? ..	2.8	1.4	1.6	1.8	1.7	2.3	2.0			

SOLAR RADIA＇IION．

The following observations on solar radiation，which formed a part of our meteorological record kept on board the Arctic，were not given on the preceding pages，because we did not consider them sufficiently accurate for publication；but as they may still be of some interest，we do not hesitate to record a portion of them in this place．Thes are fanlty in that thes were not made with a ther－ mometer in vacuo，it being at the time beyond our means to obtain one．The instrument used was a long－stem Casella standard thermometer，the bulb of which was blackeued with Indian ink．In order to make the observations somewhat comparable with others，we inclosed the bulb and a por－ tion of the stem of the instrument in a test－tube，filled with air．As in our previous observations， the thermometer was exposed on white cotton．

The following table contains the observations made from the 18th to the 22d of July．Next to the columns containing the readings of the black bulb the temperature of the air is given，fol－ lowed by the amount of solar heat．The last column of each division shows the amount of clouds， as explaiued before：

Hours．	Tuly 18， 1873.				Ju1y 19， 1873.				July 20， 1873.				July 21， 1873.			
	Lat．， $73^{\circ} .15^{\prime} .18^{\prime \prime}$ N．；long．， $72^{\circ} .06^{\prime} .30^{\prime \prime} \mathrm{W}$ ．				Lat．，7w－．．is N．；long．， $79.00{ }^{\prime} \mathrm{W}$				Lat．， $73^{\circ} .4{ }^{\prime}$ N．；long．， $83^{\circ} .00^{\prime}$ W．				Lat．， $7: 3^{\circ} .42^{\prime}$ N．；long．， $83.00^{\prime} \mathrm{W}$ ．			
	空	$\begin{aligned} & \text { Exposed ther- } \\ & \text { mometer. } \end{aligned}$			为			菏	$\begin{aligned} & \text { Black-1mil, ther- } \\ & \text { mometer. } \end{aligned}$	$\begin{aligned} & \mathrm{Ex} \text { posed ther- } \\ & \text { mometer. } \end{aligned}$			$\begin{aligned} & \text { Black-bulb ther- } \\ & \text { mometer. } \end{aligned}$	$\begin{aligned} & \text { Exposed ther- } \\ & \text { mometer. } \end{aligned}$	\％	¢
	－	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0		－	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
$2{ }^{\text {b }}$	47.0	35.8	11． 3	\sim	56.8	47.0	9．${ }^{\text {a }}$	\smile	50.2	45.8	4.4	\smile	38.5	35.2	3.3	2－4
4	50.4	34.3	16.1	1－4	（i：3． 11	49．5	13.5	\smile	51． 6	47.11	4.6	1－4	37.4	36.1	1.4	2－4
6	71.0	35.0	36.0	\checkmark	72． 5	51.0	21.5	\smile	54.7	50.9	3.8	2－4	39.0	$35 . \times$	3.2	2－4
9	－9．2	$3-4$	50.4		$\cdots 2.7$	51.8	20.9		57.3	51.0	（i． 3	1－4	43.2	35.0	$\underline{+} .2$	\checkmark
10	17.3	40．R	56.5		94．3	57.5	31\％，\％	$\checkmark 1$	81.5	49.5	2x． 0	1－4	47.8	37.2	10.6	2－4
Noon．	－9．3	44．	45.1	2－4	－2． 5	53．	3！ 0	\％－4	79.8	46.7	3：3． 1	2－4	54.3	37.4	16．9	4－4
$2^{\text {h }}$	102.5	42.5	60.0	1－4	100． 2	56.5	43.7	2－4	51.5	40.5	11．0	2－4	44.0	36.8	7.2	4－4
4	10.0	43．	5－2．	1－4	105.8	55． 2	50.6	1－4	73.5	41.0	32． 5	3－4				
（i）	［12． 5	44．：3	46．：	\checkmark	13.5	46.8	$71 . \%$	1－4	47.4	42.2	5.4	4－4	45.5	36.0	9.5	：3－4
8	62.0	415.2	15． 8	\smile					39.0	36.2	2.8	4－4	40.0	35.0	5.0	3－4
10	53.8	45.2	8.15	\smile					4：3．0	35.7	7.3	4－4	$3-4$	34．${ }^{\text {a }}$	3.6	2－4
Midn＇t．	52.8	46.0	6.8	\smile	53.8	47.4	6.0	\checkmark	36.0	35.0	1.0	3－4	34.9	33.5	1.4	1－4

CHR0N0METER-J0URNAL.

(IIRONOMETER-JOURNAL.

As in the course of the astromomical and pendulum observations we shall frequeutly have to refer to the rates of the chronometers, we give herewith that part of our chronometer joumal which was sared from the wreek.

The expedition was supplied with tell thonometers, lom of which were pocket-chronometers. Three of the six box-chronometers (Negns) indicated mean, the rest sitereal time. The three mean-time chronometers were sent on board of the Polaris previous to the sailing of the ressel from Washington City, wheras the three sidereal onss were procmed from the maker at New York. All the instruments were kept in a little closet at the port side of the rabin until we left New York. Then the boxelnonometers were translered in two eases (thee in (adr), resting on four legs each, and fastemed to the cabin- hoor near the mast, but disemmected from the latter. The accompanying diagram is intended to show the position of the boxes, which were lined with heary cushions of horse-hair and cloth, in order to protect the instrinments arainst injury fom concassions of the ressel with ice. As will bereen, the chronometcrs kept their respective rates botter than conld hare been expeeted; and we think that, besiles the superior chatarter of the instrameuts, this miform rate is in great part dure to the mannor of keeping the time-pieces, as tha lining of the cases not ouly prerented or moderated the sluedsa probened by raming agation iar. but :l so kip the variation of tha temperature in the bos within a small range, as proved by a masimom and minimum thermone. ter, kept oceasionally for somm time in one or the other of the boses rluring the winter of 1 s 7 t to 1852 , spent at trolaris Bay. Thu instruments were compared and wound up daily at the same
 time, until the arrival of thr vessel at Gootharn, in West Groendand; this was done by the late commanter of the experition and by the writer. Aterward, the comparisons were mate mostly by Mr. R. W. Bryan and the writer, or by Mr. Fred. Merar. In some rare instances, others assisted. The companisons were mate to the nearest tenth of a seromb, amb in such a mannar that one observed bhe instrmont selected as stambard, and gave his signal by ealliug "time," when the other called off th" seconds, minutes, ant hour, as indicated ly the respectire chronometer he compared. Invariably, at least two comparisons were taken of each time-pince and the standard chronometer; sometimes, if the results did not agree within 0 . 2, a third or forth one was obtained.

Finally, it may be well to state that, in the following remd, the box-chronometmes are not designated by their mumhers as given los the maker, but by the letters $\Lambda, \mathrm{B}, \mathrm{O}, \mathrm{D}, \mathrm{E}$, and Z (standarl). This was done partly to preveut mistakes in recorling a long row of figures ; partly becanse it is rather disagreeable to write more than is neressury when the temperature is low. The pucket ehronometers (by different makers) were designated F , G, II, and I. A ther the loss of the ressel, the three remaining box-chronometers were kept in Polaris Honse ou the writers desk.

Date．	$\begin{gathered} \text { Chron. A. } \\ D-1 \end{gathered}$	Dift．	$\begin{gathered} \text { Chron. B. } \\ \mathrm{D}-\mathrm{B} \end{gathered}$	1iff．	$\begin{gathered} \text { Chrou. E. } \\ \mathrm{D}-\mathrm{E} \end{gathered}$	Difti．	Cbron．H． $\mathrm{D}-\mathrm{H} .$	Dift．	Remarks．
$1872 .$ Nov． 23	h．m．s． 7 路	m．s．	h．m．s． 1118.0	m． 8.	h．m．s． 111691	mi．s．	$\begin{array}{ccc} \text { h. } & m, & s . \\ 10 & 01 & 0 \cdot \end{array}$	8.	
	105113	101.5	$641: 38$	10.21	（i） 14 3．${ }^{\text {a }}$	101	$\begin{aligned} & 811195 \\ & 10114 \geq 0 \end{aligned}$	02． 3	
Nor．${ }^{2} 4$	71615		1135		11 5 只：				
	104711	402	$6: 36$	109.1 if $40: 3$		401.5	$\begin{array}{r} 80025 \\ 100050 \end{array}$	00.4	
Nov． 2.5	716		$11 \div 50$		$11 \because 10$				
	10 4： 10	401	$6: 334.5$	401.5	（5）36 3：3．	100.5	$\begin{array}{r} 800 \\ 100110 \end{array}$	$11: 3$	
Nov． 26	72100		113100		11 98				
	103902.5	401.5	6 633	401.5	639 ：$::$	400.5	80020	03	
Nov． 97	79505		11 \％		118		100190		
	$10 \quad 3506.5$	4112	6	401	63831	40	80018	0，	
Nor．	7800		11 ： 00		113690		100110		
	10310	401.5	$6 \because 130$	＋ 02	6 94：30	401	z 0015.6	02.4	
Nos．Ot	7 $33 \times$		1143		11404.		100210		
	$10 \div 03$	103	61798	$10:$	15 311 3－5	101．5	80019.6	$0 ; 1$	
Nov． 30	73704		114500		$1144 \div 0$		100110		
	102301	＋1！	61326	$40:$	6163	400.5	80009.8	02.8	
Dec． 1	74：33		11 㤩 4		$11501 \because$		100310		
	1018 \％ 5	401.5	60983	403	6123	401.5	80006.9	02.9	
Dec．\because	745 10		11 5in 90		115050		100290		
	101458	401	6 n （2） 2.5	400.5	1；158．0．6	400.7	80004.6	02.3	
Dec． 3	75019		$1: 10015$		115805		100320		
	101057.5	401	6401．20	1112.5	604 こ．	101.3	80002	0．3．6	
Dec． 4	7530		1210：		$1 \because 0040$		100136		
	100655.5	410	5 5\％ 18.5	$401 . \%$	$1 ; 00$ ？．？． 5	401	75959.6	02.4	
Dec． 5	757 \％		12 に碞		$1 \because 0500$		100156		
	10 （1）54．5	402	$55 \% 16.5$	412	\therefore 洊 3	400.5	75957	02.6	
Dec． 6	80110		1211 \％		$1 \because 89410$		100240		
	9585 ¢ \％	401.7	51914.5	$40 \cdot$	的呺	401	75955	02	
Dec， 7	区 0590		$1 \because 1.591$		$1 \because 12: 4$		100150.4		
	95451.5	401.3	54513	401.5	51821.5	400.5	$7595 \% .6$	02.4	
Dec． 8	80910		1919.0		$1 \geq 1610$		100156		
	95050	401.5	54110.5	110.5	5 443	± 01.5	75950	02.6	
Dec． 9	814.83		12913		$1 \because$ 是		100300		
	94648.5	401.5	532109	＋01．5	54119	＋01	7 5917.4	02.6	
Dec． 10	81730		12×35		122450		100204		
	94247.5	401	53307	40	53619	400	75944.8	02.6	

Date.	Chron. A. $\mathrm{D}-\mathrm{A}$	Dift.	$\begin{gathered} \text { Chrod. B. } \\ \mathrm{D}-\mathrm{B} \end{gathered}$	Dift.	$\begin{gathered} \text { Chron. } \mathrm{E} \\ \qquad \mathrm{D}-\mathrm{E} \end{gathered}$	Dift.	$\begin{gathered} \text { Chron. lI, } \\ \mathrm{D}-\mathrm{H} \end{gathered}$	Diff.	Remarks.
$\begin{gathered} 18: 2 . \\ \text { Dec. } 29 \end{gathered}$	$\begin{array}{lll} h . & m . & 8 . \\ 9 & 34 & 55 \end{array}$	m. s.	$\begin{gathered} h . m . s . \\ 14440 \end{gathered}$	m. s.	$\begin{array}{rcc} h . & m . & s . \\ 1 & 11 & 3 \end{array}$	$\text { m. } \quad \text { s. }$	h. m. s. 100258	8	
	82621.5	401.5	41636	401.5	43004.5	400.8	\% 5937.6	0.1	
Dec. 30	$93 \div 00$		1412	-	14515		10 U2 30		
	8929.5	402	41234.8	401.2	41604.5	100	75930	02.4	
Dec. 31	9414		$1 \therefore 403$		14910				
	- 12 19	400.6	408 m	401.6	$41: 04$	400.5			
Jan. 1	94543		15600		$1 \therefore 00$		100220		
	8 1417	40.	40432	401	4 U8 04	400	7 5930		
Jan. 2	93536		$\because 0590$		$\because 0.515$		101020		
	81014.5	409.5	40039	403	40402	+ 02	75931.8	01.8	
Jan. 3	95410.5		30.50		$\underset{(?)}{?} 01 \because 0 . \bar{z}$		100450		
	= 0614.5	400	356	401	40003.5	: 2E. 5	7 5931.5	00.3	
Jan. 4	100000		$\because 1013$		211500		100410		
	80.312	402	35985	401.5	35602.5	401	\% 5930.9	00.6	
Jan. 5	10018		$\because 1205$		$\because 0900$		100210		
	7 \%11.5	401	34238	401.5	$3 \therefore 03$	[350. 5	-5931.9	01.0	
Jan. 6	100433		$\because 1780$		21440		100350		
	75410.5	401	34424	101	34801.8	401.2	75933.7	01.6	
Jan. 7	100950		2200		$\because 1700$		100210		
	\% 10	4110.5	31029	401.2	34401.3	400.5	75934.9	01.?	
Jau.	101355		22400		$\because 2110$		100210		
	74609.6	400.4	33621.5	401.3	34000.3	401	\% 5934.8	00.1	
Jan. 9	101512		- 30 ? 3		22545		100445		
	7 420 ${ }^{\text {2 }}$	101.6	33220	401.5	33559	401.3	75932	02.8	
Jan. 10	10215		23230		22930		100210		
	73806.6	101.2	32819.5	100.5	3315	+ 01	75930.6	01.4	
Jau. 11	102729		23736		23426		100340		
	73406	400.8	$39418 \therefore$	401	327 \%	401	75927.6	03	
Jan. 12	1099 ar		? 4020		$2: 34$		100250		
	-3005	101	32017.5	401	32356.8	400.2	\% 59 97.7	00.1	
Jau. 13	103506		24596		$\because 420$		100330		
	72604.84	00.2	31617	400.5	31954.5	402.3	759 92. 8	01.1	
Jan. 14	103917		24930		2462		100390		
	72205	59. 5	31215	402	31553.5	+01	75925.7	03. 1	
Jau. 15	104156		25015		24905		100220		
	\% 1804	01	30814.51	100.5	311 -2. 5	401	75925	00. 5	

Date.	$\begin{gathered} \text { Chrou. A. } \\ \mathrm{D}-\mathrm{A} \end{gathered}$	Diff.	$\begin{gathered} \text { Chron. B. } \\ \mathrm{D}-\mathrm{B} \end{gathered}$	Diff.	$\begin{gathered} \text { Chron. E. } \\ \mathrm{D}-\mathrm{E} \end{gathered}$	Diff.	$\begin{gathered} \text { Chron. H. } \\ \mathrm{D}-\mathrm{H} . \end{gathered}$	Diff.	Remarks.
$\begin{gathered} 1873 . \\ \text { Felb. } 3 \end{gathered}$	$\begin{array}{ccc} \text { h. m. s. } \\ 1: 00 & 00 \end{array}$	m. s.	$\begin{array}{rrr} \text { h. } & \text { m. } & s . \\ 4 & 10 & 0 \end{array}$	s.	$\begin{array}{rrr} \text { h. m. s. } \\ 4 & 07 & 10 \end{array}$	m. s.	h. m. 8. 100420	s.	
	60116.8	401.7	1553.5	401.1	15532.8	101.1	75856.8	03.9	
Fel. 4	120215		4128		40940		100330		
	55745.5	401.3	14752.6	400.9	15132	400.8	75858.1	01.3	
Feb. 5	120645		+1700		41347		100252		
	55345.5	400	14351.4	401.2	14731	± 01	75855	03.1	
Fels. ${ }^{\text {a }}$	121437		49500		42200		100706		
	54944.4	401.1	13949.6	401.8	14330	401	75858.1	03.1	
Feb. 7	121502		49595		4210		100330		
	5454.5	359.4	13548.8	400.8	13930.6	359.4	75851.5	03. 6	
Feb. -	121817		48840		42525		100240		
	54143.5	101	13147.7	401.1	13530.5	100.1	75852.6	01.9	
Fell. !	12 19		43240		490		10 0: 30		
	5374	101.5	1974	400.7	13130	100.5	75853.6	01	
Fel. 10	122636		43807.6		43335.5		100834.8		
	53341	101	19345.4	401.6	12789.5	400.5	75453.2	00. 4	
Feb, 11	123028		44350		43713		100603.2		
	52940	401	11944	401.4	12389	400.5	75851.8	01.4	
Fels. 12	123495		44450		44136		100320		
	52539.5	400.5	11543	101	$1192 \% .8$	401.2	75851.1	00.7	
Feb. 13	$1: 3885$		44850		44532		100250		
	521 \% 5	401	11142	+01	11527.5	400.3	75852.6	01.5	
Fel. 14	124283		45300		44945		100300		
	51737.5	401	10740.8	+01.8	11126.5	+ 01	75852	00.6	
Fell. 15	124626		$45 \% 51$		45330		100240		
	51336	401.5	10339.6	401.2	10726	+ 00.5	75848.8	03. 2	
Felb, 16	125222		50430		50117		100640		
	50934.6	401.4	05937.5	402.1	10325.6	400.4	75847.8	01.0	
Fel. 17	125426		50446		50120		100240		
	50534	400.6	0 -5.5 36.6	$1+0.9$	05925.8	:3 59, 8	75846	01.8	
Felu. 18	1958.9		¢) 0930		5) 0513		100330		
	50132.8	401.2	05135.5	401.1	45.5	400.8	75247.2	01. 2	
Ful. 19	10233		51305		ᄃ 0940		100254		
	45731.5	401.3	04734	401.5	051	354.6	75248.8	01.6	
Feb. 20	10629		51705		51336		100252		
	45331	400.5	04333	101	0478	(3) 59.6	75846	02.8	

Date.	$\begin{gathered} \text { Chrou. A. } \\ \mathrm{D}-\mathrm{A} \end{gathered}$	Diff.	$\begin{gathered} \text { Chron. B. } \\ \mathrm{D}-\mathrm{B} \end{gathered}$	Diff.	$\begin{gathered} \text { Chron. E. } \\ \mathrm{D}-\mathrm{E} \end{gathered}$	Diff.	$\begin{gathered} \text { Chron. H. } \\ \mathrm{D}-\mathrm{H} \end{gathered}$	Diff.	Remarks.	
$\begin{gathered} 183 . \\ \text { Feb. } 21 \end{gathered}$	$\begin{array}{rrr} \text { h. } & \text { m. } & \text { s. } \\ 1 & 16 & 99 \end{array}$	m. s.	$\begin{array}{ccc\|cc\|} h . & m . & s . & m . & s . \\ \therefore & 26 & 45 & & \\ 0 & 39 & 30.8 & 4 & 02 . \end{array}$		$\begin{array}{ccc} \text { h. m. } & 8 . \\ \approx & 83 & 25 \\ 0 & 43 & 9 . \end{array}$	$400 . \theta$	$\begin{array}{rcc} h . & m . & s . \\ 10 & 08 & 40 \\ 7 & 58 & 43.6 \end{array}$	s.		
	44928.5	402.5			02.4					
Feb. 22	11432		52500				100304			
	44592	+00.5	$0: 5$	400		039294	350.6	7-8840.6	03.0	
Fell $3:$	11×33		5. 2900		¢ 8.80		100251			
	4410	401	03189.8	401	03.521 .7	: 59. 7	\% 5-40.9	00.3		
Fell. ${ }^{2} 4$	1 吅 40		. 33 m		- 37		100300			
	43726	401	027 \% 6	+01.9	03126	. 359.9	3 Se 40	04.9		
Felb. 95	$126: \%$		53705		. 3336		110304			
	4335	1401	023 2\%.6	401	0 3\%	$\therefore 8.6$	$\therefore \therefore 40.8$	00.		
Feb. 3	13040		$\therefore 4100$		$\therefore 20$		100240			
	42924.5	400.5	01997	400.6	02988	389	7 5-40.6	00. 2		
Feb.	1:3440		. 4505		54130		10080			
	48583.5	401	01526	401	019 ¢-5	359.5	\% 5841	00.4		
Feb. ${ }^{\text {P }}$	13929.5		551 9.		5 di 21		101640			
	42122.5	401	112.	101	1499	(3) 59	75842	01.0		
Mar. 1	14250		55310		- 4930		100252			
	41% ? 1	401.5	784	101	11 29\%	3509.5	75850.5	08.		
Mar. 2	14641		5.705		$\therefore 30$		100306			
	41320	401	323.4	400.6	73.5	400	7583	12.5		
Mar. 3	15045		60105		\% 5		100300			
	40919	401	115929.3	401.1	330	359.5	7-37. 3	00.3		
Mar. 4	15500		60520		60110		100330			
	40518	401	115521.8	400.4	115930	400	75839.4	01.7		
Mar. 5	$\because 0412$		61446		61106		10 㑰 40			
	40115.9	+02.1	115113.6	407.9	11 -n 30	400	\% 5-34.9	04.5		
Mar. 6	20331.6		$6 \stackrel{(?)}{1 ?} 0 .$		61154	.	10 0< 14.4			
	35715.5	400.4	11 Se 18.6		115131	\% 59	\% 5836.6	01.7		
Mar. 7	$\because 0656$		61795		613		100310			
	35314	401.5	114318		11 4531.2	350.2	- 5e 34. 2	03.9		
Mar. ε	บ 1051		62110		61730		100306.4			
	34913	± 01 (?)	113916.8	401.2	114332	359.6	\% 5e 32.7	01.5		
Mar. 9	$\because 1700.5$		6986.5		6 6-2 23.5	(${ }^{\text {) }}$	100715.2			
	34411.5		113514.5	402.3	114033.5		75834.8	00.6		
Mar. 10	21920		62940		6455		100350			
	34110		113113.6	400.9	113533		\% 5\% 39, 8	02.0		

Date．	$\begin{gathered} \text { Curou. A. } \\ \mathrm{D}-\mathrm{A} \end{gathered}$	Diff．	$\begin{gathered} \text { Chron. B. } \\ \text { D-B } \end{gathered}$	Diff．	$\begin{gathered} \text { Chron. } \mathrm{E} \text {. } \\ \mathrm{D}-\mathrm{E} \end{gathered}$	Diff．	Chrou．H． $\mathrm{D}-\mathrm{H}$	Diff．	Remarks．
$\begin{gathered} 153 \\ \text { April } 16 \end{gathered}$	$\begin{array}{rrr} \text { h. m. } & \text { s. } \\ 4 & 47 & 45 \end{array}$	m．s．	$\begin{gathered} \text { h. m. s. } \\ =5: 10 \end{gathered}$	m．s ．	$\begin{gathered} \text { h. m. } \quad \text { s. } \\ \& 5311 \end{gathered}$	m． 8.	h．m．s．	8.	If with Dr：Bessels．
	11231	402	90236	401	90759	359			
April 17	45205		90240		8575				II with Dr．Bessels．
	10832	359	85835	401	90400	359			
April 18	45530		90555		90052				II with Dr．Bessels．
	10430	402	85434	401	90000.5	3515			
April 19	50020		91110.5		90615		153600		H returued，
	10089.5	400.5	850 ：3	401	85602.5	354	22724.5		
April ${ }^{0} 0$	51342.5		92419		91928.5		154450		
	05627.5	402	$\therefore 4638$	401	8501.5	401	2 ご 24	00.5	
April 91	50733		91750		91240		153400		
	05098	359.5	84281.6	400.4	84804.2	357.3	$\because 2783$	01	
April 9	52910		92245		92740				II with Dr．Bessels．
	04824.5	403.8	83595	406.1	84402	402.8			
April 9	51540		92600		92050		1.53400 .4		Hreturned．
	$044 \geqslant 0$	；58，	－ 3490.8	355.7	84005.2	356.5	22721.8		
April ${ }^{4} 4$	51935		9295		92440		153400		
	04085	400.5	8 $30 \stackrel{20}{ } 6$	＋01．2	83606.2	359	22781.8	00.6	
April $2:$	52440		93501		935		153502		－
	03694	401.5	896 品． 8	400.8	83206.8	359.4	29718.6	02.6	
April 36	52300		9385		93310		153430		
	03283.6	400.4	82226.8	401	82808	358．8，	⒉ 2717.8	00． s	
April 3	532 T		94245		93635		153500		
	0 〇－23．5	400.1	8 1526．5	400.3	82409.5	358．5	22720.3	03	
April 28	53537		94635		941 卫2		153450		
	02423	400.5	$\therefore 1495.5$	401	82011	35	Q 320	00.8	
April 29	53945		95015		94500		153420		
	020×3.5	359.5	81025.8	359.7	81612.8	1088.9	22719.8	00．2	
April 30	5 43.58		95756		95118		153814.8		
	0162	401.5	$\therefore 0684$	401.8	81213	359.8	22418.2	01.6	
May	54740		95800		92230		153400		
	01221.5	400.5	80293.8	400.2	$=0815$	385	22715.2	03	
Mas	55140		100215.5		95705		153444		
	0 比20．s	400.7	75892.5	101.3	80115.9	$\because 89.1$	23815.9	00.7	
May 3	\％ 5540		100605		100040		153410		
	00420.5	400.3	75422.7	359.8	80017	358.9	22 2i 14.6	01.3	

ASTRONOMICAL OBSERVATIONS.

1 A 0

ASTRONOMICAL OBSERYATIONS.

INTRODUCTORE.

Unfortmately, the greater and more valuable portion of the astronomical record was lost daring the separation of the ressel from the ice-floe-party; though a very few sights for the determi. nations of positions on shore preceding the time of the disaster were recovered afterward from loose sheets of paper on which their computations had been made. The observations, mostly taken by Mr. Bryan, were very numprous, and positions were determined astronomically whenerer practicable. The observations taken at winter-quarters alone consisted of about three hundred lunar distances, a number of moon-culminations, a great number of transits of stars, a number of occultations of stars, and a great number of altitudes of the sun on or near the prime rertical for longitude and time. For the determination of the latitude of the place, there were on record a great umber of circummeridian altitudes of the sun and a number of altitudes of stars.

The iustrumeuts used in the above-named observations were a Wïrdemann transit, the description of which we are unable to gire; Gambes sextants, divided to $10^{\prime \prime}$; and artificial mereuryhorizons. The chronometers used have been referred to in a previous chapter.

Asall the observations were made in high latitudes, where the celestial bodies hardly change their altitules one-fifth of the amonnt they do here in the same interval of time, it might be considered sufficient, in making observations for latitude, to read the time to the nearest second, and to retain the nearest teuth of a minute in the computation. In regard to observations for time, the nearest half-second or one-bundredth of a minute would be sufficiently accurate, and, in reading off the are of the sextant to the nearest tenth of a minate, a very satisfactory result would be obtained. Although the observations recorded bereafter were made in the usual war, we still deemed it proper to modify them according to the view expressed abore, in order to simplify the process of their (o) putation. The original observations, as recorded at the time they were made, are deposited in the archives of the Smithsonian Institution, and are accessible to any one that mas wish to examine them in detail.
lu making the reductions, Bessel's Tables of Refraction have been used, after having been modified and extended to adapt them to the conditions of the regions where the observations were made. The following table is modified accordingly for a mean atmospheric pressure of 29.5 inches, and a temperature of 0 Fahrenheit, having as argument the double altitude.

$\because 1+i$	$2 \cdot$	24	$2 \cdot$	2.	9.	2.1	$2 r$
\bigcirc,	,	O	1	c	,	\bigcirc	,
70	2-8	11	19.9	24	9.8	50	4.5
20	97. 3	12	1 ± 5	\%	9.1	55	4.1
40	20.5	13	17.3	2d	8. 1	60	3.7
$\bigcirc 0$	25. 7	14	16. ${ }^{2}$	30	7.8	(i.)	3.3
20	24.9	15	15.	摂	7. 3	30	3.0
40	34.2	16	14.3	:3	6.9	-1)	2.5
90	23.5	17	1:3. ${ }^{\text {a }}$	36	6.5	40	?. 1
(1)	¢	1*	12.9	枵	6. 1	100	1.8
40	¢2.	19	12.2	40	5.8	110	1.5
10 0	21.6	20	11.6	$4{ }^{2}$	5.5	$1 \cdot 11$	1.2
20	21.0	21	11.1	44	5. \because	1:30	1.0
40	20.5	21	10.19	46	5.0	140	0.8

In using the above table, add 1° of the refraction for every 0.3 inch of the barometer above 29.5 , and sulbtract 2^{n} of the refraction for every $9^{\circ} \mathrm{F}$. above $0^{\circ} \mathrm{F}$., and vice versa.

In order to reduce the observations for latitude taken near the meridian to the meridian itself, the folloring tro tables were used.

No. 1, giving for $2 \sin ^{2} \frac{1 m}{}$: are 1^{m} :

$t=\begin{array}{r} m \\ = \end{array}$	0.0	$t=\begin{gathered} m \\ =91 \end{gathered}$	14.4
9	0.1	19	15.8
3	0.3	23	17.3
4	0.5	?4	18.8
5	0.8	25	20.4
6	1.9	90	22.1
7	1.6	27	23.8
$\stackrel{\sim}{*}$	2.1	3x	25.6
9	2.7	29	27.5
10	3.3	30	29.4
11	4.0	31	31.4
12	4.7	32	33.5
13	5.5	33	35.6
14	6.4	34	37.9
1.7	7.4	85	40.0
16	8.4	36	42.4
17	9.5	37	44.7
18	10.6	38	47.1
19	11.	39	49.7
20	13.1	40	52.3

Table No. 2 gives the factor $2 f$ by inspection; the double altitude being used as vertical, and the latitude as horizontal argument.

Double altitude.		Latitnde.			
2.4	74	76°	78	80	820
0					
South, 10	0.54	0.48	0.41	0.35	0.28
20	.56	.49	.42	.35	.28
30	.57	.50	.43	.36	.29
40	.59	.51	.44	.36	.29
50	.60	.52	.45	.37	.29
60	.62	.54	.46	.38	.30
70	.64	.55	.47	.39	.30
80	.66	.54	.48	.39	.31
90	.68	.59	.49	.40	.31
North, 10	.52	.46	.40	.34	.27
20	.50	.45	.39	.33	.27
30	.49	.44	.38	.33	.27
40	.47	.43	.38	.39	.26
50	.46	.41	.37	.31	.26
60	0.44	0.40	0.36	0.31	0.25

Instead of the first table, the following practical rule may be used, viz: Diride t^{2} by 30.6 for ralues $n \mathrm{p}$, to 40^{m}, and t^{2} by 31.6 for values at $1^{1 \mathrm{l}} 40^{\mathrm{m}}$.

As the observations taken at Polaris House cover a longer period of time, it was fond conveni ent to use a special table by modifying the well-known factor-

$$
2 f=2 \varphi_{c} \delta_{c}: 1 \text { into } 2 \varphi_{c}-\left(1-\frac{i_{c}}{\Lambda_{c}}\right) \geq \varphi_{\mathrm{c}}
$$

assuming the latitude of the place to be 752.4 N .

δ	S.	N.
\circ -5	$\begin{array}{r}\text { 号 } \\ +0.3 \\ \hline\end{array}$	$\frac{\square}{8}$
0	2.0	
+5	4.1	
10	6.3	-
15	$\bigcirc .5$	-3.0
+20	+10.8	-4.9

According to the above table, the principal factor $2 \varphi_{c}=0.40_{2}$ has to be increased with culmination S., and decreased with culmination N. , as indicated in percentages.

For the reduction of observations for latitude by Polaris, the following small table will be found useful.

It is best to bring up chronometer t to apparent hour-angle before using table $\mathbf{1}$. For the influence of the daily rate of the chronometer, in case the above has not been done, the following figures can be used, which give the percentage by which the whole reduction to the meridian has to be increased or decreased as indicaterl.

To facilitate the further reduction for \odot 's semidiameter, bourly variation in declination, and parallax, we have finally added another small table, which runs thus:

The parallax is given for the two altitudes 00 and 280 .

A.-OBSERVATIONS FOR LITITUDE.

In the reduction of the following observations, the apparent noon was first assumed, then t equal to the difference in time taken between the assumed :pparent noou and the time of observation, "pposite which the olserved donble altitudes are given. The colnmus next to that give the rednctions to the meridian, and the correction for rariation in le lination; the mumber at the head of the colnmn is the
 The last colmm gives the algebraic sum of the three preceding columns (2 A), which is in our case the observed apparent double meridian altitude of the olject under consideration. If the assmed chronometer-time of apparent noon was comect, the differences (\triangle) will be within the limits of the probable rror of the observation; if not so, the apparent noon must have occnred earlier or later, and will have to be re-assumed accordingly until the observations can be made to agree among themselves, when the mean of the different rahes (2 A) will have to be corrected further for indexerror ($i=0$ ff - on), for parallax ($2 p$), for refraction ($2 v$), (corrected for barometer and temperature), and for semidiameter ($2 s$), in order to obtain the true observed donble altitude of the object under consideratiou. Subtracting the corrected $2 A$ from the double south-polar distance $(180+2$) $)$, we obtain the double depression of the sonth pole below the horizon, or the double elevation of the north pole above the horizon, which is the double latitude of the place.

The following obsersations, the reductions of which were made hy Mr. John Wiessuer, are arranged chronologically as tar as cond be done. All those to which the observer's mame is not affixed were made by Mr. Bryan.

I.-OBSERVATIONS TAKEN AT HALL'S LAND.
 HALL'S LAND.
 Observations for latitule of camp, October 19, 1871.
 C. F. Halla, Oherter. *

Jupiter on the meridian. Off.
$h . m$.
5
5
\because 2lt.
5 $49+41$

$$
\phi=82 \circ 0^{\prime} .5
$$

HALL'S LAND.

Observations for latitude of eighth encampment, October $23,1871$.

> C. F. Hall, Observer.

Jupiter on the meridian. Off.

$$
\begin{array}{cc}
\text { h. } m . & m \\
5.35 & +13 \\
& 2! \\
& 34 \\
& 4: .5
\end{array}
$$

$$
4
$$

$$
\begin{array}{ccc}
\text { 2. } 17 t & & 0.30 \\
0 & & 1 \\
54 & 4 & + \\
& 5 & + \\
57 & 56 & + \\
& 11 \\
& 40 & + \\
& & 17
\end{array}
$$

Latitude of Polaris Bay Observatory, from equal altitudes of preceding page.

II.-OBSERVATIONS TAKEN DURING THE DRIFT OF THE YESSEL THROUGI KENNEDY CHANNEL AND SMITH SOUNI.

Observations for latitute, August 15, 1872.
Chronometer G fast $3^{\text {h }} 16^{\text {m. }} 0$.

Observations for latitude, August 20, 1872.
Chronometer F fast $18 \mathrm{~m} . \mathrm{m}$.
Longitude, $+4^{\text {h }} 38^{\mathrm{m}}$ Greenwich; -30^{m} Washington.

Noon.	t	$2 \bigcirc$	0.380	$2\lrcorner \delta$	2.1			Δ
h. m.	m.	\bigcirc	,	,	\bigcirc	,		
1220.5	-31.8	4421.5	$+12.6$	-0.9	44	33.2	$+$	1
	29.1	23.9	10.6	0.8		33.7	-	4
	20.7	2.5	8.3	0.7		3.3 .1	+	2
	2.3	27.6	6.5	0.6		$3: 3.5$	-	2
	90.8	2-3	5.4	0.6		33.6	-	3
	19.3	29.3	4.7	0.5		33.5	-	2
	17.6	30.0	3.9	0.5		33.4	-	1
	15.1	30.7	2.9	0.4		$3: 3$	$+$	1
	13.7	31.0	$\stackrel{9}{4} 4$	0.4		33.0	$+$	3
	11.4	31.7	1.6	0.3		33.0	+	3
	10.0	32.0	1.2	0.3		32.9	$+$	4
	8.3	32.3	0.9	0.2		33.0	+	3
	6.6	32.7	0.7	0.2		33.0	$+$	3
	4.7	33.0	0.3	0.1		33.2	$+$	1
	2.7	33.3	0.1	-0.1		:33.3		0
	-0.7	33.7	0.0	0.0		33.7	-	4
	+ 2.9	33.5	0.1	+ 0.1		33.7	-	
	+ 3.9	33.3	+ 0.2	+ 0.1		33.6	-	

Index-correction : off, $32^{\prime} .3$; on, $31^{\prime} .2$

Observations for lutitude, August 21, 1872.

Chronometer F fast 19 m .2.
Longitude, $+4^{h} 41^{\mathrm{m}}$ Greenwich; - $0^{\mathrm{h}} 9 \mathrm{~g}^{\mathrm{m}}$ Washington.

2 A 0

Observations for latitude from August 25 to September 3, 1872.

	Aug. 2i, 1n9.2.		Aug. 26, 15\%2.		$\text { Ang. } 29,1 \times 2 .$		Aug. 30, 10:		Sept. 3, 1-i ${ }^{\text {a }}$	
$2 \bar{\odot}$	42	25.7	41	4:3.2	39	:3-3	$3 \times$	57.3	36	4.8
2 ©	41	29.4	40	41.7	:	34.6	37	53.8	(i5)	1.3
$2 \odot$	41	54.0	41	12.0	39	6.6	38	85	(15)	33.1
i	$+$	0.2	$+$	0.2	+	0.6	-	1.9	-	1.2
${ }^{2} 1$	$+$	0.3	+	0.3	+	10.3	$+$	0.3	$+$	11.3
$2 r$	-	5.2	-	5.3	-	5.7	-	5.7	-	6.2
$2 \odot$	41	49.3	41	7.2	39	1.8	35	14.9	35	26.0
$180+2 \delta$	201	9.6	200	19.7	198	10.3	$1: 17$	20.2	194	34.1
2ϕ	159	20.3	159	1:.\%	1.9	8.5	15	10.3	1.9	- 8.1
ϕ	79	40.1	79	36.2	$7!$	34.2	39	:5, 3	79	34.0

Angust 30, 1-2-Barometer, 30.2; temperature, 30^{3}.

Observations for latitude, September 6, 1872.
Chronometer H fast will 41 ". 0.
Longitude, $+4^{\mathrm{b}} 30^{\mathrm{m}}$ Greenwich $;-0^{\mathrm{b}} 32^{\mathrm{m}}$ Washington.

Observations for latitude, September 7, 1872.
Chronometer H fast $8^{\mathrm{b}} 41^{\mathrm{m}} .8$.
Longitude, $+4^{\mathrm{h}} 36^{\mathrm{m} .5}$ Greenwich; $-0^{\mathrm{h}} 31^{\mathrm{m}} .7$ Washington.
Barometer

Note.-Sun obscured by clouds; no index-correction ; assumed the mean of September 7 and 8.

Observations for latitude, September S, 1872.
Chronometer H fast $8^{\text {b }} 42^{\mathrm{m}} .6$.
Longitude, $+4^{\mathrm{b}} 37^{\mathrm{m}}$ Greenwich; - $0^{\mathrm{b}} 31^{\mathrm{m}}$ Washington.

Noon.	t	$2 \bar{\odot}$	0.38	$2 \Delta \delta$	2.1			د
h. m.	m.		,	,	-	,		
840.0	-11.2	3224.8	+ 1.6	-0.3	32	26.1	-	1
	8.0	25.4	0.8	0.2		26.0		0
	4.5	25.8	0.3	0.1		96.0		0
	- 2.1	26.0	0.1	- 0.1		26.0		0
	+ 0.0	25.8	0.0	$+0.0$		25.8	$+$	2
	2.2	25.7	0.1	0.1		25.9	+	1
	+ 4.5	95.6	+ 0.3 .	+ 0.1		26.0		0

Index-correction: off, $33^{\prime} .9$; on, $29^{\prime} .7$

Barometer	29.87	$+$
Temperature	+ 32.3	-

2λ	32	26.0
i	+	2.1
$2 p$	+	$0 . i$
$2 r$	-	6.8
$2 s$	-	31.9
$2 A$	31	49.9
$180+2 \delta$	190	49.9
2ϕ	159	0.1

Observations for latitude, September 11, 1872.
Chronometer H fast $8 \mathrm{~b} 4 \cdot 2 \mathrm{~m} .7$.
Longitude, $+4^{\mathrm{b}} 37^{\mathrm{m}} .7$ Greenwich; - $0^{\mathrm{b}} 30^{\mathrm{m}} .5$ Washington.

Noon.		t	$2 \odot$		0.38			$2 \Delta \delta$	2 A			Δ
h. m.		m.	\bigcirc			,		'	\bigcirc	,		
8390	-	5.8	30	10.2	$+$	0.4	-	0.2	30	16.4	$+$	3
	-	3.4		16.8		0.1		C. 1		16.8	-	1
	-	1.7		16.8		0.0	-	0.0		16.8	-	1
	$+$			16.7		0.0	+	0.0		16.7		0
	$+$	2.3		16.6	$+$	0.1	$+$	0.1		16.8	-	1

Observations for latitule, September 14, 1872.
Chronometer H fast $8^{b} 46^{\mathrm{m}} .5$.
Longitude, $+4^{\mathrm{n}} 41^{\mathrm{m}} .5$ Grecnwich; $-0^{\mathrm{b}} 26^{\mathrm{m}} .7$ Washington.

Noon.	t	$2 \bar{\bigcirc}$	0.38	$2 \Delta \delta$	2.4			Δ
h. m.	m.	-	,	,	-	,		
841.8	- 16.7	2810.0	+ 3.5	- 0.5	28	13.0	-	2
	14.2	10.8	2.5	0.5		12.8		0
	11.1	11.3	1.7	0.4		12.6	$+$	2
	8.4	11.8	0.9	0.3		12.4	+	4
	5.9	12.7	0.4	0.2		12.9	-	1
	2.7	13.0	0.1	- 0.1		13.0	-	2
	-0.2	12.8	0.0	0.0		12.8	$+$	0
	+ 1.9	19.7	0.0	+ 0.1		12.8		0
	4.3	12.5	0.2	0.1		12.8		0
	+6.5	19.2	+ 0.5	+0.2		12.9	-	1

Index-correction : off, $30^{\prime} .8$; on, $33^{\prime} .0$						2.4	28	12.8
				in		i	-	1.1
Barometer		29.87	$+$	1		$2 p$	+	0.3
Temperature	$+$	26.3		6		$2 r$	-	7.9
				5		28	-	31.9
						24	27	32.2
Refraction		8.3			$180+$		186	15.0
Correction	-	0.4				2ϕ	158	42.8

$$
\phi=79 \circ 21^{\prime} .2
$$

Observations for latitude, September 17, 1872.
Chronometer H fast $8^{\mathrm{h}} 44^{\mathrm{m}} .8$
Longitude, $+4^{\mathrm{L}} 42^{\mathrm{ma}}$ Greenwich ; - $0^{\mathrm{b}} 26^{\mathrm{m}}$ Washington.

Index-correction : off, $32^{\prime} .3$; on, $31^{\prime} .3$

		$\frac{0}{0}$
Barometer	29.64	+0.5
Temperature	+26.2	-5.8
		-5.3

$2 A$	25	55.7
i	+	0.5
$2 p$	+	0.3
$2 r$	-	8.5
$2 s$	-	31.9
$2 A$	25	16.1
$180+2 \delta$	183	55.9
2ϕ	158	39.8

		${ }^{t}$	$0^{2 \varrho}$		38		$2\lrcorner \delta$	2.1			Δ
		-9.4	2452.2	t	1.1	-	0.3	24	53.0		0
		6.2	52.8		0.5		0.2		53.1	-	1
		3.8	52.9		0.2	-	0.1		53.0		0
		-0.9	53.0		0.0		0.0		53.0		0
		+1.6	52.8		0.0	$+$			59.9	+	1
		5.3	52.5		0.3		0.2		53.0		0
		+ 7.3	52.0	$+$	0.7	$+$			52.9	$+$	1
Refraction		$9^{\prime} .5$					2.	24	53.0		
Correction	-	0.5					i	$+$	0.5		
							$2 p$	$+$	0.3		
							$2 r$	-	9.0		
							${ }_{2}$ s	$+$	31.9		
							2 A	25	16.7		
							$0+2 \delta$	183	55.9		
							2ϕ	158	39.2		
			$\phi=$	1							

Observations for latitude, September 19, 1872.
Chronometer H fast $8^{\mathrm{h}} 44^{\mathrm{m}} .0$.
Longitude, $4^{\mathrm{b}} 42^{\mathrm{m}}$ Greenwich; $-0^{\mathrm{b}} 26^{\mathrm{m}}$ Washington.

Observations for latitude, September 30, 18:
Chronometer II fast sh $4 \mathrm{c}^{\mathrm{m}} .6$.
Longitude, $+4^{h} 43^{\mathrm{m}}$ Grecuwich: - $0^{\mathrm{h}} 25^{\mathrm{m}}$ Washington.

Noon.	t	- $\bar{\square}$	0.38	$2 \Delta \delta$	2.			Δ
h. m.	m.	$\bigcirc 1$,	-	,		
1037.4	-9.8	1689.2	+ 1.8	0.3	16	30.1	+	1
	6.4	30.0	0.5	$-\quad 0.2$		30.3	-	1
	- 0.3	30.0	0.0	0.0		30.0	+	2
	+ 4.3	29.3	0.2	+ 0.1		30.1	+	1
	+ 7.4	99.6	+ 0.7	+ 0.9		30.5	-	

3 A 0

Obscruations for latitule, October 1, 1512.
Chronometer 1 fast 4 :

Nuob.		t	\bigcirc				$2 \Delta \delta$	$\because 1$			Δ
万. ${ }^{\text {\% }}$.		m.			,		,	-	,		
838.0		10.6	1.547.3	+	1.4	-	0.3	15	4.4		0
	-		4 F		11.	-	0.1		4 CH	$+$	1
	$+$		4		0.0		0.0		$1-1$		0
		: 3	48.0		0.1	+			$1-2$	$+$	\%
		5	47.3		11.1		11:		小- 4		0
	$+$	-	47.5	$+$	0.9	+	0.3		$4 \times .7$	-	3

Index-correctiou: off, $31^{\prime} .7$; on, 3.3 .3				
Barometer		30.16	$+$	
Temperature	$+$	5.9	-	1.3
Refraction		14..		
Correction	-	0.1		

| $2 A$ | 1.5 | 4.4 |
| ---: | ---: | ---: | ---: |
| i | - | 0.3 |
| $\because p$ | + | 0.3 |
| $2 r$ | - | 14.4 |
| $\because s$ | - | 0.2 .1 |
| $\because A$ | 1.5 | 1.9 |
| $100+2 \delta$ | 173 | 1.7 |
| 2ϕ | 1.77 | 5.1. |

Observations for latitude, October 2, 1872.
Chronometer H fast $8^{\text {li }} 46^{\mathrm{m}} .8$.
(Add 15^{m} to the recorded times on account of mistake.)
Longitude, $+4^{\mathrm{h}} 43^{\mathrm{m}} .0$ Greenwich; - $0^{\mathrm{h}} 25^{\mathrm{m}} .2$ Washington.

Meridian.		t	2 Alt. a	Andromeda		0.15		$2 r$	$\therefore 1$		
h. m.		m.	\bigcirc	,		,		1	\bigcirc	'	
200.0	-	1.1	73	51.0	$+$	0.0	-	2.6	76	48.4	
	$+$	0.5		51.2		0.0		2.9		48.6	-
	$+$			50.8		0.1		2.6		48.3	$+$
	+	5.1		50.7	$+$		-	2.6		42.5	

Observations for latiturle, October 3, 1872.

Longitude, $+4^{\mathrm{h}} 43^{\mathrm{m}}$ Greenwich; - $0^{\mathrm{h}} 25^{2 \mathrm{n}}$ Washington.

Index-correctiou: off, $3 z^{\prime} .0 ;$ on, $3 z^{\prime} .2$							2.1	14	19.3
				n			i	-	0.1
Barometer		0.91	+	1. 4			$\because p$	$+$	0.3
Temperature	+	6.6	-	1.5	-		$\because r$	-	15.9
				0.1			$\because 8$	-	32.1
							2.	13	:31.4
Refraction		15.9				180	+2 2	171	20.16
Correction		0.0					$\because \phi$	15.7	57.2

Observations for latitude, October 6, 1872.
Chronometer H fast $8^{\mathrm{b}} 45^{\mathrm{m}} .6$.
Longitude, $+4^{\mathrm{h}} 45^{\mathrm{m}}$ Greenwich; - $0^{\mathrm{h}} 23^{\mathrm{m}}$ Wrasbington.

Noon.		t	$2 \bar{\odot}$		0.38			$2 \Delta \delta$	2 A			Δ
h. m.		m.	-	,		1		1	\bigcirc	1		
833.5	-	9.0	12	4.1	$+$	1.0	-	0.3	12	4.8	$+$	1
		6.4		4.4		0.5		0.2		4.7	+	2
		3.6		4.8		0.2	-	0.1		4.9		0
	-	1.0		5.0		0.0		0.0		5.0	-	1
	+	1.3		5.0		0.0		0.0		5.0	-	1
	+	3.7		4.8	$+$	0.2	$+$			5.1	-	2

Index-correction: off, $31^{\prime} .8$; on, $32^{\prime} .5$

	12	4.9
i	-	0.3

Barometer $\quad 29.68+0.6$
Temperature $+9.2-2.0$

		28	-	32.1
Refraction	$18^{\prime} .4$	2.	11	14.7
Correction	$-\quad 0.3$	$180+2 \delta$	169	9.8
		2ϕ	157	55.1

			t		-					2Δ			A		Δ
			m.	\bigcirc	,		,					\bigcirc	,		
		-	7.9	11	2.8	$+$	0.8	-		0.3		11	2.7	+	2
			4.9		2.4		0.3	-					2.5	+	4
		-	2.2		3.0		0.1	-					3.0	-	1
		$+$	0.3		3.0		0.0			0.0			3.0	-	1
			2.4		2.8		0.1	$+$					3.0	-	1
		$+$	4.9		2.7	$+$		$+$					3.2	-	3
Refraction		19^{\prime}.									A	11	2.9		
Correction	-	0 .									i	-	0.3		
											p	+	0.3		
Misty.											r	-	19.5		
											s	+	32.1		
											A	11	15.5		
										$0+$		169	9.8		
											2ϕ	157	54.3		

FOR LATITUDE.
Observations for latitude, October 8, 18:2.
Chronometer H fast $8{ }^{14} 50 \mathrm{~m} .4$.
Longitude, $+4^{\mathrm{b}} 47^{\mathrm{mg}}$ Greenwich $;-0^{\mathrm{h}} 21^{\mathrm{nh}}$ Washington.

Noon.	t	$2 \bar{\odot}$	0.39		$2 \Delta \delta$	24		Δ	
h. m.	m.	-	,		,	\bigcirc	,		
837.6	-10.7	1053.2	+ 1.5	-	0.3	10	54.4	+	1
	9.5	53.7	1.2		0.3		54.6	+	1
	4.5	54.3	0.3	-	0.1		54.5		0
	-1.3	54.4	0.0		0.0		54.4	+	1
	+ 1.7	54.3	0.0	$+$	0.1		54.4	+	1
	4.5	54.3	0.2		0.2	-	54.7	-	2
	+ 7.0	53.8	+ 0.7		0.2		54.7	-	\because

Index-correction : off, $3 \mathcal{2}^{\prime} .2$; on, $3 \mathfrak{2}^{\prime} .1$

		0
Barometer	$30.19+2.3$	
Temperature	$+\quad 2.4-0.5$	
	+1.8	

Refraction $\quad 20^{\prime} .1$
Correction $+\quad 0.4$

$2 A$	10	54.5
i	+	0.0
$2 p$	+	0.3
$2 r$	-	20.5
$2 s$	-	32.1
$2 A$	10	2.2
$180+2 \delta$	167	38.0
2ϕ	157	35.8

$$
\begin{aligned}
& 21 \quad 9 \quad 5 \\
& i+0.0 \\
& 2_{p}+0.3 \\
& 2 r-22.2 \\
& \because s+32.1 \\
& 2.10 \quad 3.3 \\
& 180+2 \delta 16738.0 \\
& \begin{array}{lll}
2 \phi & 157 & 34.7
\end{array}
\end{aligned}
$$

Refraction $\quad 21.8$
Correction $+\quad 0.4$

Misty.

ASTRONOMICAL OBSERVATIONS

Observations for latitude, October 12, 1572.
Chronometer H fast $55^{\mathrm{m}} .6$.
Longitude, $+4^{\mathrm{h}} 53^{\mathrm{m}}$ Greenwich; - $0^{\mathrm{h}} \mathbf{1 5}^{\mathrm{m}}$ Washington.

Noon.	t	$2 \overline{9}$	0.40	$2 \Delta \delta$	2.1		Δ
h. m.	m.	$\bigcirc 1$,	,	-		
¢ 49.0	-14.4	$8: 3.3$	+ 2.7	-0.5	8 80,3.5	$+$	1
	10.9	: 14.6	1.6	0.4	33.3	-	2
	7.5	:3, 0	11.7	0.2	3.5 .5	$+$	1
	4.0	83.5	0.2	0.1	2i. ${ }^{\text {a }}$	-	\%
	-0.6	35.5	0.0	-0.0	35	$+$	1
	+ 2.7	3.50	0.1	+ 0.1	36.0	-	4 Rumeter.
	(i.:)	:is.3	0.5	0.2	36.0	-	4 hajurterl.
	+ E\%	33.7	+ 1.0	+ 0.3	3.3 .0	$+$	(i) lijucter?

Iudex-correction: off, $32^{\prime} .0$; on, $\because 2.2$				
Barometer		30.1	$+$	
Temperature	+	3.5	-	0.8
			+	
Refraction		24.3		
Correction	$+$	0.3		

2.1	8	3.5 .1
i	-	0.1
$2 p$	+	0.3
$2 r$	-	24.6
$2 s$	-	32.2
21	7	$3 . .11$
$100+2 \delta$	164	36.3
2ϕ	156	57.3

t	$2 \bigcirc$	0.40	$2 \Delta \delta$	2.1		Δ
m.	\bigcirc	,	,	-	,	
-11.7	7 : 2.3	+ 2.2	- 0.4	7	$3.31-$	2
9.3	: 3.0	1.1	11.3		33.0 +	11 liajucted.
5.6	: 4.	0.4	0.2		35.1 -	2
- 2.4	34.2	0.1	-0.1		$: 3.5+$	1
+ 0.9	2i. 9	0.0	0.0		35.0	1
4.5	:3. 3	0.3	$+0.1$		$: 3.7$ +	2
7.8	33.5	0.8	10.2		$\therefore 4.5+$	4
+10.9	$3: 1$	+ 1.6	+ 11.8		35.0	1
$26^{\prime} .7$			2.1	7	34.9	
0.8			i	-	0.1	
			$2 p$	$+$	0.3	
			$\because r$	-	$\bigcirc \%$	
			$2 s$	$+$	32.2	
			94	7	39.9	
			$100+2 \delta$	164	36.3	
			2ϕ	156	56.4	
	$\phi=$	52.23 .1				

III.-OBSERVATIONS FOR LATITUDE TAKEN AT POLARIS HOUSE.

Observations of circum moridian altitules of the sun for lutitule, Alarch 18, 1973.
Chronometer II fast $\boldsymbol{z}^{l} 56^{\mathrm{m}} .4$.
Lougitule, $+4^{\text {h }} 51^{\mathrm{m}} .1$ Greenwich; - $0^{\mathrm{h}} 17^{\mathrm{m}} .1$ Wrashington.

Observations of altitudes of the sun near the meridian for latitude, Aprit 2:, 1873.
Watch slow 13 m. 8 .
Approximate longitude, $+4^{\mathrm{n}} 51^{\mathrm{m}} .1$ Greenwich $;-0^{\mathrm{b}} 1 \tilde{\sigma}^{\mathrm{m}} .1$ Washington.

Noou.	t	$2 \times$	0.43		$9 \Delta \delta$		d		Δ
h. m.	m.	\bigcirc	1		1	\bigcirc	1		
1144.6	+ 9.6	4799.5	+ 1.4	-	0.3	47	306	-	0
	13.6	2.3	+ 2.0	-	0.4		30.5	+	1
	$+16.4$	97.3	+ 3.8	-	0.4		30.7	-	1

Meridien celtitude of the sum, April 24, 1573.

Index-correction: off, 31.9 ; on, 39.5			
			$\frac{8}{6}$
Barometer	30.17	$+$	$\because .9$
Temperature +	+19.5	-	4.2
		-	1.9
For 45-9, 2 refraction	n $4^{\prime} .6$	-	0.1
$49^{\circ} .9,2$ refraction	On $4^{\prime} .5$	-	0.1

$$
\phi=75^{2} .4
$$

FOR LATITUDE.

Observations of circum-merilian altitudes of the sun for latitude, May 6, 1873.
C'lironometer slow $10^{\text {b }} 33^{\text {min }} 8$.

4 A

Obscrvations of circum-meridian altitules of the sun for latitule, ITay 7, 1873.
Chrowonteter slow $10^{\text {li }} 33^{\mathrm{m} .8 .}$.

Noon. h. m. 1322.5		t		\bigcirc		14		$\pm 才$	2.1			s
		m.	\bigcirc			,		,	\bigcirc	,		
	-	7.4	51	$42 . \hat{1}$	$+$		$+$	0.2	\%	43.7	$+$	4
	-	3.3		43.7	$+$		$+$	0.1		44.0	+	1
	+	0.1		44.0		11.0		0.0		44.0	+	1
		4.1		44.2	$+$	11.2	-	0.1		44.3	-	:
		\%.9		43.2		0.9	-	0.2		4.5	-	1
		1.1		40.7		1. 6	-	0.3		i1 2	-	1

	t	$2 \bigcirc$		0.14			$\Delta \delta$	2.1			
	m.	\bigcirc	,		,		,	\bigcirc	,		Σ
-	5.7	56	39.7	$+$	0.5	$+$	0.1	56	49.3	$+$	3
-	1.5)		40.5	$+$	0.0	$+$			40.9	+	1
$+$	$9 .:$		40.5		0.1	-	0.1		40.5	+	1
	6.0		40.5	+	0.5	-	0.1		40.9	-	3
	9.4		39.8		1.3	-	0.2		40.9	-	3
	12.		38.5	+	2.4	-	0.3		40.6		1

For $56^{\complement} .7,2$ refraction $4^{\prime} .0$

$$
\begin{array}{rrr}
2 A & 56 & 40.6 \\
i & + & 0.2 \\
2 p & + & 0.3 \\
2 r & - & 4.0 \\
2 \Omega & + & : 1.2 \\
& - & -.3 \\
\text { True double altitude of } \odot & \vdots 1 & -.9 \\
180+2 \delta & 213 & 56.1 \\
2 \phi & 156 & 47.2
\end{array}
$$

$$
0=7523.6
$$

Observations of circum-meridinn altitudes of the sun for latitude, May 21,1873 .

Latitude of Polaris House.

RECAPITULATION.

Final latitude $88 \quad 23.4 \pm 0$.1

After having siven the result of the observations tor latitude at Polanis Honse, the following observations, taken at Port Foulke, near the observatory of Jr. I. I. Hayes, might find a place here.

In order to obtain the chronometria difterence of longitude between the two localities named above, some nhmervans were taken by Mr. Bryan near the Port Fonke observatory, on May 24 . As it was smpposed that the latitude determined by Jayes was correct, it was not dermed necessary to redetemine the same. But as we have some observations on record, they may be used for deducing the latitnde, though they are taken about $2 \frac{1}{2}$ hours from the meridan.

PORT FOULKE

Observations of altitudes of the sun, May 28, 1873.

In comparing our result, with that obtained bs Hares, a difference of $39^{\prime \prime}$ will be found. For comparison's sake, the observations made by the Hayes expedition were again reduced according to the method adopted. They run as follows:

OBSERVITIONS FOR LATTTUDE TAKEN AT PORT FOULIE.
Reflecting-circle, circum-meridiom altitudes of the sun, September 9, 1, 15in.

$$
\text { Longitude, }+4^{10} .0 \text { Greenwich; - } 0^{\mathrm{b}} 16^{n} 2 \text { Washington. }
$$

	Suan.		t	2	\odot		i		? 3 d		0.49	$\because 4$		Δ
	h. m.		m.	\bigcirc	1		,					- 1		
	047.6			33	5.6	$+$	0.5	-	0.2	$+$	0.4	33.) (6.3)		Rejected.
			4.3		1.6		0.5		0.1		0.2	7. ${ }^{\text {a }}$	$+$	2
					7.19		11.5	-	0.1		0.1	7.5	-	1
		$+$	4. $=$		$\therefore .7$		1.1	+	0.2		0.3	7.3	$+$	1
			$\therefore .5$		5.3		1.1		0.2		0.4	7.5	-	1
			6.2		5.6		1.1		O.2		0.5	7.4		0
			9.5		4.7		1.1		0.3	.	1.3	7.4		0
			10.9		4.4		1.1		0.3		1.6	7.4		0
		$+$	11.5		4.0	$+$	1.1	+	11.4	$+$	1.2	7.3	$+$	1
	?													
Barometer	29.2										2.1	$33 \quad 5.4$		
Temperature	- $=-6$										$\because p$	+ 0.3		
	-										$2 r$	- 8.7		
Correction	-5										28	+31.9		
Refraction 7	7.1											- -		
-0	0.4										24	3382.9		
	-										$1-0+38$	$190-8$		
	6.7											--		
											20	$156 \quad 35.3$		

IV．－OBSERVATIONS FOR LATITCIOE TAKEN AT DIFFERENT ILACES．

C．IMP ON HAKLUYT ISLAND．
Observations for lutitule，ciram－meridian altitudes of the sun，June 7，1573．
Chrononeter H fast $3^{\mathrm{h}} \boldsymbol{7}^{\mathrm{m}} .8$ ．
Longitude，$+4^{\mathrm{b}} 49^{\mathrm{m}} .5$ Greenwich；－ $0^{\mathrm{b}} 18^{\mathrm{m} .7 \text { Washington．}}$

Noon． h．m ． 36.4		t	$2 \overline{\text { ¢ }}$	0.492	$2 \Delta \delta$		2.4		Δ	
		m ．		，	，	－	，			
		45.1	70． 45.3	$\left.\begin{array}{c} +32.7 \\ -0.1 \end{array}\right\}+$	0.4	80	7E．3	－	1	
		39.9	52.3	＋ 25.6	0.3		－2．2	－	0	
		36.1	56.8	21.0	0.3		T8．1	$+$	1	
		20.7	（60． 2	17.9	0.3		T－3，	－	1	
			65.0	13.4	0.2		7＋6	－	4	
		9－0	67.6	10.0	0.2		77.8	$+$	4	
		81.5	70.7	7.4	0.2		7	－	1	
		$1 \because .2$	73.0	5.4	10.2		㕲品	－	4	
		14.2	75.0	3.2	0.1		78.3	－	1	
		8.3	75.8	$1.1+$	0.1		78.4	－	2	
		4.1	77.9	0.3			78.2		0	
	－	0.5	78.2	0.0			－－\％		0	
	$+$	3.5	78.8	0.1			72．9	$+$	3	
		7.7	72.0	1.0	U．1		77.9	$+$	3	
		10.9	$71 . .3$	1.9	0.1		\％ 6.1	$+$	1	
		13.8	75.1	3.1	0.1		78.1	$+$	1	
		17.6	73．7	5.0	0.1		78.6	－	4	
		$20 . ぬ$	71.7	7.0	0.2		78.5	－	3	
		24.7	（68．5	9.8	0.2		\％8．1	$+$	1	
		29.3	14.9	13．8	11.2		78.1	$+$	1	
		36.0	57．2	20.9	0.3		73.9	＋	4	
		39.5	53.8	25.0	0.3		78.5	－	3	
		43.1	42.8	29.9	0.4		78.8	－	1	
		46.4	45.0	$\left.\begin{array}{c} +34.6 \\ -0.1 \end{array}\right\}+$	0.4		39.1	－	9	Rejecter

$$
-5-0.1
$$

$$
\begin{array}{rrr}
2.1 & 71 & 78.2 \\
i & - & 0.1 \\
2 p & + & 0.2 \\
2 r & - & 2.8 \\
2 s & - & 31.6 \\
& - & 20 \\
100 & 20 & 43.9 \\
& 2 \phi & 3.8 \\
\hline & 154 & 53.9
\end{array}
$$

$$
\phi=\pi-27^{\prime} .0
$$

CAMP ON HAKLUYT ISLAND.

Observations for latitule, circum-meritict altitutes of the sun, June 7, 1373.
Chronometer II fast $3^{\text {b }}$: $_{\text {m. }}$. s .
Longitude, $+4^{\text {h }} 49^{\mathrm{m}} .5$ Grecuwicu; $-0^{\mathrm{h}} 18^{\mathrm{m}} .7$ Washington.

CAIPP ON HAKLUYT ISLAND.
Observations for latitule, circum-meriditn altitudes of the sun, June 7, 1873.

Index-correction: off, $31^{\prime} .0$; on, $31^{\prime} .2$	2.1	70
	i	

Refraction $2.9+2 p+0$.

Temperature $+29.0-6$
$2 s \quad$ - 31.6

$$
2 \odot \quad 70 \quad 43.9
$$

$$
-5-0.1 \quad 180+2 \delta \quad 825 \quad 37.8
$$

$$
\begin{array}{lll}
2 \phi & 154 & 53.9
\end{array}
$$

$$
p=\pi=2 \pi^{\prime} .0
$$

CIIIP ON NORTHUSBERLAND ISLAND.
Chronometer H fast $3^{\mathrm{b}} 3^{\mathrm{m}} .4$.
Osservations for latitude, circum-meridian altitudes of the sum, June 10, 15:.

```
Longitude, + \(4^{\mathrm{b}} 4^{\mathrm{mln}}\) Greenmich; - \(0^{\mathrm{b}} 21^{\mathrm{mm}}\) Waskington.
```

```
Noon.
Aoon. t
```


h. m. m.
$34.0\}-34.3$?
$\left.\left.\begin{array}{r}3 \\ +0.3\end{array}\right\}-0.3\right\}$

$\left.\begin{array}{r}-30.4 \\ -0.3\end{array}\right\}$
$\begin{array}{lll}17.3 & 15.3 & 0.3\end{array}$
$602+1$
$\begin{array}{llllll}-0.13 & 50.5 & 1.29 & 0.2 & 62.9 & 0 \\ -0.3, & & & & \end{array}$
$\begin{array}{llllll}-23.4\} & 53.7 & 9.1 & 0.1 & 62.9 & 0 \\ -1.3, & & 0.3 & 6.9 & 0.1 & 63.3-4\end{array}$

-17.0
$-\quad 0.3$
-13.9
$-\quad 0.3$
39.63
30.1
$63.0-1$
$\begin{array}{ccc}-10.4 \\ -0.3\end{array} \quad 60.3 \quad 1.9+0.1$
$63.3+6$
$\left.\begin{array}{lll}-0.3 \\ - & 0.3 \\ - & 0.3\end{array}\right\} \quad$ 识只 $\quad 0.8$
$63.3-4$
$\begin{array}{lll}-0.3 \\ -0.5 & \text { (i2. } & 0.2\end{array} \quad 10.7+2$

$\begin{array}{llll}\left.+\begin{array}{r}0.0 \\ -0.3\end{array}\right\} & 63.0 & 0.1 & 63.1-2 \\ +3.4\} & 0.2 & 0.2 & 13.8+1\end{array}$
$\begin{array}{llll}+3.4\} & 0.6 & 0.2 & 12.8+1 \\ +0.3\} & 62.4 & 0.1 & 63.0-1\end{array}$
$\begin{array}{llll} \pm & 6.6\} & 63.4 & 0.1 \\ \pm 0.3 ; & 61.8 & 63.0-1 \\ \pm & 1.5 & -0.1 & 63.1-0\end{array}$
Index-correctiou: off, $31^{\prime} .2$; on, $3 \mathbf{1}^{\prime} .0$

Barometer	0 0 Temperature
	$+34.5-8$
-3	

Refraction
2.9
Correction - 0

$$
\begin{aligned}
& \therefore 2 \quad \text { i1 } 62.9 \\
& i+0.1 \\
& \because p+0.0 \\
& \because 0-0.7 \\
& \text { 2s - 31.1i } \\
& 28 \quad 71 \quad-9 \\
& 10+9 \delta \text { ? } \\
& \because 6
\end{aligned}
$$

$$
\phi=\pi \begin{array}{ll}
i & 19.4
\end{array}
$$

$\therefore \mathrm{A} O$

NORTHUMBERLAND ISLAND.

Observations for latitude, circum-meridian altitudes of the sun, June 10, 1873.
Chronometer H fast $3^{\mathrm{b}} 3^{\mathrm{m}} .4$.
Longitude, $+4^{\mathrm{h}} 47^{\mathrm{m}} .0$ Greenwich; - $0^{\mathrm{b}} 21^{\mathrm{m}} .2$ Washington.

$$
\phi=7 \% 19^{\prime} .2
$$

CAMP ON CONICAL ROCK.

Observations for latitule, circum-meridian altitudes of the sum, June 1s. 1573.
Cluronometer H fast : $49^{m} 1$.
Longitude, $+4^{12} 3^{n}$. G Greenwich; - $u^{12} 34^{m} .4$ Trashington.

Milnight h. m. 1450.0	t	$2 \bar{\square}$	0.45		. 1		Δ
	m.			\bigcirc	,		
	-10.5	1941.0	1.6	19	39.4	$+$	\because
	1.7	40.0	0.7		39.3	$+$	3
	3.4	40.0	11.2		:	-	\geq
	-0.3	39.5	0.0		$: 30.5$	+	1
	$+2.7$	39.6	0.1		30.5	+	1
	- 3	41.3	19.5		:19.	-	\because
	9.0	40.3	1.8		39.6		0
	$+19.0$	41.7	-		39.6		0

Inder-correction: off, 31.5 ; on, 31.3	2.1	19	39.6
	i	$+$	0.1
Refraction $\quad 0811.3$	$\because p$	+	0.3
Barometer 30.1 +2	$\because r$	-	11.3
Temperature $+5.5-6$	28	-	31.6
$-4-0.5$	20	15	万7. 1
	$100-2 \delta$	133	7.15
	$\because \delta$	15	4.7

As the following observations, taken at Newman's Bay ly Mr. Chester, are, besides those taken loy the late Captain Hall dming lis sledge journey, the only ones on record taken north of Polaris Bas, we propose giving them at this place, thongh they were not onls malle use of to obtain the
 worked fiom Polaris Honse, $+4^{h \prime \prime} 22^{5}$ (ireenwirl. (Compare the observations for time made there
 might have obtained the lonsitude of the ramp at Newman's Bay by caryivg the chronometar forwarl ; but untortmately the time-piece (hox-chronometer D) stopped for some thirty minntes, resulting from a collision of the boat in which it was placed with a heary ice-field, which sunk the boat, nearly dentroging its crew.

CATIP AT NEWMAN's Bay.
Observations for latitude and time, Jeme 17, 1812.

[^23]
B.-OBSERYATIONS FOR TIME AND LONGITUDE,

The obserpations for longitude were taken either on the prime rertical or as near to it as could be possibly done. As the sun or any hearenty body, when on or near the prime rettical, mores nearly miformly, we are justified in combining sets of ohservations taken on or near the prime watical into groups ; taking the means and reducing each observation to that epoch by making use of the well-known relation that the variations of the altitnde are eynal to the rariations of the time multiplied by the cosine of the latitude, viz:-

$$
\lrcorner h=\lrcorner t .
$$

or, as our variations are referred to the double altitudes, and $\lrcorner t$ in time, we set the formula-

$$
\lrcorner h=30\lrcorner t \varphi_{0}
$$

Adding then the corrections necessary for index-error, reftaction, parallax, and semi-diameter, we obtain the single results of the observed double altitudes at the epoch.

Now we have to deduce the hour angle from the well known formmie-

$$
A_{s}=\varphi_{s} \delta_{s}+\varphi_{v} \delta_{c} \bar{i}_{c}=\varphi_{c} \delta_{s}+\varphi_{v} \delta_{c}+\varphi_{c} \delta_{c}\left(\tau_{c}-1\right)= \pm(\varphi-i)_{c}+\varphi_{c} \delta_{c}\left(\tau_{c}-1\right)
$$

$$
x=90^{\circ}-8+b
$$

$$
M=(\varphi-i)_{c}
$$

or-

$$
A_{s}=M_{s}-\varphi_{c} \partial_{c}\left(1-\tau_{c}\right)
$$

$$
\left(1-\tau_{c}\right)=\left(\Gamma_{s}-A_{s}\right): \phi_{c} \partial_{c}
$$

which latter formula was chiefly used in onr reductions, though in some instances we made use of the formula-

$$
\tau_{c}=\frac{1-M I_{s}+A_{4}+c_{1} i_{n}}{\varphi_{0} i_{n}}
$$

I-OBSERVATIONS FOR TIME TAKEN AT POLARIS BAY OBSERYATORY.

Observations of altitudes of the sun for time, August 12, 187..

Observations for time, Lugust 12, 1572-Continued.

II.-OBSERYATIONS TAKEX IN KENNEDY CHANNEL AND SMITH SOUND.

F. Meter, Observer.

Observations of altitudes of the sum for time, Aufust 16, a.m., 187..
Approximate latitude, $80=2.0$ - Longitude, $+4^{4}: 3.3$ Greenwich; - $0^{6} 32 \mathrm{~m} .9$ Washingtou.

Obsercations of altitudes of the sum for time, August 18, a. m., 1872.

> F. Meyer, Observer.

Chronometer F fast 18 m .50 .

ASTRONOMICAL OBSERVATIONS

Observations of altitudes of the sun for time, August 21, a.m., 1872.

> F. Meyel, Observer.

Chronometer F fast $20{ }^{\circ} \mathrm{F} .0$
Approximate latitude, 79 : 30.8 - Longitade, $+4^{\mathrm{h}} 41^{\mathrm{m}} 1$ Greenwich; - $0^{\mathrm{h}} 27^{\mathrm{m}} .1$ Washington.

Observations of altitudes of the sun for time, August 24, a. m., 1872.
Chronometer F fast $14^{\mathrm{m}} .75$.
Approximate latitnde, $\uparrow 9^{\circ} 36^{\prime} .2 .-$ Longitude, $+4^{\mathrm{h}} 32^{\mathrm{m}} .6$ Greenwich; - $0^{\mathrm{h}} 35^{\mathrm{m}} .6$ Washington.

Aeroming to a note remowed, the error and rate of chromometer Z, usen heve in a fied computation, is recorded as-
 that needs a correction of $-1^{\prime \prime \prime} .19$ from observation on hamd August 19.

[^24]Observations of altitudes of thr sun, for time, September 6, 1si:

Ohsermations of altitudes of the sum for timm, Srptember 8, 18-:
Chromometer 11 liant ol fond.

t	$\because 0$		0	
h. m.	0			
1382.33	19.506	$90-\phi$	1130.1 Comp. . 11	11.5.20\%
3.33	47.5	d	5) 20.7 I.	11.16:20:
4.47	41.0	M	1550.8 中.s.	$10.1 \times 148 \times 0$
5.10	336.7			$0.07044 \mathrm{7EO}^{\circ}$
6.93	$: 11.7$	Q	$0.1-02 \mathrm{c}$	0.38415900
[1, 97	13,5	s.	11.99565811	
11.07	$\therefore 8$		$\cdots \times$	h. $\quad 1$.
1:1,1\%	1-58.0		τ	$1 \because \sim .1 i 1$
14.18	5.10		Eq11:3110]	- $\because .71$
15.18	18.11		Nu:un time	4 4.939
--	--		11	$13-60$
1: 2 R.in $\because 1$	19×2		Chronometer fast	-13.67

$$
\begin{aligned}
2 p & +0 n \\
i & +1
\end{aligned}
$$

Trmperature $+: 31^{\prime} .7-7.0 \quad \ddot{\sim}-: 31.9$

$$
-6.8
$$

$$
\begin{array}{rrr}
\because A & 18 & : 10 \\
1 & 9 & 19.5
\end{array}
$$

Observations of altitules of the sun for time, September 10, 1siン.

Ohserations of altiturles of the sum for time, Soptember 13, 15:?.

ASTRONOMIUAL OBSERVATIONS

Observations of altitudes of the sun for time, september $14,185$.
Chronometer it fast sha.

ohnerctions of altitures of Capelle，October 2，1572．
Chronometer II fast ©h 4 回mo．

		$\stackrel{2}{2} \text { Alt. }$			
19 1－1．！ 1	C＇ilulla	90 anc．：	！11－p 1112	\＄．	0.1911518
$\because 10.4 ;$		91． $3: 3$	d 40×1.5	1）．	
？		$1 \because .10$	$M \quad 3053$	p．δ_{6}	（）．10：311401
$\because 1.00$		27.3		． 1	0.71419
43		41．：		．${ }^{\text {I }}$	0.10104
－		－－		ப＇	
$19 \div 26$	$\because .1$	9111.4		T，	10．07：3日 310
	－ 1	111			
	，	19.11			h．m ．
Barometer $30.05+1.9$	21	－？ 1		T	1－10．7
＇temprature +1.3 － 10.3	$\because 8$	0.11		＂	5 7．84
＋1．1\％				＂	吅 9411
	$\because t$	91 ！ 10		\％	$1 \because 46$
	1			int．	10） 56
				$\Delta / 1$	－1．74
				time	10 3 3.46
				II	1：1）$\because 2.8$
			Chiro	tel fi	$\checkmark 46 \sim 011$

（—OOBSLEVITIONS TAKEN AT POLARIS IIOUNE，

$\begin{array}{lr}\text { Rarometur } & +10! \\ \text { Temperature }-6.5 & +1 . . \\ & +\cdots . .\end{array}$
Refraction $: 3: 3+0.1$

7．$\quad m$ ．

$\therefore 2.4 \%$
$11): 3.1$

In the preading ohsersation，it happened that Cisstm was brousht on to Follas，as they stood vertically now atove the other（haring the sam azimnth）．The redurtion was made in an indirect way，assuming first the chronometereror and computing the attitndes of the stars，minating thin process until the sum of the altitudes comberming to the assmed poch was fomm to be rimal

Obsercations of altitules of Capella fim time, November 18, 1872.

Ojservations of altitudes of Comella for time, 7romber 19, a, m., 1siz.

Altitudes of r Cise Majoris for time，Nurch $4,157.3$

Meridian． h．m．	h．m．	$\begin{array}{r} \Delta \mu \\ m . \end{array}$	h．m ．	2．T.	0.11931	0.54154	－	\because a compritiod	Mremped．	＊
으 47．16	－$\because 4.3$	-0.44	$\because 4 \because 2$	ロージイい	－2061	0.0120	0．－47： 1 －	115 －8．t	$5!1$	－ 0.7
	\because ald：	0.14	吅㫛	\cdots－－	－ 90209 $^{\text {a }}$	（1940	－4107	1161%	12－	＋ 0.4
	$\because 36.54$	11.3	ain	－－！11	（1）1498	1011：	－－．14n\％	31.0	$\because 7.3$	－1．3
	$\cdots 8$	11．4：	33.0	－9\％9	（1）	101：30	$-. .110$	$\because-\therefore$	？	1．f；
	$\because: 110 ;$	10.41	31.44	－96：M	10960	10： 4	－\％1：	－10．11	49.9	＋ 11.7
	$\because: 1.60$	11.31	？6：	9106 t	1 yc	10.54	$\cdots \times 1=$	11i 32.4	34.4	＋ 3.11
	$\because 1-4 \%$	$11 .:$	1：4．3：	91109	＂省汤号	1 mal	二ッ斤い	45.1	ti． 4	－11．：
	$\because 19 \%$	11．：3	15.94	917：3	いごいこ	1いい	－niol	\therefore 为		－ 0.6
	$\because 14.31$	$11 .: 3$	14．7：	以以リ	11： 20	117\％		11－f． 5	Sn	－ 1.1
	－ 211.9	－11．3i	12．2．：	12．20	11.15 .4	11－8．3	$\therefore マ$－\％	11.7	$1+i$	＋ 10.4

㟋	$\begin{gathered} \text { eridian l' } \\ \text { h. m. } \end{gathered}$	-吅。	（ $4!1$		
a	1：3 4\％it	λ ，	4－118	； 1	9．－3．）－9
μ_{n}	？ 510.06	7． 0_{5}	11．30：\％	30.	19．41い
sitl．i	14800	Cinstant	9．11：1		！－－小！
－μ	－ 2.44				＋11．75：7
Mean time	14.516	m ．			
Climmoneter H d．at	7 － 17.1	－ 0.112			
H	$\because 47.16$				
	numerl．）				

In the athwe mbervation，the name of the star was not siren，and it mas formally assumed to

$$
\begin{aligned}
& \text { The probable error of oue matration............. }= \pm 1.3 \\
& \text { The limit of rejection }=1^{1} . \boldsymbol{T}
\end{aligned}
$$

If．therefore，we reject the sisth observation．or correct it for $1^{m \mathrm{~m}}$ in time，the rest mould agree among each other．

[^25]

		$2 \times$			
	h．m		c）＇		
	1 11.60	： 2.26 .7		ϕ ，	1）0010 \％
	＂－n．tio	19.9	（）+13	14	
	？	1：． 3	$M \quad \because 1 \quad 3.1$	pros	O119\％
	67， 5	31．		－	
	吹け	$3 \cdot \alpha$		c． $1 /$	11．5．EA1
	－．．	－．．－			
		$\because \because 111$		τ_{1}	
	$\because 1$	＋ 1103			h．m ．
i＂	；	＋ 3.5		T	11204
larometar $30.131+0.7$	$\because r$	－ 5.5		B4リ：110．	－1．6！
＇Temperature－＂．．9＋0．6	\because	－－： 11		Ms：atilim＇	1 10：27
＋ 4.3	2.1	$\therefore \quad 6$（in		W：atrl	
	1	110×1		Watchishe	13，74

Obserations of lunar distances, May 6, 1573.*

Formule.

$$
\begin{aligned}
& A_{s}=\varphi_{0} \delta_{s}+\varphi_{c} \delta_{c} \sigma_{c} \\
& \odot_{c}=\left(\sigma_{s}^{b}-x_{c} \odot_{s}^{1}\right): \alpha_{s} \odot_{c}^{1} \\
& \mathbb{C}_{c}=\left(\odot_{s}^{1}-x_{c} \mathbb{C}_{s}^{d}\right): x_{s} \mathbb{C}_{c}^{d}
\end{aligned}
$$

*The reductions of the few lunar distances recorded here were made under the suposition that the are was read backward frum 116° 30^{\prime} at the rate of $30^{\prime \prime}$ instead of $15^{\prime \prime \prime}$ for one division of the veruier; the sestant used being one by stackpole, livided to 15^{\prime}.
+Compare Chauvenet, Manual of Spherical and Practical Astronomy, p. 410.
7 A 0

Obsercations of altitudes of the sun for time, May 21, 1573.

	t		\because Alt.		
	h. m.		- 1		-
	19 90.0;	\bigcirc	40 3 $3 .: 1$	$10-0$	11 3n.li
	31.09		25:3	δ	21121.0
	$\because 31$		21.2	M	318%
	-3:34		$17 .:$		
	29.90		13.7	ϕ_{c}	412010-5
	$\because 4.5$		9, ${ }^{2}$	δ_{c}	0.99359202
	$\because 111$		0.2	$\phi_{c} 川_{1}$	0.1->-95 56
	3.8.5.5		1.5	A	0.33811
	26.47		3985	Comp. Ws	10.421827
	-2.10:		54.8		- 0.00323 2901)
	$\because 2.131$		51.5	τ_{c}	- 0.01712 344
	$\because 10$		425		
	U8.tis		45.2		h. $\quad \mathrm{l}$.
	$\because 1.19$		8.1	T	63.92
	80.75		3×8	Equatiou	- 3.61
	819			Mean time	60.08
	30.0,		32.0	II	19 26.04
	-_-		-	Chronometer H slow	$10: 34.04$
	1986.31	2.4	$39.59 .6 \pm 11.1$		
		$\because p$	+ 0.3		
8		i	+ 3.5		
Barometer $\quad 99.59+1.0$		$2 r$	- 5,		
Temperature $+24.3-5.4$		$\stackrel{\sim}{\sim}$	-31.7		
-4.1		2 A	3926.2		
		A	1943.1		

Observations ot equal altitules of the sum，May $2,1873$.

$\stackrel{t}{\text { h. }} \stackrel{m}{ }$		$\because \mathrm{Alt}$		Middle. د h．m ．
$\bigcirc 211$	$\bar{\sigma}$	$40 \cdot 30.0 x_{1}$	1	13030
21.5		$30.0 \times{ }_{8}$	\because	． 31
20．49		$40.0{ }^{4}$	：	．
08.09		（i）．1）\times_{4}	4	． $30+1$
？		$410.0 \times{ }_{5}$	\therefore	$\therefore+\because$
$\because-43$		10.0×0	（i）	$\therefore-1$
30.14		O10，1）\times	；	$26+5$
31．3：		30.0		－
33．3－		4 411	II	1323.31 ± 1
8.10 .1		50.0	+ Equation	－ 0.94
36.74		42 0.0	－Equation	＋
32.36		10.0	Chrmommer If	110.4 .44 slow．
41，リ1		20.11		
－ 10.33	？	4320.11		
1.91		25，11		
Q10：3		30．11		
\cdots		23．1		
3．：－		40.0	Index－correction：	off， 2 B ：on，$\because-2$
4.3		45.11		
$\therefore 43$		－11． 11	Barometer	20－：
6.13		－5， 11	Temperature	＋ 31.4
7．00		440.4		
－：．		$\therefore 1$		
－2i：		10.0		
9\％\％		15.0		
10.41		20.10		
11.30		－5．11		
12.11		30.0		
12．20		$3 \mathrm{3}, 0$		
13.5		40.0		
14．0		45.1		
15．4		80.1		
108		－		
19 16．5	®	$4120.11{ }^{10}$	Faroweter	$\because 19$
		$10.0{ }_{6}$	Temperature	$+3.3$
1：1．－1		$11.10{ }_{6}$		
$\because 1.51$		$10-511.1 x_{1}$		
号号		${ }^{110.0} x_{3}$		
$\because 4.8$		\％0．0 $\times 2$		
90， 0^{1}		$\because 0.0 \lambda_{1}$		
－		10.0		
\％		$40 \quad 0.0$		

$$
\begin{aligned}
& \text { Nolar eclipse, May ̈li, a. m., 187:? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jormuler. }
\end{aligned}
$$

First contract by N．Hayes．					Observatory．	Last ly W．D．Bryan．				
	h ．	m ．	s.	（8）		h ．	m ．	8.		\bigcirc
11	4	$5 ;$	49		pepre	$1{ }^{1}$	$4!$	25.2	1 unuso	7－23．1
1）-11	\because	21	41.5	！／$\rho \delta_{1} a_{s}$	\＆． $1 /$	\because	919	41.5	Geoc．	1H．4
D	7	？	10．\％	$=p \delta_{s}$	b．－0．8？	9	16	6.7		
Show	8	7	16.0			8	7	13.0	ψ	ガツ 2.1
Noan time	1.5	30	20．5	$14.411 .11+$	$\mu_{s}-0.80 .1$	17	9：	边		
Longitude	4	51	（36．．）			4	51	（36．．）	$\phi_{c}+11.20 \cdot 2$	$0,+0.15$
T	\because	昶	2.5			$\because 2$	14	58.7	$\mu_{0}+0.41 .5$	$\mu_{0}-0.575$
μ_{0}	4	$1 \because 5$				4	12，5			
$\Delta \mu$	＋	3.3				$+$	3.7			
μ	19	49.2				21	： 3.16			

$$
\text { Mean, }-0^{m}: 30 \text {, or }-1^{\text {wn }} ; \text { lonsitude, } 1^{11} 51^{m p} 18^{4}
$$

as the final result of the eclipse，neglecting the effect of refraction for points having the same altitudes in different distances．The correction is small and amomnts to an increase of the olscered coürdinates of abont $0.03^{\bar{i}}$

If we might not smspect the first contact to be observed too late，and the last a little too early， the record would furnish means for determining（b）the polar avis，as the effect of the equatorial radius in parallax is quite small．The rifference mas also be explained，supposing the tabular place of the to be $10^{\prime \prime}$ in emor．

FOR TIME AND LONGITUDE.

Obserrations of altitudes of the sun for time, May 2-, $\mathbf{1 8 7 3}$.

Chronometer If ran down on the 3 bth.

Observations of altitures of the sum for time, May 31, 1si:.

Chronometer If fast $3^{h} 7^{m} .39$.

FOR TIME AND LONGITUDE.

Observations of altitudes of the sun for time, Tune 1, 1s:

Chronometer H fast $\mathrm{m}^{3} \mathrm{~m} .61$.

Before recapitulating the preceding observations, we propose giring some others taken in connection with the same at Van Rensselaer Larbor and at Port Foulke. The former were taken al few feet from the mass of lead with a copper bolt, referred to by Dr. Kane; * the latter very near to the site of Dr. Hayes's observat ory.

TAN RENSSELAER IIARBOR.

Observalims of altitudes of the sum for time, May 1.5, 1 sis.

Chronometer II slow, before starting, May $\begin{array}{llll} & 10^{\text {hi }} & 34^{\mathrm{m}} .03\end{array}$ after retaru, May $21 \quad 34^{\mathrm{m}} .04$
on Polaris House time $10^{1 \mathrm{x}} 34^{\mathrm{m}} .04$
on Van Rensselaer Harbor $41^{\mathrm{m} .65}$
Difference of longitnde $\quad \tau^{\mathrm{m}} .6$

PORT FOULKE.

Observations of altitudes of the sum for time, May 28, 1873.

Cbron. H.	$2 \bar{\bigcirc}$	Chron. H .	$2 \bar{\square}$	Chron. H.	$2 \bar{\square}$
h. m. s.	- ' 1	h.m. s.	' "	h.m.s.	D '
92093	411415	93033.2	40 1: 30	94330	385745
2200	0545	$31 \because 0$	\& 15	1434	5015
2340	405340	枵 40.0	015	$45: 8$	4430
2506	4515	3345.2	395430	4642	3745
2631.2	3645	: 3150	4700	4746	3115
92331.8	$\begin{array}{llll}40 & 5 & 5 & 08\end{array}$	93242.5	400042	94538	384418

		For ti	\bigcirc,	3 sets of	lings each.
		2 ¢	4055.1	$\begin{array}{ll}40 & 0.7\end{array}$	3844.3
		i	+ 0.1	+ 0.1	+ 0.1
		$2 p$	+ 0.3	+ 0.3	+ 0.3
		$2 r$	- 5.4	- 5.5	5.7
		28	- 31.6	-31.6	-31.6
	c '	2.4	40185	3924.0	3878.4
90° - ϕ	1141.7	A	20 ! 2 \%	19420	193.7
δ_{0}	21 3.5, 8,9	$\sin A$	11.344 .5	0.33710	0.360
	$3317.5,5,6$	$\sin M$	0.0480	0.54 -90	0.54-93)
		Difference	-0.90433	-0.211-0	- 0.803:
$\log D_{c}$	9.30685	Log	$9.31033{ }_{n}$	9.8.5 3^{3}	$9.34504{ }^{\text {n }}$
$\log \delta_{c}$	9.96839	Constant	0.9754	0.2754	$9.20 \sim 24$
Constant	9.27524	Difference $\cos \tau$	$\begin{array}{r} 0.025090_{n} \\ -11.0-42 . \end{array}$	$\begin{aligned} & 0.05069_{n} \\ - & 0.1238 \end{aligned}$	$\begin{aligned} & 0.071-0)_{\mathrm{n}} \\ - & 0.13!14 . \end{aligned}$
		T	$\begin{array}{ccc} h . & \text { m. } & \text { s. } \\ 6 & 19 & 19 \end{array}$	$\begin{gathered} \text { h. m. s. } \\ \text { f: } 2 \mathrm{Z} \\ 27 \end{gathered}$	$\begin{array}{ccc} h . m .8 . \\ 641 & 26 \end{array}$
		Equation	- 257	- 25 \%	- 257
		Mean time	61622	62530	63829
		H	$923: 32$	93242	94532
		Fast	$3 \div 10$	3712	379

Chronometcr H fast $3^{\text {h }} 7^{\mathrm{m}} .17$.
h. m.
1873, May 6, by lunar distances* ... 4 . 51.2
May 15, by ehronometer-difference, Van Rensselaer Harbor 51.1
May 26, by solar eclipse... . . . 51.3
Mean..... ... 4 . 51.2
May 28, by chronometer-difference, Port Foulke, east. 0.4
from Greenwich, Port Foulke, west . 4 40.8 therefore, for Port Foulke, $4^{\mathrm{h}} 51^{\mathrm{m}}$ instead of $4^{\mathrm{h}} \tilde{5}^{2 \mathrm{~m}} .0$, may be nearer the truth, and shonld be arlopted.
From former times, the best results are :-

By disappearances of 2's first satellite :-
1860, 1 observation by A. Sountag .. . 4 51.2
1861, 3 observations by H. G. Radcliff. ... 52.3 ,
Port Foulke longitule, mean . 4 51.0
The result $4^{\mathrm{m}} 54^{\mathrm{m}} .4$, by chronometer 2007 , and the result $4^{1 \mathrm{~h}} 55^{\mathrm{m}} .8$, by estimating the geodetic difference to Van Rensselaer Harbor with Dr. Kane's longitnde, $4^{\text {h }} 43^{3 n} .5$, are too far out.

We have, therefore, in these high northern latitudes, two well-determined positions :-
J. Port Foulke, latitude $78^{\circ} 18^{\prime} .0$, longitude $4^{1 \mathrm{~h}} 51^{\mathrm{m}} .0$ west, or Polaris House, latitnde $75^{\circ} 2: 3.4$, longitude $4^{\mathrm{h}} 51^{\mathrm{m}} .4$ west.
II. Van Beusselaer Harbor, latitude $78^{\circ} 37^{\prime} .1$, longitude $4^{\mathrm{h}} 43^{\mathrm{m}} .5$ west,

Or, respectivels, $17^{\mathrm{m}} .2,16^{\mathrm{m}} .8$, and $24^{\mathrm{m} .7}$ east of Washington,
Or, in are, $\quad 4^{\circ} 18^{\prime}, 4^{\circ} 12^{\prime}$, and $6^{\circ} 10^{\prime}$ east of Washington.

* Currespondiog observations made at Wasbington on the same day will bring this result up to 51m.6, as the American Ejulmeris was about $-10^{\prime \prime}$ in error.

PENDULUM EXPERIMENTS.

-

PENDULUMIEXPERIMENTS.

Tha pendulum-blamations recorded hereatter were made with the llayes pendulum, wheh had heen swum at C'mbrinse, at Port Foulke, and at Wash.
 Bay and at lolaris House, where it was ahmodoned, because our means of tratusportation mere very limited. As the instrment is not in our bands, we frote the description of it giren by Mr. Charles A. Schott:* "It is an invariable, reresible brass pendulnm, perfectly symmetrieal in all its parts, as show in the annexed figure. It is rery nomly y nchronoms, thongh not comsertible, ats form indicates. Its-

> Total length is. feet 7.5 . inchers.
> Widtlı 1.4 inches.
> Thicknes.s.......................... 0.7 inches.
> Distame hetween the kniferedges 39.4 inchur.

The sted knife-edges are 14.2 inches from the ends of the bar, 3 inches lon, 0.3 inch high, and 1,27 inch wide at the base; their section is triangular. The weight
 throug a perforation of the lar, rests upon sted phates. Thes are serewed to a hase pate, and suppoter by a heary homk of wood, which is fastenes to the rase in which the penduhm swiugs. There is no adjustment for horizontality the supporting sted plates other than what is given by the vertieal positum or the "ase. The are of vibration is read off on a swale at the bottom ol" the ease, which has a glass door in fiont, permitting a view of the whole pendulum. Twot ther mometers are permanently fastened inside the box; one fust above the smport, the other on a level with the swinging knife-edge."

As the description of the observatory at Polaris Bay has ahearly been wiven, we limit ourshes here merely to stating how the peuduhum was monnted. In order to disconmet the instrument as far as posible from the small lut in whirh it was swung, a sutare bole was cut throush the floor of the latter, in the middle of the westurn wall of the observatory. U'ulemeath this opening a beary piece of timber was frozen solid to the inomad. As the floor of the building did not rest directly on the soil, but was placer] on brams of oak, the plank, mentioncd before, was entirely ixdated from the oben vatery and berame as firm noder the inflemer of

 finitusonian Institntion.
t Is will he seen homation, a third thermometer was firstomed inside the tox at the time the axpriments were mate al Polaris Ilouse.
the low temperame, after the comen of a lew days, as the frozens suit itself, upou which it rested. On this piece of timber the pemblum-box was screwed in sach a mamer that the phane in which the pendulum was to be swang was exactly in that of the meridian, so that the utmost steadinces would be secured. I placed a strong bared ontside the observatory on the same phank on which the pendulam. box rested. The barrel was smrommed ly a heap of gravel, which was moistred with sea-water in oder to cement it in a solid mamer to the phank. After this was done, we cut a hald throngh tho western wall of the observatory, "xactly lebind the phace where the pendnlum-box was fastened. A halfinch iron bar, bent at right angle, was passed through this hole, and one end of it was fastened to the back mall of the box by means of five screws. The other end, (see diagram,) whieh

Was about 3 feet above the center of the barrel, was newed to a 8 -ineb iron bar, wheb was set up nearly perpendicular in the kes. After having arcomplished the work so far, the barrel was filled with gravel and sam, over which we poured some water. Before the mass was frozen hard, I leveled the pendulum-box as nearly as could be done; and when it was found to be tolerably level, the bar outside wis fastened by means of ropes to the wall of the observatory, in order to prevent it from giving way and from disturbing the position of the box. After tro days had elapsed, the gravel was fozen very sulid, and the ropes were removed. It was fomd that the box hai not changed its level, but at the same time I saw that it was not quite as steady as I had anticipated. To secure it better, a hold of 3 inches diameter was drilled through the floor of the observatory 1 foot north of the box, and another one of the same diameter, and at the same distance south of it. Throngh each of these boles an iron bar, 1 inch thick and 3 feet long, was drisen into the frozen soil, and comected with the box by means of two other iron bars bent at right angles, similar to
the one mentioned above, and scresed together in a simitar manner, as shonn in the accompanging small diagram. In this way snffieient stability was obtained. In omer to tell the steadiness of the

bos, I placed a glass dish filled with ether on the solid block of mood supporting the knife-edges of the pendulnm, and placed some semen lyropodii on the surface of the fluid. After this was done I ordered the blacksmith to strike with a heary sledge hammer upon the thoor of the observatory, and found that no vibration was commonicated to the ligum. Thereatur I cond be satistied that the box rested on a firm base.

Let us now describe how the rxperimentan vibration were comineted. The series of obsmar

 another one in the aftermoon by Mr. Bryan (telescope) and the mriter. The following seheme was adopted for obsersing :

First day, swinging face	1 and 8
Secoml das, stinging facr .	\because and 4
Tbird day, swinging face	4 and
Fourth day, swinging fiace	\therefore and 1
Fifth das, swinging face	: and 1
Ete	4 and 2

According to Mr. Schott's shggestion, the mine seriw of obswrations, making one set, were taken at intervals of 1.5 minntes or at multiples of 15 minutes. Suppose the experiment-

Began at $0^{\mathrm{h}} 0^{\mathrm{m}}$

We obserced again at . $30^{\text {m }}$
We observed again at . $1^{11} 00^{n}$
We nbsurved again at . 2 . 00^{10}
We observed again at 3 . 0 ""
The observed again at . Bn 3 明

The ribnations (performed in the plabe of the merinlian) Were observed with a small direct rision trlescopr, placed about 8 feet mast of the lime of the pemdulu:n. The telesope ras serewed to the transit stand, the legs of which mested on the soil, to which they were frozen.

The point of the swinging kuife alge sersed is a mark, and ohserrations were made with vibration from right (R) to left, (L,) (nortl to ronth,) and from left to right, in order to correct for

[^26] divided from the middle, each War, to 5^{\prime}, with subdivisions of tenths of dugres, Tas, phed ored the swinging knite-etse, aud the extreme excursions to the right and left were noted. The limes are recorded hy sidereal ehronometer Λ, which was compared with five hox-chronometers by means of a pocket chronometer before and athe each set of observations was taken.

The vertical therad of the telescope was pointed to the zero of the seate, which itself is phaced over the kuifeedge when at rest.

The pemblum was swnes in four diferent positions, desimutad by the monber stamped on the rod near each knife edge. The number facing the telnsonn and swinging thens indicatws the position. The nombers 1 and 2 aw on one sible, and 3 and 4 on the reverse.

 nine series was limished.

The same position of the knifecelge on the steel plate was secored by means of a line line marked vertically on the side of the phatw. The knife-eder was madn to rest just amor this line, and its middle position, with wesuent to the opening left for fla borly of the rent, was sermm by: brass fork situk wom the rom motil it rested asamst the hack of the how. The fork was always
 sharp and clean.
 geological tomation of Polan is Bay and its whole vicinity is upur Silurian limestone, covered by dritt, partly of the same waterin. It was not supposed that the limestome conld contain any linge capities which might influence the vibrations of the peudnlmu.

Before giving the recond of vibutions we propose to insent the comparisons of the chromome ters. Unfortunately the enmanonding obsorvations for timm are lost, but in the record of the tiral
 resonded fins-

It is believed that the above chronometer errors and rate; ean h: well upon. A glance at our chronometer joumal from later dates-the portion that was sareb-bughuing Septembor : i ,
 stantially with those given abore A hav haen mentioned before, the chronometer winteral elno. nometer λ^{\prime} whinh was used to remon the timen of transits was compared before and aftur each set
 sons that could he sared will be given atter the recond of the experiments of cibrations.

Set 11, face 4, Jamuary 11, a. m.

Set 12, face 2, Janinary 11, p. ill.

R.	L.	R.	L.	
h. m. s.	h. m. s.	h. m. s.	h. m. s.	$\begin{aligned} & \text { At } 12^{\mathrm{h}} 43^{\mathrm{n}}, \text { are }=\left\{\begin{array}{l} 3.41 \\ 3.42 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 55, .5 \\ 47-.1 \end{array}\right. \\ & \text { Barometer }=\begin{array}{c} 39.7 \% 3 \end{array} \end{aligned}$
10 35 $\quad 15.6$	123006.7	$\begin{array}{lllll}10 & 38 & 57.8\end{array}$	$\begin{array}{llll}0 & 40 & 48.9\end{array}$	
25.6	16.7	39 07.	58.9	
35.6	96.7	17.8	4109.0	
4 Sig	36.7	27.8	19.0	
$5 \overline{3} .6$	46.7	37.8	29.0	
36 0.0.6	3.6 .7	47.9	39.0	
1\%, i	is $\begin{array}{r}06.8 \\ 16.7\end{array}$	57.9	49.0	
25. 6		$40 \quad 07.9$	59.0	
35.6	26.7	17.9	$4 \div 09.0$	
4.07	30.8	$0 \times .0$	19.1	
55.6	46.8	38.0	29.1	
$19 \quad 3600501$	$1237 \quad 56.73$	1239 47,	$12 \quad 41 \quad 39.0$	
12\% 3016.6	$\begin{array}{lll}1 \times 5 & 51 & 10.7 \\ & & 17.7 \\ & & 3.6 \\ & & 37.6 \\ & & 17.6\end{array}$		$\begin{array}{lll} 19 & 59 & 49.7 \end{array}$	At 120 54^{m}, arc $=\left\{\begin{array}{l}0.19 \\ \because .31\end{array}\right.$
			\% 090	$\begin{aligned} & \text { Temperature }= \begin{cases}54 & .7 \\ 43 & .1 \\ \text { Barometer } & =0,713\end{cases} \\ & =3,7 \end{aligned}$
			19.4	
			99.9	
$\begin{array}{lll}105 & 15.6 \\ & 95.6 \\ & 35.5 \\ & 45.5 \\ & & 55.6\end{array}$	$\begin{array}{lll}1 & 06 & 06.6 \\ & & 16.6\end{array}$	$\begin{array}{lll}1 & 06 & 53.5\end{array}$	$\begin{array}{lll} 1 & 07 & 48.6 \end{array}$	At $1^{\mathrm{h}} 09 \mathrm{~m}$, are $=\left\{\begin{array}{l}1 . \mathrm{tij} \\ 1\end{array}\right.$
		07118.6	$5<.16$	
	(3, 1	12.5	$1080-7$	$\text { Temperature }=\left\{\begin{array}{l} 54,7 \\ 4: \% .8 \end{array}\right.$
	36.6	27.15	18.6	
	46.6	37.5	28	Barometer $=09.698$
11 05 83 20	$106 \quad 26.6$	107817.66	1 is 0e.6?	
$\begin{array}{lll}1 & 3.0 & 15.1 \\ & & 95.1 \\ & 35.1 \\ & & 45.0 \\ & & 55.1\end{array}$	13606.1	$\begin{array}{lcc}1 & 36 & 57.1 \\ & 37 & 07.1 \\ & . & 17.0 \\ & & 97.1 \\ & & \\ & & 37.1\end{array}$	$1 \text { 37 42. } 1$	At $1^{\mathrm{h}} 39^{\mathrm{m}}, \mathrm{arc}=\left\{\begin{array}{l}0.99 \\ 1^{1} .01\end{array}\right.$
			35010.2	
				$\begin{aligned} & \text { Temperature }=\left\{\begin{array}{l} 10.1 \\ \text { Barometer }=2 \end{array}\right. \end{aligned}$
			18.1	
			?28 1	
1353538	136308	1 is 1\%.0心	13808	
$\begin{array}{rrr}\because 35 & 15.9 \\ & 95.9 \\ & 35.9 \\ & 45.9 \\ & 55.9\end{array}$	$\begin{array}{rrr}2 & 36 & 07.0 \\ & 17.0 \\ & 36.9 \\ & 36.9\end{array}$	23601	$\because 37489$	At $\because^{4} 39 \times$ are $=\left\{\begin{array}{l}0.44 \\ 0.49\end{array}\right.$
			38 -8..1	($\mathrm{tit}^{-} .9$
		18.0		$\begin{aligned} \text { Temperature } & =\left\{\begin{array}{l} 144^{-} .9 \\ 49.4 \end{array}\right. \\ \text { Barometer } & =29.25 \end{aligned}$
		27.9	19.0	
	47.0	34.9	-8,	
9	$\bigcirc 3696.90$	2 os 17.98	2 S* 08.94	

Set 13 , face 2, Jannary 12 , an. 11 .

R.	- L.	R.	L.	
$\begin{array}{ccc} h . & m . & s . \\ 5 & 1.2 & 0.8 .8 \end{array}$	$h . m . \quad s .$ $\begin{array}{lll} 5 & 14 & 00.9 \end{array}$	$\begin{array}{ccc} h . & m . & s . \\ 5 & 15 & 59.0 \end{array}$	$\begin{array}{ccc} h . & m . & 8 . \\ 5 & 17 & 43.1 \end{array}$	
$\begin{array}{llll}5 & 12 & 09.8\end{array}$	$\begin{array}{rrrr}5 & 14 & 00.9 \\ & 11.0\end{array}$	- 15 5~0	$\begin{array}{llll}5 & 17 & 4.1 \\ & & 53.1\end{array}$	At $)^{-1,90 m}$, are $=\left\{\begin{array}{l}\text { a } \\ 1,0 \%\end{array}\right.$
19.8	11.0		58.1	- 1 .ns
29.8	21.0	12.1	$18 \quad 03.1$	Temperature $=$ ¢ 5 , \therefore
39.8	31.0	$2 \cdot .0$	13.1	
49.9	40.9	32.0	23.2	Barumeter $=$ 99.615
59.9	51.0	42.1	33.2	
$13 \quad 09.9$	1501.0	52.1	43.1	
19.9	11.1	$17 \quad 09.1$	53.1	
29.9	21.0	12.0	1903.2	
39.9	31.0	29.1	13.2	
49.9	41.0	32.0	23.9	
5125906	$\begin{array}{lll}5 & 14 & 50.98\end{array}$	$\begin{array}{lll}5 & 16 & 42.05\end{array}$	$5 \quad 1833.15$	
$\begin{array}{lll}5 & 27 & 14.7 \\ & & 24.7 \\ & 34.7 \\ & & 44.6 \\ & & 4.7\end{array}$	$\begin{array}{lll}5 & 28 & 05.7 \\ & & 15.6 \\ & 25.6 \\ & & \therefore .3 .6 \\ & & 45.6\end{array}$	$\begin{array}{lll}5 & 28 & 56.7 \\ & 29 & 06.6 \\ & & 16.7 \\ & & 06.6 \\ & & 36.6\end{array}$	$\begin{array}{lll}5 & 89 & 47.6 \\ & 57.7\end{array}$	At $5^{\text {a }} 31^{\mathrm{m}}$, are $=\left\{\begin{array}{l}1.38 \\ 1.5\end{array}\right.$
			$30 \quad 67.7$	
			17.6	
			2\%	
$5 \quad 9734.6$	5 9n	$5 \quad 29$ 16.54	5 30 07.28	
$\begin{array}{lll}5 & 42 & 09.6 \\ & & 19.6 \\ & & 29.6 \\ & & \\ & & 39.5 \\ & & 49.6\end{array}$	$\begin{array}{lll}5 & 43 & 00.6 \\ & & 10.5 \\ & & 20.6 \\ & & 30.5 \\ & & 40.6\end{array}$	$\begin{array}{rrr}5 & 43 & 51.6 \\ & 44 & 01.6\end{array}$	$\begin{array}{lll} 5 & 44 & 42.5 \\ & & 52.6 \end{array}$	At $5^{\mathrm{h}} 46^{\text {m1 }}$, are $=\left\{\begin{array}{l}0.8 \mathrm{Cl} \\ 0.93\end{array}\right.$
		$44 \quad 01.6$		
		11.6	$45 \quad 02.6$	$\begin{aligned} & \text { Temperature }=\left\{\begin{array}{l} 61-.9 \\ 415.1 \end{array}\right. \\ & \text { Barometer }=\begin{array}{l} 0.619 \end{array} \end{aligned}$
		21.5	12.6	
		31.5	22.7	
$\begin{array}{lll}5 & 42 & 29.58\end{array}$	$\begin{array}{llll}5 & 43 & 20.56\end{array}$	$5 \begin{array}{lll}5 & 44 & 11.56\end{array}$	$\begin{array}{llll}5 & 45 & 02.6\end{array}$	
$\begin{array}{lll}6 & 19 & 10.9 \\ & & 20.9 \\ & & 31.1 \\ & & \\ & & \\ & & 51.0 \\ \end{array}$	$\begin{array}{lll}6 & 13 & 02.0 \\ & & 12.0 \\ & & 22.0 \\ & & 32.0 \\ & & \\ & & 42.1\end{array}$	$\begin{array}{llll}6 & 13 & 53.1\end{array}$	$\begin{array}{lll} 6 & 14 & 44.1 \end{array}$	At $6^{\mathrm{n}} \mathbf{1} 6^{\mathrm{m}}$, arc $=\left\{\begin{array}{l}0.67 \\ 0^{-} .57\end{array}\right.$
		$14 \quad 03.0$	54.0	Ator 0.07
		13.0	1504.1	$\begin{aligned} & \text { Temperature }= \begin{cases}60 & .8 \\ 45 & .:\end{cases} \\ & \text { Barometer } \end{aligned}=\begin{gathered} 29.620 \end{gathered}$
		23.0	14.0	
		33.0	24.1	
$6 \quad 1 \because 30.96$	$6 \quad 13 \quad 22.02$	$6 \quad 1413.02$	$\begin{array}{llll}6 & 15 & 04.06\end{array}$	
$\begin{array}{lll}7 & 12 & 09.8 \\ & & 19.8 \\ & & 29.8 \\ & & 39.8 \\ & & 49.7\end{array}$	$\begin{array}{lll}7 & 13 & 00.6 \\ & & 10.6 \\ & & 20.6 \\ & & 30.6 \\ & & 40.6\end{array}$	$\begin{array}{lll}7 & 13 & 51.6\end{array}$	$\begin{array}{lrr}7 & 14 & 42.6 \\ & 59.7\end{array}$	At $7^{1 \mathrm{l}} 16^{\mathrm{m}}$, are $=\left\{\begin{array}{l}00.30 \\ 0\end{array}\right.$
		$14 \quad 01.7$		
		11.7	$15 \quad 02.7$	$\text { Temperature }=\left\{\begin{array}{l} 51^{0} .1 \\ ., 50, \end{array}\right.$
		21.6	12.8	$\text { - } 29613$
		31.6	29.8	Barometer $=29.613$
$7 \quad 12 \quad 29.78$	$\begin{array}{lll}7 & 13 & 20.6\end{array}$	$7 \begin{array}{lll}7 & 14 & 11.64\end{array}$	$\begin{array}{llll}7 & 15 & 02 . \% 2\end{array}$	

R.	L.	R.	L.	
$\begin{array}{ccc} h . & m . & s . \\ 8 & 12 & 10.6 \\ & & 20.4 \\ & & 30.4 \\ & & 40.5 \\ & & \\ & & 50.5 \end{array}$	$\begin{array}{ccc} h . & m . & s . \\ \delta & 13 & 01.5 \\ & & 11.5 \\ & & 21.5 \\ & & 31.4 \\ & & 41.4 \end{array}$	$\begin{array}{ccc} h_{.} & m . & s . \\ 8 & 13 & 52.5 \\ & 14 & 02.5 \\ & & 12.5 \\ & & \\ & & \\ & & 32.5 \\ & & \\ & \end{array}$	$\begin{array}{ccc} h . & m . & 8 . \\ \hdashline & 14 & 43.6 \\ & & 53.6 \\ & 15 & 03.5 \\ & & 13.5 \\ & & 23.6 \end{array}$	
$8 \quad 12 \quad 30.48$	$8 \quad 13 \quad 21.46$	$8 \quad 1412.5$	$8 \quad 1503.56$	
9 12 11.1 21.1 31.1 41.0 51.0	9 13 02.0 12.0 220 32.0 42.0	$\begin{array}{llll}9 & 13 & 53.0 \\ & 14 & 03.0 \\ & & 13.0 \\ & & & 23.0 \\ & & & 33.0\end{array}$	$\begin{array}{lll} 9 & 14 & 44.0 \\ & & 53.9 \\ & 15 & 04.0 \\ & & 14.0 \\ & & 24.0 \end{array}$	$\begin{aligned} & \text { At } 9^{11} 16^{\mathrm{m}}, \text { are }=\left\{\begin{array}{c} 0.09 \\ 0.17 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 17.3 \\ 3 \end{array}\right\} \\ & \text { Barometer }=0.0 .6 \end{aligned}$
$\begin{array}{lll}9 & 12 & 31.06\end{array}$	$\begin{array}{llll}9 & 13 & 22.0\end{array}$	$\begin{array}{llll}9 & 14 & 13.0\end{array}$	$\begin{array}{lll}9 & 15 & 03.98\end{array}$	
$\begin{array}{llll} 10 & 12 & 09.0 \\ & & 19.6 \\ & & 29.5 \\ & & 39.6 \\ & & 49.0 \end{array}$	$\begin{array}{llll} 10 & 13 & 00.5 \\ & & 10.5 \\ & & 00.6 \\ & & 30.5 \\ & & 40.5 \end{array}$	$\begin{array}{lll} 10 & 13 & 51.5 \\ & 14 & 01.5 \\ & & 11.5 \\ & & \because 1.5 \\ & & \\ & 31.5 \end{array}$	$\begin{array}{ccc} 10 & 14 & 42.5 \\ & & 52.5 \\ & 15 & 0.5 \\ & & 19.5 \\ & & \\ & 2 . . .5 \end{array}$	
$10 \quad 1029.5$	$\begin{array}{lll}10 & 13 & 20.52\end{array}$	$\begin{array}{lll}10 & 14 & 11.5\end{array}$	$\begin{array}{lll}10 & 15 & 02.5\end{array}$	
$\begin{array}{llll} 10 & 49 & 08.7 \\ & & 1 \sim .6 \\ & & 2 \leq .6 \\ & & 3.6 \\ & & 48.6 \end{array}$	10 42 59.6 43 09.7 19.7 29.7 39.6	10 43 50.7 44 00.7 10.7 20.7 30.6	$\begin{array}{ccc} 10 & 44 & 41.7 \\ & & 51.6 \\ & 45 & 01.7 \\ & & 11.7 \\ & & \\ & \ddots 1.7 \end{array}$	$\begin{aligned} & \text { At } 10^{\mathrm{h}} 16^{\mathrm{m}}, \text { are }= \begin{cases}0 & 0.3 \\ 0 & .0\end{cases} \\ & \text { Temperature }=\left\{\begin{array}{l} 0.3 \\ 3 \\ 3 \\ \hline \end{array}\right. \\ & \text { Barometer }=\begin{array}{l} 5 \end{array} \end{aligned}$
$\begin{array}{lll}10 & 42 & 28.62\end{array}$	$\begin{array}{llll}10 & 43 & 19.66\end{array}$	$\begin{array}{llll}10 & 44 & 10.68\end{array}$	$\begin{array}{lll}10 & 45 & 01.68\end{array}$	
10 57 09.2 19.3 29.2 39.1 49.1	$\begin{array}{lll} 10 & 58 & 00.0 \\ & & 10.2 \\ & & 20.2 \\ & & 30.1 \\ & & 40.1 \end{array}$	$\begin{array}{ccc} 10 & 58 & 51.2 \\ & 59 & 01.2 \\ & & 11.2 \\ & & 21.2 \\ & & 31.2 \end{array}$	$\begin{array}{ccc} 10 & 59 & 49.3 \\ & & 52.3 \\ 11 & 00 & 02.4 \\ & & 12.4 \\ & & 22.4 \end{array}$	$\begin{aligned} & \text { At } 11^{4} 01^{\mathrm{m}}, \text { are }=\left\{\begin{array}{l} 0.0 \mathrm{l} \\ 0.09 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 58.0 \\ 44.8 \end{array}\right. \\ & \text { Barometer }=\begin{array}{c} 29.633 \end{array} \end{aligned}$
$\begin{array}{lll}10 & 57 & 29.18\end{array}$	$10 \quad 58 \quad 20.12$	$\begin{array}{lll}10 & 59 & 11.2\end{array}$	$\begin{array}{lll}11 & 00 & 02.36\end{array}$	
11 12 10.1 20.1 30.0 40.0 50.0 13 00.0 10.0 19.9 29.9 39.9 50.0	11 14 01.0 10.9 21.0 30.9 40.9 51.0 15 01.0 11.0 21.0 31.0 41.0	$\begin{array}{lll} 11 & 15 & 52.0 \\ & 16 & 02.0 \\ & & 12.1 \\ & & 22.1 \\ & & 32.1 \\ & & 42.1 \\ & & \boxed{2.1} \\ & 17 & 02.1 \\ & & 12.1 \\ & & 22.1 \\ & & 32.1 \end{array}$	11 17 43.1 53.1 18 03.1 13.1 33.2 33.2 43.1 53.1 19 03.1 13.2 23.2	$\begin{aligned} & \text { At } 11^{\mathrm{n}} 20^{\mathrm{m}} \text {, are }=\left\{\begin{array}{c} 0.01 \\ 0.08 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 56^{\circ} .4 \\ 41^{0.8} \end{array}\right. \\ & \text { Barometer }=\quad 29.637 \end{aligned}$
11 12 129.99	$\begin{array}{llll}11 & 14 & 50.97\end{array}$	$\begin{array}{llll}11 & 16 & 49.08\end{array}$	$11 \begin{array}{lll}11 & 18 & 3\end{array}$	

Set 15, face 1, January 13, a.m.

Set 16, face 3, January 13, p. ni.

R .	L.	R.	L.	
$\begin{array}{rcc} h . & m . & s . \\ 4 & 50 & 02.0 \\ & & 12.1 \\ & & 22.0 \\ & & 32.0 \\ & & 41.9 \end{array}$	$\begin{array}{ccc} h . & m . & s . \\ 4 & 50 & 52.9 \\ & 51 & 02.9 \\ & & 13.0 \\ & & 29.9 \\ & & 32.9 \end{array}$	$\begin{array}{ccc} h . & m . & s . \\ \mathbf{4} & \boxed{31} & 44.0 \\ & & 54.1 \\ & \approx 2 & 04.1 \\ & & 14.0 \\ & & 24.0 \end{array}$	$\begin{array}{rcc} h . & m . \\ 4 & 5 . & 35.1 \\ & & 45.1 \\ & & 55.2 \\ & 53 & 05.2 \\ & & 15.1 \end{array}$	$\begin{aligned} & \text { At } 4^{\mathrm{l}} 54^{\mathrm{m}}, \text { are }=\left\{\begin{array}{c} 0 \\ 0.30 \\ 0.32 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 62 \\ 46^{\circ} .1 \end{array}\right. \\ & \text { Barometer }=\begin{array}{c} 29.776 \end{array} \end{aligned}$
$4 \quad 50 \quad 22.0$	$4 \quad 51 \quad 12.92$	$\begin{array}{lll}4 & 52 & 04.04\end{array}$	$4 \quad 5955.14$	
$\begin{array}{lll} 5 & 50 & 01.1 \\ & & 11.1 \\ & & 21.1 \\ & & 31.2 \\ & & 41.1 \end{array}$	$\begin{array}{lll} 5 & 50 & 52.2 \\ & 51 & 02.2 \\ & & 12.3 \\ & & 22.3 \\ & & 32.3 \end{array}$	$\begin{array}{lcc} 5 & 51 & 43.2 \\ & & 53.3 \\ & 5 & 03.2 \\ & & 13.4 \\ & & 23.3 \end{array}$	5 52 34.1 44.3 54.3 53 04.3 14.2	$\begin{aligned} & \text { At } 5^{\mathrm{h}} 54^{\mathrm{m}}, \text { are }=\left\{\begin{array}{l} 0^{\circ}, 18 \\ 0^{\circ} .19 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 60^{\circ} .6 \\ 45^{\prime} .7 \end{array}\right. \\ & \text { Barometer }=\begin{array}{c} 29.760 \end{array} \end{aligned}$
$5 \quad 50 \quad 21.12$	$\begin{array}{lll}5 & 51 & 12.26\end{array}$	5 5\% 03.28	$\begin{array}{llll}5 & 52 & 54.24\end{array}$	
6 50 02.2 12.3 22.4 32.2 42.4	$\begin{array}{lll} 6 & 50 & 53.5 \\ & 51 & 03.4 \\ & & 13.4 \\ & & 23.5 \\ & & 33.4 \end{array}$	$\begin{array}{ccc} 6 & 51 & 44.4 \\ & 54.5 \\ & 52 & 04.4 \\ & & 14.4 \\ & & 24.5 \end{array}$	6 52 35.5 45.5 55.4 53 05.6 15.5	$\begin{aligned} & \text { At } 6^{\mathrm{h}} 54^{\mathrm{mm}}, \text { are }=\left\{\begin{array}{l} 0^{0} .11 \\ 10.12 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 57.9 \\ 43.9 \end{array}\right. \\ & \text { Barometer }=\begin{array}{c} 29.769 \end{array} \end{aligned}$
$6 \quad 50 \quad 22.3$	$6 \quad 5113.44$	$\begin{array}{lll}6 & 52 & 04.44\end{array}$	6) $52 \quad 55.5$	
$\begin{array}{lll} 7 & 20 & 01.8 \\ & & 11.9 \\ & & 21.9 \\ & & 31.9 \\ & & 42.0 \end{array}$	$\begin{array}{lll} 7 & 20 & 53.0 \\ & 21 & 03.0 \\ & & 12.9 \\ & & 23.0 \\ & & 33.1 \end{array}$	$\begin{array}{lll} 7 & 21 & 44.0 \\ & & 54.0 \\ & 22 & 04.1 \\ & & 14.0 \\ & & 24.0 \end{array}$	$\begin{array}{lll} 7 & 22 & 34.9 \\ & & 45.0 \\ & 55.1 \\ & 23 & 05.0 \\ & & 15.1 \end{array}$	$\begin{aligned} & \text { At } 7^{\mathrm{n}} 94^{\mathrm{m}}, \text { arc }=\left\{\begin{array}{c} 0.07 \\ 0.0 \mathrm{x} \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 54 \\ 42.0 \end{array}\right. \\ & \text { Barometer }=\begin{array}{c} 99.765 \end{array} \end{aligned}$
$\begin{array}{lll}7 & 20 & 21.9\end{array}$	$\begin{array}{lll}7 & 21 & 13.0\end{array}$	$7 \quad 2204.02$	$7 \quad 22 \quad 55.02$	
$\begin{array}{lll} 7 & 35 & 02.6 \\ & & 12.6 \\ & & 22.7 \\ & & 32.5 \\ & & 42.6 \end{array}$	$\begin{array}{lll} 7 & 35 & 53.5 \\ & 36 & 03.5 \\ & & 13.6 \\ & & 93.6 \\ & & 33.5 \end{array}$	$\begin{array}{lll} 7 & 36 & 44.5 \\ & & 54.6 \\ & 37 & 04.6 \\ & & 14.7 \\ & & 94.6 \end{array}$	$\begin{array}{lll} 7 & 37 & 35.7 \\ & & 45.7 \\ & 55.6 \\ & 38 & 05.7 \\ & & 15.6 \end{array}$	$\begin{aligned} & \text { At } \gamma^{\mathrm{b}} 39^{\mathrm{m}}, \text { are }=\left\{\begin{array}{c} 0^{c} .06 \\ 0.06 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 53^{\mathrm{c}} .8 \\ 41^{\circ} .9 \end{array}\right. \\ & \text { Barometer }=\begin{array}{c} 29.765 \end{array} \end{aligned}$
$\begin{array}{llll}7 & 35 & 22.6\end{array}$	$\begin{array}{lll}7 & 36 & 13.54\end{array}$	$\begin{array}{lll}7 & 37 & 04.6\end{array}$	$\begin{array}{lll}7 & 37 & 55.66\end{array}$	
7 50 01.5 11.6 21.4 31.5 . 41.5 51.5 01.5 11.6 21.4 31.5 41.4	7 51 52.5 52 02.5 12.4 22.5 32.4 42.5 52.5 53 02.4 12.4 $2 . .5$ 32.4	7 53 43.5 53.6 54 03.7 13.6 23.6 33.6 43.6 53.6 55 03.6 13.7 23.6	7 55 34.6 44.6 54.7 56 04.6 14.6 24.6 34.6 44.6 54.6 57 04.7 14.7	$\begin{aligned} & \text { At } \hat{\gamma}^{1} 58 \mathrm{~m}, \text { are }=\left\{\begin{array}{l} 0.05 \\ 0^{\circ} .05 \end{array}\right. \\ & \text { Temperature }=\left\{\begin{array}{l} 53^{\circ} .7 \\ 42^{\circ} .1 \end{array}\right. \\ & \text { Barometer }=\begin{array}{c} 29.763 \end{array} \end{aligned}$
$\begin{array}{llll}7 & 50 & 51.49\end{array}$	$7 \quad 5249.45$	$\begin{array}{llll}7 & 54 & 33.61\end{array}$	$\begin{array}{lll}7 & 56 & 24.63\end{array}$	

METHOD OF REDUCTION.

TEMPERATURE OF THE PENDULUM.
To obtain the true temperature of the pendulnm at the time of obserration, two thermometers were fastened inside the bos: one just above the support; the other (nearly) on a level with the swinging kuife-edge. As the temperature of our little observatory, which was heated by means of a store, was always influenced by that outloors aud by the velocity of the wind, which, during the time the observations were carried on, amonnted sometimes to forty-six miles an hour or more, it was found that the temperatures indicated by the npper and the lower thermometer neaty always showed differences from 10 to 15 F . Of conrse, the higher temperature was always indicited 1 y the upper thermometer, which was surrounded by a stratum of air warmer than that influencing the thermometer below.

This circomstance caused great inconrenience in the reduction. The conducting power of brass being different from that of the air, we might hase assumed, a priori, that the temperature of the pendulum was not the same as that indicated by the thermoneters at the time of observation. Accorling to the difference in the conducting power of the two mediums, we might inter that whenever the temperature of the air was rising that of the pendulum itself would be lower, aud when it was falling the actual temperature of the pendulum must have been bigher than that indicated by the thermometer.

Though many attempts were mate to keep the temperature of the observatory mutorm, they were unsuccessful: the upper aud the lower thermometer always varied. At our secoud winter-quarters, at Polaris Honse, where also numerous experiments were made, I tried to eliminate this source of annoyance ly attaching another thermometer inside the box, half way between the two instruments mentioned before. Although we propose to discuss the observations taken daring our second winter-fnarters after those male at Polaris Bay, we still think that we are justified in taking here some points into consideration that hare special connection with our case of temperature.*

The third thermometer wased daring the observations made at Potaris House. Calling the upper thermometer E_{1}, the middle E_{2}, and the lower E_{3}, we fond that the temperatures as indicated by E_{1} and E_{2} differed but sliglitly, the difference amounting on the average to 10 F . ouly after the iustrments had been corrected for their errors of graluation; consequently, the main difference of temperature most exist between E_{2} and \mathbf{E}_{3}, iu which interval the two strata of extreme temperature seem to meet. In the reduction, we assmmed that the two strata met half. way betwern E_{2} and E_{3}.

In order to get a more definite idea of the relation of the variation of the temperature of the pendulum to that of the air smrounding the latter, we made the following experiments:

A brass pendnlum, of nearly the same dimensions as that used by us in the Aretic regions, was made at the United States nary yard under the supervision of the writer. As it was a point of the highest importance to get the actual temperature of the pendulum itself, three holes were drilled into the rod: the first one was 22.2 inches from the top of the pendulum; the second, 24 inches from the first; and the third, 20 inches below the second. The bulb of a thermometer was iutrodnced into each of these holes; and each thermometer was held in position by means of a cork, through the center of which the tube passed. To make the coutact as perfect as possible betreen the bulbs of the instruments and the brass rod, the cavity was filled with brass filings.

[^27]The pendulnm ras monnted in the same way as the one nsed dmring onr former observations． Three thermometers were attached inside the box in the same manner as mentioned above．The bulbs of these insiruments，intended to indicate the temperature of the air，were at the same levels with the bulbs of those fastened to the pendulam．The observations were mate at the Smithso－ nian Institution，on the third floor of the north tower，in the west room，which has three windows reaching down the Hoor；two ot the windows facing north and one west．The room was heafed by means of an iron store，am the pendulam－box was about the same distance from the stove an the instrment at the Polaris Bay observatory．In order to obtain extremes of temperatnre simi－ lar to those at morthern stations，the experiments were carried on duriug the cold weather of Feb－ roary last（1sin）．A large fire was lit in the stove，and the cold air from ontdoors was made to rush in throngh an opening at the window if required；the opeming being $\because:$ inches wide， 1 is high， beginuing 2 inches abore the floor of the room．

The thermometios attached to the pendulam are designated－

$$
P_{a}(\text { ulpermost }) ; P_{1}(\text { midlle }) ; P_{c}(\text { lower }):
$$

the correspomling ones，to imblate the temperature of the air in the hox－

$$
\mathbf{E}_{1}, \quad \mathbf{E}_{2}, \quad \mathbf{E}_{3}
$$

Erperiment No．1，February ： $1,15 \pi$ ．

	Pendulum．			Air．			Differeuces．			
	P_{n}	Pb	Γ_{c}	E_{1}	E_{2}	E；	a -1	b－1	c－1	
h．m．	1.	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc		
12 4．a m m．．．	til． 3	5－．	5－11	21.5	71.8	69．4	－1：．	－14．0	－－	Wimdow shat．
$100 \mathrm{a}, \mathrm{ml} \ldots$	（83．）	59\％	56．\％	二．，	－5．1	（6i，0）	－1ッ．＊	-1.20	－9．1i	Wimlow slmat；＂promel ib after this readiug was tiken．
$30 \mathrm{a} . \mathrm{mm} \ldots$	$\because 3.1$	41.4	32.1	16.9	：3：3	3， 3	＋ 8.1	＋ 2.2	＋4．8	Window shotafter this reading．
90： $1.111 .$.	50.41	53.4	$1-1$	19，${ }^{\text {N }}$	64．9	51.0	-113	－11．9	-6.0	Window shut；opened it after this readiug．
	54．：3	4.12	39.3	50.1	119：3	33．01	＋ 5.8	＋ 6.4	＋5．3	Window open．
$\because 09$ a．m．	5－5	41.5	34.11	41.9	：36．3	24.5	＋10．1	＋ 8.0 .1	$+1$.	Do．
15 a．m．	47.9	：3i\％	30.5	24． 6	96.9	26.0	＋9．4	＋ 6.5	＋4．1	Do．
时a． 1 m	47.8	8－．11	33，．\％	51.3	41.0	\％is\％	－4．0	－ 3.1	－ 8.8	W＇indow shut．
30： $1 . \mathrm{mm}$ ．．．	1.9 .7	40.4	36.11	5π	49.3	42．2	－－8．11	－ 9.1	－6．6	10.
$30 \mathrm{n}, \mathrm{m} \ldots$	5.11 .3	41.5	39.1	50.8	50.4	$4 \therefore 1$	-10.0	-1.0	－ 8.1	lo．
45： 118.	5.1 .7	41.3	3！．：3	12．．	56	1－6is	-11.0	-10.9	－ 1.9	Do．
Iorrection for index－ercor．	－ 0.3	－ 10.3	－ 0.1	＋ 0.2	$+0.1$	$+0.3$				
Me：an ．．．．．．							－ 3.7	－3．6	$-\because 1$	

N．B，－A strong morlhwest wind bloning during the whole night：average velocity $=30$ miles per hour．

Experiment No．2，February 18， 1575.

Time．	Pendulnm．					Air．		Difierences．			Remarks．
	Pa_{a}	P_{b}	Ps	P_{c}	E_{1}	E．	E_{3}	，＂－1	$b-1$	$c-1$	
h．m ．	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\％ $00 \mathrm{p} . \mathrm{m} \ldots$	70.7	0.6 .5	50.5	$\therefore 1$	$6 \div 4$	－	53.0	$+1.8$	$+10.6$	＋ 2.7	Winclow shut．
15）p．m．．．	$6 \times .3$	6． 4	02.1	61.9	0.5 .8	64.3	80．－	0.0	＋ 0.7	＋ 11.6	$1)$.
$900 \mathrm{p} . \mathrm{m} \ldots$ ．	68＊	0 0．：	10．\％	63.1	7：3：3	70.0	65.0	-5.0	－4．7	－8．8	I O ．
$1000 \mathrm{p} . \mathrm{m} \ldots$	70.		04.9	6is．	78	71.6	6.5 .4	-6.9	－4．5	-8.11	Do．
$15 \mathrm{p} . \mathrm{m} .$.	6.8	61．－	56.3	5ne	5－4	53.1	50.3	＋8．0	$+8.3$	＋4．5	Window open（after 1014）．
$30 \mathrm{p} . \mathrm{m..}$.	63	50．\％	： $2 \times$	53.9	210：	50－	510.3	＋8．1	$+6.3$	＋2．5	Window open．
$1100 \mathrm{p}, \mathrm{m} \ldots$	till	$3:$	1－． 11	40.2	29，0		23.9	＋ 5.8	＋ 7.7	＋ 0.5	Do．
$30 \mathrm{p}, \mathrm{mm} .$.	62.9	～バ・	5－4 1	51.9	69.4	12．5	55.7	－ 6.9	-6.1	－4．2	Window shat（after 114）．
$1215 \mathrm{a} . \mathrm{m} \ldots$	mis．t	no．0	$\therefore 8$	5．n．	： 4.0	16.8	\％n， 6	-9.1	－ 8.2	－5．2	Windors shnt．
100 a .1 cm ．．．	12.3	61．	59.1	52.4	23．2	68.11	60.0	－6．4	－ 5.6	-3.0	Do．
Conrution．	-0.3	-0.3	0.0	-0.1	$+0.2$	$+0.1$	$+1.3$				
Meau								－0． 0	＋ 0.4	$+0.1$	

N．Fi－－Tlumometer P_{ε} was altached to the peudulum midway between P_{b} ，and $\Gamma_{\text {．}}$ ．
Experiment No．3，Eebruary 19，18：5．

Time．	P_{s}	Pent P_{b}	im． P_{E}			Air． $\mathbf{E}_{\text {：}}$	\mathbf{E}^{\prime}	$\frac{\mathrm{D}}{\text { a－1 }}$	ifferences． $a-8 ; a-3$	Rewarks．
h．m ．	\checkmark	－	：	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
$930 \mathrm{p} . \mathrm{m} \ldots$ ．				63.4		71．4	15.3	－1．－	$-6.0-4.3$	Wiudor opened after this reading，
1000 p．m．．．	0，\％	\because	$\therefore 1.0$	－3， 5	50.0	51.1	49.2	$+13: \because$	$+7.3+4.1$	Window shut after this reading．
$30 \mathrm{p} . \mathrm{ml} . . .1$	143	80.11	5 CT	－ns：	mine	62．3	31.8	－ 8.9	－ 2.8 －-8.9	Wiuclors shut．
11 （1） $1.1 \mathrm{~m} . .$.	rii．t	0×3	61.2	－19＊	74.9	70.0	12．．3	－ $\mathrm{E} \cdot \mathrm{B}$	$-5.1-5.9$	Do．
$15 \mathrm{p} . \mathrm{m}$ ．		00.	60.7	61.5	78	70．0	117.0	-10.0	$-9.6-5.9$	Wimdon opened after this reading．
411 P．m．．．	6， 0.0	61．：	$\therefore=$	亿4：	13.4	C0，0	56.9	＋ 2.0	$+0.9+0.5$	Window opened．
12 （17） p, ma ．．．			21．2		$\therefore \mathrm{A}$	\cdots	40.9	$+6.5$	$+8.11+8.4$	Windor shut after this reading．
10 p .111.		60.7		51\％ 3	73．0	6－8）	120	－ 7.7	$-7.7-4.8$	Windor opened after this reading．
$\because \mathrm{P}$ ． m ．		－¢，	513.5	$\therefore \mathrm{Bn}$ \％	cis．	62.0	－ 6	－	－ $2.17-0.1$	Wiudow sbut．
50 p．m．．．	Bras	55.6	8.11 .0	50.6		$\therefore 1 .:$	15.9	＋ $1.1 i$	$+8.9+8.1$	Do．
Correction for index－errom．	0.2	（1．3）	0.0	－0．1	＋ 0.2	$+0.1$	$+0.3$			
Mean								－ 1.10	$-9.0-1.4$	

Results.-The variations of the temperature of the air in relation to the rariation of the temperature of the pendulnm are represented in the three following equations, for the upper $\left.\left.(\lrcorner \mathrm{E}_{1}\right\lrcorner \mathrm{P}_{\mathrm{a}}\right)$: midale $\left.\left.(\lrcorner \mathrm{E}_{3}\right\lrcorner \mathrm{P}_{\mathrm{b}}\right)$, and lower $\left.\left.(\lrcorner \mathrm{E}_{3}\right\lrcorner \mathrm{P}_{r}\right)$, thermometers:
$\left.\mathrm{I}_{1}=4.0\right\lrcorner \mathrm{J}_{\mathrm{a}}$

$$
\begin{equation*}
\left.\Delta \mathrm{E}_{2}=2.6\right\lrcorner \mathrm{P}_{1} \tag{1}
\end{equation*}
$$

$$
\lrcorner \mathrm{E}_{3}=2.0\right\lrcorner \mathrm{P}_{0}
$$

$$
\lrcorner \mathrm{E}_{1}=2.6\right\lrcorner \mathrm{P}_{\mathrm{a}}
$$

$$
\begin{equation*}
\left.J \mathrm{E}_{z}=2.6\right\lrcorner \mathrm{P}_{\mathrm{l}} \tag{2}
\end{equation*}
$$

$$
J \mathbf{F}_{3}=1.7 \mathrm{~J} \mathrm{P}_{\mathrm{r}}
$$

$$
J \mathrm{E}_{1}=6.7 J \mathrm{P}_{\mathrm{a}}
$$

$$
\Delta \mathrm{E}_{2}=4.0 J \mathrm{P}_{\mathrm{b}}
$$

$$
\lrcorner \mathrm{E}_{3}=2.0\right\lrcorner \mathrm{P}_{\mathrm{c}}
$$

or the coefficients by which the variations of the temperature of the pendalnm lave to be multiplied in order to obtain the corresponding variations of the temperatmre of the air are represented as follows:

	$\Delta \mathrm{P}_{\mathrm{H}}$	$\Delta \mathrm{P}_{1}$	${ }^{\prime} \mathrm{P}_{\mathrm{c}}$
February 3.	4.0	2.6	2.0
February 18.	2.6	2.6	1.7
Februars 19.	6.7	4.0	2.0
Mean.	4.4	3.1	1.9

hence, we mas assume that the variations of the temperature of the pendulum are in proportion to the variations of the temperature of the air as-

$$
\frac{1}{1}, \quad \frac{1}{3}, \text { aud } \frac{1}{2},
$$

respectivels, fur-

$$
P_{a}, \quad P_{b}, \text { and } P_{c},
$$

in reference to

$$
\mathrm{E}_{1}, \quad \mathrm{E}_{2}, \text { and } \mathrm{E}_{3} .
$$

We fomb the differences of the temperatures of the pendulam and the air to be-

$$
30.2,0.7, \text { and } 1.7
$$

or, on the areage, the peudulum was foum to be 10.9 colder than the air surrounding it; but in our reluctious no use was mate of these latter values, as they were not considered to be reliable enongh, and the time at our disposal did not permit us to make any more experiment.

As we stated abose, an additional thermometer $\left(\mathrm{P}_{\varepsilon}\right)$ was inserted between P_{b} and $\mathrm{P}_{\text {r }}$ during the experiments made on February 18 and 19 ; and, by expressing the temperature of the different points of the pendulum where the thermometers were attached by the following equation:

$$
t=t_{0}+a y+b y^{2}+c y^{3}
$$

For the determination of the co-efticients t_{v}, a, b, and c, we have the observed temperatures of fonr points of the pendulum at different distances (y), which turnish the equation of couditions; turther, the last two sets of observations furnish the three following equations:

$$
\begin{array}{l|l}
+5.2=+12 a+144 b+1728 c & a=+0.76 \\
-30.4=-5 a+25 b-125 c & b=+0.004 \\
-4.7=-10 a+100 b-1000 c & c=0.0026
\end{array}
$$

bence, the temperatures of the pendulnm, and their rariations in regard to y and the point of maximnm rariation, may be expressed by the following three erpations:

$$
\begin{aligned}
& t=610.3+0.38 y+0.01 y^{2}-0.0003 y^{3} \\
& \text { rar. }=\frac{d t}{d y}=0.35+0.002 y-0.0009 y^{2} \\
& \frac{a^{2} t}{d y^{2}}=0.00-2-0.0018 y=0 \\
& +4.9=+1 \underline{2}\|+144 b+17 \underline{2}=\quad\|=+0.6 ; \\
& -2 . i=-i a+200-10 i c \quad b=+0.0040 \\
& -3 . i=-10 a+100 b-100 c \quad \quad c=-0.00 \cdot 1 \\
& t=600 . t+0.31 y+0.0102-0.0003 y^{2} \\
& \frac{d t}{d y}=\text { var. }=+0.31+0.004 y-0.0009 y^{2} \\
& \frac{d^{2} t}{d y^{2}}=+0.00 t-0.0018 y=0 \\
& y=1 \mathrm{inch} .
\end{aligned}
$$

hence, $y=+\square$ inches, which indicates that the cold and warm strata ot air meet two inches abose the place ocmpied by l^{\prime}.. Berore one inch was fonnd for y. Which shows that the conditious remained about the same during the last tro days.

IIETHOD OF REDUCTION.

As the different sets of transits reve taken at intercals of fifteen minutes, or at multiples of fifteen minntes (with but rery few exceptions), the times of transits are represented by the series giren in the first column, headed " 15 " interval."

The second column gires the approsimate chronometer-time for the mean of the series, correspouding to the mean of the time of $R L, R L$.

The third column contains the are of ribration, as interpolated for the middle, betreen the time preceding and following, and is writteu between.

The two columns next following gise the respective temperatures of the air, interpolated from those observed, corresponding to the same time as the are of the preceding colnmon. The figures at the bottom of these tro colmms are the mean temperatmes of the air during the time of obserration. As we may presume that the mean temperature of the air during the entire time of observation is equal or nearls equal (differing but by a constant), we mas presume that the temperature of the peadulnm can be dednced from the observed temperature of the air by using the ratios found, as explained above. This was doue in such a manner that, first, the difterences mere taken between the observed temperatmes and the mean (given below); then, these differences rere multiplied either bs $\frac{1}{4}$ (for P_{a}) or br $\frac{1}{2}$ (for P_{c}), and the results added to the respectire means.*

The column beaded " $1.71 \mathrm{~A}^{2 *}$ gives the correction corresponding to the are λ_{1} for the intersal of time of fifteen minutes. Te assmmed that the are at the middle would correspond to the mean of all the arcs, eren if the interval was dirided into an infinite number of parts, and then the mean of all the arcs taken.

The correction for are is obtained in the manner following: The time of ribration observed is nearls-

$$
=\sqrt{\frac{7}{-1}} \cdot\left(1+1^{2} \frac{\sin ^{2} 10}{16}+\ldots\right)
$$

and, if the observations continue for a very short interval of time, the observed time of vibration has only to be divided by-

$$
1+\mathrm{A}^{2} \frac{\sin ^{2} 1^{\circ}}{16}
$$

or the number of vibrations performed in any interval of time, say fifteen minutes, as in our case, or 900 vibrations (more or less), las to be multiplied by the above quantity.

Therefore, the correction to an infinitely small are becomes, in onr casi, with sufficient accuracy,

$$
900 \mathrm{~A}^{2} \frac{\sin ^{2} 1^{0}}{16}
$$

giving, after the calculation has been performed,

$$
1.71 \mathrm{~A}^{2}
$$

the unit being 0.01 of a vioration. A small table was constructed for this purpose, and is given below:*

Corvection for are for $15^{\text {nu }}$ interval, or $1.71 \mathrm{~A}^{2}$.
Unit $=0{ }^{8} .01$.

| s. | 0 | s. | 0 | 8. | 0 | 8. | 0 | s. | 0 | s. | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.0 | 1.87 | 4.9 | 1.69 | 3.9 | 1.51 | 2.9 | 1.30 | 1.9 | 1.05 | 0.9 | 0.7 .3 |
| 5.9 | 1.86 | 4.8 | 1.68 | 3.8 | 1.49 | 2.8 | 1.28 | 1.8 | 1.02 | 0.8 | 0.69 |
| 5.8 | 1.84 | 4.7 | 1.66 | 3.7 | 1.47 | 6.7 | 1.26 | 1.7 | 1.00 | 0.7 | 0.64 |
| 5.7 | 1.83 | 4.6 | 1.64 | 3.6 | 1.45 | 2.6 | 1.23 | 1.6 | 0.97 | 0.6 | 0.59 |
| 5.6 | 1.81 | 4.5 | 1.62 | 3.5 | 1.43 | 2.5 | 1.21 | 1.5 | 0.94 | 0.5 | 0.54 |
| 5.5 | 1.80 | 4.4 | 1.60 | 3.4 | 1.41 | 2.4 | 1.18 | 1.4 | 0.91 | 0.4 | 0.48 |
| 5.4 | 1.74 | 4.3 | 1.59 | 3.3 | 1.39 | 2.3 | 1.16 | 1.3 | 0.7 | 0.3 | 0.42 |
| 5.3 | 1.76 | 4.2 | 1.57 | 3.2 | 1.37 | 2.2 | 1.14 | 1.2 | 0.84 | 0.2 | $0.3-9$ |
| 5.2 | 1.74 | 4.1 | 1.55 | 3.1 | 1.35 | 2.1 | 1.11 | 1.1 | 0.20 | 0.1 | 0.95 |
| 5.1 | 1.73 | 4.0 | 1.53 | 3.0 | 1.32 | 2.0 | 1.08 | 1.0 | 0.76 | 0.0 | |
| 5.0 | 1.71 | | | | | | | | | | |

The horizontal lines in the last three columns were drawn in order to indicate where transits were observed, and to facilitate the process of summing up each of the last three columns under consideration, from the middle series or horizontal line to the respeetive series or horizontal lines above aud below. As in former reductions of olservatious made with the Hayes pendulum, 50° F. was adopted as a convenient standard temperature, we used the same value, which was thrown off in making the respective additions.

The results are given opposite the horizontal lines in the next column to the right, headed $\Sigma \mathrm{P}_{\mathrm{a}}$ and $\Sigma \mathrm{P}_{\mathrm{b}}$, which have to be multiplied by the two co-efficients of temperature, 0.335 aud 0.135 .

[^28]if the two strata of air meet at $\mathrm{P} \varepsilon$ or P_{c} respectively.

The last column contains the sum of the above-named corrections, which have to be applied to the mean of RL, RL transits, in councetion with a small correction, i (to be found below), in case the interval of time during which a series of transits was observed was not fifteen minutes exactly. At Polaris Bay, we made this small correction by assuming the excess for one minute, derived from a preliminary reduction, to be $-0^{5} .06$, whereas at Polaris House the value of +0 s. 10 was made use of.

In recapitulating the transits, only the tenths and huudredths are given, as the whole numbers are not necessars, because the differences only are needed, and the whole seconds are easily supplied hereafter. In taking the mean of the following series of transits-

$$
\begin{aligned}
& 39.52=39+0.52 \\
& 30.50=30+0.50 \\
& 21.52=21+0.52 \\
& 12.60=12+0.60 \\
& M=\frac{20.03}{}=25.5+0.53
\end{aligned}
$$

we see that the mean of the fractions differs but 0.5 from the actual mean it the whole numbers are carried along. For this reason, only the mean of the fractions was taken into account. The sign of the correction r (the total reduction for are, temperature, and barometcr) is the same for the upper series and reversed for the lower. By adding i aud r to the mean, we obtain the corrected transits, corresponding to the vertical argument (I).

The observations takeu at Polaris Bay show that the pendulum was losing on the chronometer, or the chronometer gaining on the pendulum: the excess of the peudulnm was negative, whereas at Polaris House it was found to be positive. In order to obtain the numbers in the colnom headed "Interval" (of the upper series) the preceding transits had to be subtracted from the middle series, and the middle series from the transits following. The necessary whole number of seconds was supplied, becanse there is ouly an even number of vibrations between the series.* The sign + was attached to the preceding, and - to the following interral, in order to make the excess appear negative.

Underneath the column nuder consideration, the sum of the negative and positive intercals is to be found. These sums ought to balance each other in case the trausits of the middle series were perfectly correct and the errors of the other transits would balance each other, as they gen. erally would do according to the rules of probability. Consequently, the difference of these sums is equal to the product of the error of the middle series into the number of series.

The column beaded "Observed" gires the observed intervals as deduced from the mean of all the series, and not from the middle series alone.

The column headed "Product" gives the product of the interval and the excess, as required, accorling to the method of least squares. The sum of the products is givell below the colnmn,

[^29]and shonld be divided by the sum of the squares of the intervals $\left(\mathbb{I}^{2}\right)$, which gives the excess for 15^{m} chronometer-time, and, if miltiplied by 96 , gives the excess (retardation) for $9^{1 \mathrm{~h}}$ chronometertime. As the chronometer A was gaining $238^{s} .1$ in a solar day, the number of vibrations of the pendulam performed during a solm day will be erpal to $86400+838^{s} .1=$ retardation.

The column before the last contains the intervals, and the last one ($ل$) the residuals, expressen in hundredths of seconds of time.

In comparing the residuals of the different days with each other, we perceive a regular wave, that can be traced through the whole series of observations. We can account for this only in the following manner:

As has been stated before, the temperature, as indicated by the upper thermometer, fastewed inside the pendulum-box, was always found to be higher than that of the lower thermometer. As the pendulnm was always reversed a short time before each set of observations was taken, extept on January 5, a. m., and on Jannary 8, a. m., the cold end of the rod was turned ipward and the warmer one downward. It is easy to perceive that the upper (now colder) end took up the temperature of the air, as indicated by the thermometer, but slowly; whereas the lower (now warmer) end radiated its heat more realily. When the difference of the negative and positive sums of intervals (as statcd before) was larger (except during the two days mentioned above) than could be attributeri to the effect of the error of observation of the middle series, it was assumed that cooling had taken place after the pendulum had been reversed. To simplify the process of this special reduction, the action of cooling was assumen to commence at the moment the pendulum was reversed, and to be miform, although it is more rapid at the beginuing thatl at the end. To obtain the rate of cooling, it was necessary to divide the difference mentioned by400 in the series of 4 hours, and by1080 in the series of 6 hours.
The following scheme will show how this can be done. Giving, in the first column, the interval; in the second, the cooling, that for the interval of 15 minutes taken as unit; and, in the thirl, the correction for cooling, the correction being represented by the squares of the second column, then the correction for the interval will be the differences between the series properly and the middle series, as represented in the fourth column:

I	$\Delta \mathrm{I}$	$\Delta \mathbf{I}^{2}$	Correction to obscrved interval.
-8	0	0	-64
7	$\mathbf{1}$	1	63
6	2	4	60
-4	4	16	-48
0	8	64	0
+4	12	144	+80
6	14	196	132
7	15	225	161
+8	16	256	+192
			$\Sigma=800$

In comparing the residuals, it will be seen that the correction applied on account of cooling has improved the final result considerably.

豆昰的

OLSERSLO Tlidvirt BY SHDEREAL CHHONOMETER I．

I．	I．	L．	F ．	L．	Mear．	i		Traus．	Iutavial．	Onsmatal 1	Product．Compratil	Δ
-8	8. .85	$\begin{gathered} s . \\ .92 \end{gathered}$	8．	8 13	8.			10	8.	A．	s． 1 s．	
\％	． 56	． 12	． 60	亿	（i）		＋ 13				＋5．3i	＋ 1
6	． 36	． 30	． 49	50	（1）							＋ 2
－ 1	． 66	－2	\cdots					． 19	3．．．	n．${ }^{1}$	2：3．2 3．：3	－8
			．	．	． 15		7 ± 1	． 91	＋3．13i	2.66	10．6 +2.03	$+3$
0	． 58	．173	． 61	． 61	． 62 ，			． 62		$+0.03$		＋3
$+4$	． 58	． 51	． 6	．102	． 50	－$\because 1$	－3：	$\therefore 1$	－$\because 2.8$	－2．6in	10.6 －$\because 6.3$	－3
1	． 30	－2゙	． 12	\therefore	35	－ 36	－ 33	． 69	f． 08	3.93	23.63 .4	＋1
7	． 60	． 12	．62	． 31	． $0 ;$	－ 0	－38	． 25	1． 03%	4.58	吹1 4．9．0	＋2
$+8$	． 38	． 46	． 51	$.56{ }^{\text {i }}$	$\therefore \therefore$	-10	－ $1:$	． 95	－5．33	$-5 . \because$	－ 2.2 －50．0	－
									－16．$\%$		－ 2111.8	
									$+16.27$	15^{10} excoss	－ 0.637	
									－0．48	$24^{\text {h }}$	-63.1	
									－0．03	A	＋238．1	
											$750=V$	

 lam far below that of the air，as indicateal by the thermometors．The general mean of the twomatme of the lower thermometer $=44^{\prime \prime} \pm 4$ ，which may be used．lionult $=0,5 \pm 1.0 \pm \varepsilon$ ．

8

Face 4.

I.	$\begin{aligned} & \text { Interval (1) } \\ & \text {-treded. } \end{aligned}$	Competion tor con]lige.	$\begin{gathered} \text { Intrual } \\ \text { rectern } \end{gathered}$	$\begin{aligned} & \text { Interval finu } \\ & \text { lusill!. } \end{aligned}$	I'imblicl.	Computad.	د
		--.-.- -				- - -	
	+	+0.15		$\begin{array}{r}3 \\ +\quad(i) \\ \hline\end{array}$	- 4 ! $\% 11$	$\begin{array}{r} 8 \\ +\therefore!1= \end{array}$	
-	+ 8.1.19	+ 0.15	+ 1.	+ 81.18	- +! 011	+	+
7	5. 1:3	$1{ }^{2}$	$\therefore \because$	$\therefore \cdots$	Mil 1	4.4-	$\pm 1: 3$
1	$4 .:$. 14	4.	4.3	21-	+ +1	- 10
-4	+ $\because=1$	+ 2.11	+ 29	+ $\because 1 \%$	11.7	+ ! - 中	
"				- 19.115			
$+4$	- $\because \because$	- 11.19	-		4	-4.4-	-
\#	4. -11 $^{\prime}$. 31	4. 31	4, $\%$	3id	\%)	- $\ddot{\square}$
7	4. 31	\therefore	- i 4	5.16 -5.45	- 47.15	-	+
+ -	- $\quad 1.1$	-0.4.	- 5.9%		- 47.0		
	-17. 21		-1, S		$-\because 11,6$		
	+1-20		+12.				
	+ 0.94	16.1	+11.1t		+ $\because 1.10$		
	+ 0.		+11.15				

Face 4.

OHSERVED＇TRANSITS BY SHDEREAL（＇HRON゙いMETEI A．

REDTC＂ITON FOR COOLINT．

1.	Interval ob－ served．	Comertion for combing．	Intrival cor－ rected．	Interyal from wean．	froduct．	Computed．	Δ
	s.	s.	\times	\therefore 。	s.	s.	
-12	＋$\therefore 94$	＋0．：30	＋ 9.2 .4	＋9 5 21	-110.4	＋ 9.01	＋19
11	动12	－！	$\cdots .41$	2.37	12.1	只碞	$+11$
10	7． 14	09	7． 43	5．3！	73.9	2.51	－12
－	5． 1 id	． 96	5． 94	$\therefore .90$	4． 2	1： 01	－ 11
－ 4	＋ 2.31	$+0.16$	＋2－5	＋ 2.5	11.3	＋ 3111	－ 17
11				－0．14			－ 4
＋ 1	－9．83	－0．23	－ 9.96	\therefore C， 61	120	－ 3.00	0
－	5． 47	\therefore	$5!19$	6．03：	$4{ }^{4} \mathrm{C}$	1． 01	－
10	13． 38	． 70	7.4	7．51	55.1	7．51	1
11	7．30	－！	8． 19	E1：	49.4	大日	$+13$
$+12$	－ $\mathrm{F}^{2} 11$	－ 0.80	－ 9.111	－ 9.114	－111－5	－9．11	－ 3
	—30．：3\％		－3．\％，il		－ 16.1	20110	
	＋：30．59		＋3？ 24		－0． 2.1		
	＋ 2.21	：10－11	＋0．34		＋ 2.480		
	$+0.020 \%$		＋0．04		$+1.729$		
					166.0		

Face 1.

Face：

OHSERVED TRANGITS BI BLDEREAL（HRONOMETER A．

1.	12.	L．	IR．	L．	Mran．			Tram.	Interval．	Hancoled．	Prolbet．	Computid．	$د$
	s．	8.	8.	\cdots	\therefore				\cdots	\therefore	8.	8.	
－12	． 11	． 19	こ	＋	2	-12	＋ il	\cdots	＋ 9.71	＋\％$\%$	-112.6	＋$\because 11$	＋ 2
11	． 16	． 12	2	\because	$\therefore 2$		＋ 51	$7{ }^{\prime}{ }^{\prime}$	H20	－	： 4.3	2.44	＋13
10	． 31	． $14{ }^{\prime}$	．1－	$\therefore 1$	． 119		＋41	， 016	$\therefore 4$	7． 70	is．0	2． 17	$+3$
n	． 3 N	． 413	． 16	12	10：		＋	.31	（1． 31	5． 219	47.9	（i． 14	-15
－ 4	． 21	$\because 4$	314	4？	$\therefore: 1$		$+121$	， $1: 3$	＋ 31%	＋ 8.9	11．5	＋3617	－
0	． in	\therefore	F	－im	－			沰		－ 0.28			－
＋1	．13	． 1011	Sim	（i）	ti0		-10	$\therefore 11$	－	38	12．n	－ 3.115	－1；
－	．12	．12	，ifi	，lifi	1i4		－\because	1：	$\therefore-i$	6．1：	1． 01	13． 11	－
10	．13	． 16	$\because 4$	$\because 2$	$\because 11$		－$\because \sim$	． 1	7． 3	7，颙	715：	7． 117	＋i
11	（1i）	． 111	！	91	． $11{ }^{1}$		－	（1）	F． 14	$\therefore 3 ;$	42：3	$\cdots{ }^{4}$	$+5$
$+12$	$1 ; 1$	（ \therefore ，	-7	.90	－	$-1 \geqslant$	－－：${ }^{\text {a }}$	： 11	－－－	－！ 3161	-111.0	－9．31	＋$\because 1$
									－33，10＊		-6×2.6		
			－						＋35－4	15：＂cxem	－ 11.86		
									＋2．76	$\because 41$	－ 21.10		
									＋ 19.8		＋ 23.1		
											14． $5=$	Y	

REDTCTION FOR（＇（M）LING

1.	$\begin{aligned} & \text { Inturval ins- } \\ & \text { secouct. } \end{aligned}$	Correction for cooling．	Interval mor－ rected．	Intarval from meall．	I＇rodnet．	Compriter	」
	s.	s．	s.	\cdots	\cdots	8.	
－－12	＋！ 71	$+0.37$	$+10.10$	＋10．04	-1210.5	＋$!30$	＋\quad－
11	\cdots	： 17	$!19$	9．15	100.6	4．13	＋ 2
10	7． 5	湤	－． 31	\therefore	－\％	C． 3	－ 3
－	1．94	． 3.3	13， 87	6． 513	吅？	6． （i） 4	-11
－ 1	$+: 13$	＋0．210	＋ $3: 3$	＋3．	13． 1	＋3n 2	1
0				－ 0.04			4
＋1	－\because	－ 11.8	－$\because \because 1$	3． 5	13． 1	－ 3.3	＋+
\checkmark	\therefore－	， 14	（1， 3.3	6． 27	\therefore 乐	（6．） 14	$+7$
10	7． 3	\cdots	$\times 1$	\therefore ¢	－9，	\cdots	＋ 2
11	－． 14	11.99	9．13	9． 27	102．11	！1：	－14
＋12	－－-s	－－1．11	－！en	－－9119	－11－．	－！！11	＋ 11
	—沙，心		－－：3\％ 00		－7：34 4		
	＋		$+37.47$		－11．バ：		
	＋ 2.20	111－1）	$\ldots 0.47$		＋9．1－11		
	＋10．0－3		＋0．0．4		＋1．8．0）		
					1，5．4 4		

Fice 3.

$$
\begin{aligned}
& +0.11+1 \\
& \text { (} 3 \cdot \cdots=1
\end{aligned}
$$

RECAPITLLATION OF RESLKTM

The following talle contains the recapitulation of the results of the preceding olnetyatmos：

I $: 10$	$\begin{aligned} & \Xi \\ & \vdots \\ & \equiv \\ & z \end{aligned}$	Ond	いまし。 （＇inrectsd for cowling．	Pate．	$\begin{aligned} & \equiv \\ & = \\ & = \\ & = \end{aligned}$	Lucorrected．	Compected for cooliug．
$1-\therefore 1$		$1 \geq 1$	V P	1－－．．		1 － 1	
Jaunary ${ }^{\text {a }}$ ．	1	$\therefore 2.7+4.11$	$(32.5)+11.1$	Januas！	\because	71． $0+1.4$	lit．$=+1.9$
	3	（iu．$: 3+1.4$	$\therefore 29+1.9$		4	min $2+30$	li．2＋ 2.3
！．．	\because	（3）． $10-1.9$	$\therefore 2.3+11.7$	－	4	$250-3.6$	
	1	（i）． $1+1.0$	$\therefore .3+0.5$		\because	－1．1＋ 0.3	ci3．$i+\because 3$
111．．．．	3	他4－0．7	（11． $1-3.3$	11	$!$	13． $9+1.5$	nis． $4-0.4$
	1	$61.6+0.1$	－4i． $5+1.1$		\because	24．3－2．	1－． 0^{\prime}－$\because 3$
1：3．．．．	1	64．$-2-$	\therefore－ $4-11.6$	12.	\because	－4．2－2．	12，$: 3-1.3$
	3	（i3． $2-1.5$	51．0－1．2		4	711．${ }^{\text {a }}+0.6$	（ii）．0 1． 0
		61.7 ± 0.6	$\therefore \therefore \pm 0.3$			21.4 ± 1.	（ii） 0 ± 10.5
Final mmber of ribrations in a mean solar dap \qquad And corrected for the efrect of cooling －Minil！ $10 . ?$							

.

PEDOLLM-EXPERDIENTS MADE AT POLARIS HOTsE.

ENPLANATORE REMAIKS AN1) RE'OR1) OF ODSERTATIONS.

The pemblam was swons at Polaris IIomse in the same way at the Polaris Bay ohserva tory, the period of observation in both places comprising cigilt lays. Owiog to our marorable situation after the disaster had orearred, we mem not able to build a promer olsematory, but had to condurt the experiments under consideration in a lut, containing hut one apartment, which was om bedroom, parler, study, and litehen for more than seren montlis. As this room, if it can
 while the men rere asleep, as the utmost quetness is repnired in conducting experiments of this kind. For this reason, we were mable to obtain two sets of ohservations, as we did at Polaris bas, and we hope that the dreary eireumstanes ought to exeuse this newere.

The pendulum was monted in the same way as destribed in the course at the Polaris Bay obserations, exeept that the steel hars used there to steady the box wer supplied by wooden braws. I sipuar hole was cut in the floor of our hut, near its northern wall, into which a piece of strong timber was put, monented to the suil (a bown samite) by means of water, which froze very readily, and the hox contaning the instrment was placed on the pier thes obtamed. The pendulam did not swiog in the merdian; the ributions being performen in a direction abont northeast and sonthest. The swingins kife-edge was ahont deven fert abow the mean sonlevel, and the telesenge, ly means of which the transits were observed, was screwed to a carpenter's tome ehest, three feet to the dight of the pentalum. Each series was commenced with a R. vibration, as had been done at Polaris Bay. The chronometer used was compared hefore and after the respective sets were taken with thee other box-chonometers, as is shown her themed of comparisons. Thi biyan ocerpied the teleseope; the writer, the chronometer.

Set 1, face ll, March 8, 15\%子.

FORMILLE ANH METHOU (OF REDUCTION.

The reduction of the observations under comsideration was made in a similar mamer to fowe

 between the two orikimal ons.

All that needs to be mentioned here is that the temperaturs, in indieated by the thamome. tels P_{a} and P_{b}, differ hat slighty. For this rasom, we dermed omselves justiticd in using the mean betwen P_{a} amd Γ_{b}; and the cormetions for femperature were treated in the same mamme as
 the indiations of P_{e} as the lower temperathere.
 and the following ones fom the midde one, in order to obtain the sutervals. As the diftermer

 lytial mamer by the method of least sumares.

The method of aljusting the intervals before obtaing the value of the "veress is shown in a

 Whish the menn is to bu fomm, represcming the fanction-

$$
11+1 i \beta+11 i
$$

 the fourth and fith colmms wive the coibitionts of β and γ comesponding to these differenems.

The values of $;, \beta$, amb a are wiven below; also, the comertions to be applide to the intmals.

19

OBSERYED TRANSTCG BY SIDEREAL CHRONOMETYER A.

Face 1.

GBSERVED TRLNSATA BY NHEREAL CHBOAOMETER A.

IRCAPITULATION OF RESULTS.

Before giving the combined results of the observations made at Polaris Bay and Polaris House, we shall insert the results of some pendulum-experiments made by Mr. Charles A. Schott, which are contained in the following letter addressed to Mr. J. E. Hilgard:

Computing Division, Const Surver, April 25, 1871.
Dear Sir: The following results for number of vibrations (in a mean solar day) were ubtained from olservations with the Hayes pendulum, matn here on six days by myself, assisted bs Dr. Walker and Mr. Soott. The reduction was macle by Mr. Main.

The method of observation and computation is the same as that given in my discussion of the "Plysical Observations in the Aretie Seas, ly I. I. Mayes, M. D.," ete., Smithsonian Contribntions to Knowledge, Washington, June, 1867. The pendnlum is swung in four positions, and the number of vibrations in a mean solar day are referred to a standard temperatnre (50 Fah.) and to a standard atmospheric pressure (29.8 inches). Each result consists of four sets of eleven transits of ten vilrstions each at the beginning, and the same number at the cod, of an olserration; the intervening time being nearly forr hours, during which a n nmber of transits were taken to keep aconnt of the number of vibrations. During any of these four-bour terms, the temperatnre hardly varied as much as 1°. Nll possible precan, tions were taken to insure accuracs. The principal remaining source of error is that of irregularity in the rate of the chronometer. If the correction for rate at the end of fon hours is but $\pm 0^{\circ} .5$ out, it will make as much as $\pm 3^{\text {a }}$, or nearly ± 3 vibrations, in a day. The accordance of the several results on different days shows that the chronometer could be dependel on within half a second. On the first day (April -), the number of intermediate readings for number of vibrations was found insufticient (for want of assistance in observing); hence two sets were added on April 21 and $\because{ }^{2}$. The six results for "First knife-edge supporting" are of the same weight as the four results for "Opposite knifoedge supporting."

The uumbers $N_{\text {, }}$ for face 1 and for face 3 (swinging), sbould theoretically be the sane; and after reversing the pendulum, end for end, the numbers N^{\prime}, for faces two and four, also should be the same. In fact, we can regard them as two independent pendulums.

The results compare directly with those deduced by me for Cambridge, Mass, and for Port Fonlke, Greenland.
Originally, I had designed to oloserve four times for each face, but found it too laborious (considering other duties); yet I think tho final mean value is sufficiently reliable.

Number of ribrations in a mean solar day of the Mayes pendulum swang at Hashington, D. C.

1871.			
First knife-edge.	N	Opposite knife-edgo.	N^{\prime}
Face 1. April 8, a. m $\begin{aligned} & 11, \mathrm{p} \cdot \mathrm{~m} \\ & 21, \mathrm{a} \cdot \mathrm{~m} \end{aligned}$	$\begin{aligned} & 80439.37 \\ & 80441.67 \\ & 86+44.03 \end{aligned}$	Face 9. April 9, a.m 10, p. m	$\begin{aligned} & 8643.89 \\ & 86431.39 \end{aligned}$
Mean....................	86441.69	Mean..	86432.10
Facc 3. April 8, p. m $\begin{aligned} & 11, \text { a. } \mathrm{m} \\ & 2, \text { a. } \mathrm{m} \end{aligned}$	$\begin{aligned} & 86442.22 \\ & 86439.46 \\ & 86444.18 \end{aligned}$	Face 4. Λ pril 9, p. m \qquad 10, a.m	$\begin{aligned} & 86433.95 \\ & 86431.73 \end{aligned}$
Mcan....................-- -	86441.95	Mean	86434.00
	86441.82 ± 0.57		$\begin{array}{r} 86433.05 \\ \pm 0.45 \end{array}$

Resulting mean number.
86137.44 ± 0.37
Reduction to sea-level
$+\quad .13$
Resulting final nnmber
80437.57 in latitude $380^{\circ} 53^{\prime} 12^{\prime \prime}$

For comparison, we have-
Number at Port Foulke En50.20 in latitude $7816^{\prime} 39^{\prime \prime}$
By-

$$
\left\{\begin{array}{l}
(86437.57)^{2}=\mathrm{N}^{2}\left[1+n \sin ^{2}(35\right. \\
\left(363^{\prime}\right. \\
\left.12^{\prime \prime}\right)
\end{array}\right]
$$

we fiud-
$N=$ unmber of vibrations of the pendulum at the equator $=86338,5$
and-

$$
n=0.0046477
$$

hence-

$$
c=\text { earth's compression }\left(\frac{a-b}{b}\right)=\frac{1}{250}
$$

In the latitude of Cambridge ($42^{-}: 2^{\prime} 51^{\prime \prime} .5$), this pendulum ougbt to make 80449.6 vibrations; but, according to observations, July 3 and 4, 1860, at the Harvard observatory, it did make only sife0.9, showing a deficiency of nearly 29 vibrations a day, owing partly to deviation of local density from the mormal, partly to defect in observations, as the results for faces 2 and 4 swinging are not suffiently acoordaut; some disturbing influenco must also be attributed to the Washington station as well as to the Greeuland station, which would alter the constants in the formula,

Tbe combination Canbridge-Port Foulke gave the compression $\frac{1}{372}$; the combination Wrasbington-Port Foulke, $\frac{1}{450}$. The true value lies between, but nearer the latter value. The local deviation in gravity appears, therefore, to affect Washington and Cambridge in the opposite direction, but the latter considerably more than the former. Olservations at a greater number of stations will probably bring out the fact that the number of vibrations at Wasbington are too many, those at Cambridge too few; in other words, force of gravity at Washington greater, aud at Cambridgo less, than the normal value due to the respective latitndes. The pendulnm is now ready for sbipping.

Yours, respectfilly,
CIIAS. A. SCTIOTT, Assistant in the Coast Surty.

J. E. Milgard,
 Assistant in the Coast Survey, in chergo of oplice.

Althongh the preceding experiments (at Polaris Bay and Polaris Honse) were conducted mith the utmost care, and the transits accurately recorded, as may be proved by the probable error, not exceeding 0.3 vibrations in one mean solar day, we still did not succeed in getting a satisfactory result by combining our observations with those made with the same pendulum at other stations.

The following table contains the result of the number of ribrations performed by the Hayes pendulum at different stations:

Stations.	Latitude N.	Longitude W.	$\sin ^{2} \phi$	Vibrations observed.
	-	h. m.		
Polaris Bay..	81.6	$4 \quad 9$	0.979	86566.6
Polaris House	78.4	451	0.960	86542.8
Port Foulke	78.3	451	0.959	86550.6
Cambridge	42.4	445	0.454	86419.4
Washington	38.9	508	0.394	86437.4

A glance at the above table will demonstrate that the valne for Cambridge is abnormal, either owing to an unknown local distnrbance, or to the excess assmmed by Mr. Bond from preliminary obserrations; for the period of obserrations was erroneous by an eren number of seconds. Mr. Bond's preliminary observations, howerer, are not publisued. Assuming that the excess could be increased by the nearest even number of seconds, a revision of Mr. Schott's reductions of the said observations would give 86450.3 vibrations.

At Port Foulke, a similar uncertainty must have occurred, and the result obtained there might easily be brought up to 86568.7 by increasing the obserced excess also by the nearest eren number of seconds; assuming, besides, the chronometer-rate to be miform, insteal of showing the great irregularities as given there.

If we conld assume that, in the course of observations made at Polaris House, R and L had been mistaken in the series marked -4 and +4 , then the result wonld come up to 86568.1 vibrar tions, although with larger residuals, which, nevertheless, show a certain regularity. The latter mas be explained by a regular change of temperature, or an acceleration in the rate of the chronometer, or that the knife-edge of the pendulum might hare rubbed against the wall of the box in which the pendulum was swung, or that the force of gravity might bare a period, or by a combi. nation of some or all the causes mentioned abore.

At Polaris Bay, we find the difference between the odd and even faees just contrary to those fornd at the other stations, indicating that R and L might have been mistaken in the middle series for the odd faces only. Assnming the latter (although this is scarcely the case, another explanation might be fonnd in one of the above causes), we find 86573.6 ribrations, which would make the dif ferent results agree far better, not only among themselves, but also in their differences.

Making use of the well-known relation existing between the earth's compression and the number of vibrations performed by the same pendulum in a mean solar day, we obtain the ralne of the earth's compression to be-
290.5
agreeing closely with Bessel's result, which is-
299.2.

The separate results furnish the following values:
Cambridge-Polaris Bay... 1 : 303
Polaris House.. 238
Port Foulke. 301
Washington-Polaris Bay .. 29.
Polaris Honse . 296

M. $=299.5$
mageterc orservations and list af auroras.

MAGMETTE OBSLRTATIONS.

 Which we promas. recordiag hereather.

 steh remarks can be mande without drawing toma aby othex shate than memory.
 soow-hats were buitt (eomprat :

 northwent gate, which brought the ship in quite aperilous mondition, iu Normalre, 1871, darled

 tions hefond the time stated.
 Mr. Bryan, and the obsorvations on variation ot dralimition were bextun towant the mindle ot

 magnotirentations. The ohservations weme kent natill the ane of May, when they had to bealis. continaed, beremse two of the observers went on the boat jommer towat the morth.
 man hetween 3^{h} and 4^{h} a. m., contraty to Port Fonlke and Van Rensselaer lardor, where the maximum ocems at abont $1^{h 1}$ P. m. and the minimum wear midnight. It lolaris Bas the

$$
\begin{aligned}
& \text { West dembnation }=90 \text { ind the } \\
& \text { lnetinatimm } \\
& =810 \% \%
\end{aligned}
$$

 London. The greatest protion was ohtaimal loy Itr. Bryat: and, whenerer the name of no other observer is stated, the dremmination was made hy him.

Obsencetions amd iesmlts of mamentir acdinations．

－：

11．11． St LAND．2

11 ：
11 i．
$\begin{array}{llrl}1 & 4 i 9 & 51 & \\ 1 & \pi & \text { N．} 4!1 & 11 .\end{array}$

> MAI.L®LJNO

11^{11}－．．1＂N．3！W

11．1LL L．NJ．

$$
\rho=\because \because \quad 11, \therefore
$$

T	1%	1 l
7	$1!$	N．S－

HALLAS L．INJ，
$\because=-1 \quad \because!!$

KINNOUM（HINNEL

$$
\begin{aligned}
& \text { 1. fiant } 1 \text { ti" } 1
\end{aligned}
$$

SHFTH～OHN゙い
$4-7!4: \quad y=+4^{11} \vdots 010$

f fint ］＝ 11.7 ．

जMYH 大ilNo．

$$
\dot{y}=2 \quad \therefore \quad y=+14: 12
$$

ふMIJIt
$\dot{y}=7!1 \quad \lambda=+1+1^{1 r} \quad \therefore$

101	$\because 311$	：11	
12	111	：11	11i－．！
1：	4－	：i^{\prime}	N1才11－ 2.

11 lant sís 4：3＂， 7.

11 fist ©h Hian．．．

$$
11^{\prime \prime} \text { Non }
$$

linnlting magretie derlimation $=110.2 \mathrm{~W}$ ．
心NよTU 心けN1)

$$
\begin{aligned}
& \text { SMITHEが心. }
\end{aligned}
$$

$$
\begin{aligned}
& \phi=7!\quad \because 1 \quad \therefore=-44^{h} \quad 30 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 心ゆ1TJ かけ入l. } \\
& 0=7.1-: \% \quad \%=+4^{12}: 30^{121}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \geqslant 1 \text { \&1mon } \\
& 1 \because 4!\mathrm{cm} \quad 170 \\
& \text { N. } 1710.1 \mathrm{l} \\
& 11 \text { fitiot - = } 41 \text { Im } 11
\end{aligned}
$$

- MHTH sold

$\begin{array}{lllll}11 & \ddots & 1111 & \because & \vdots \\ !1 & +1 & 1111 & \ddots!1 & \ddots\end{array}$

\1::11=111 . \therefore U

smote surs.

- AHTHSOCNH.

$\because 1 \because 1 \quad \because 0 \quad \because 1.4$

$\because 1$:110 $\quad \because 11 ;-4$

Resulting manerie declimation $=114.9 \mathrm{~W}$ $\mathrm{Na}=111 \mathrm{~B}$.

WHITA NHIN.

$$
\because-701 \% \quad,=+146
$$

11NE 11. 1-i:i.

MEANHA」 1

lesultiber magnetic dechation - $1000 . \therefore \mathrm{W}$.

$$
\begin{aligned}
& 1.514 \quad \therefore 3 \mathrm{O} \text {. }
\end{aligned}
$$

Auroras observed at Polaris Bay.

Date.	Time.	Remarks.
Dec. 17, 1nti	$1^{\text {h }} \mathrm{p} . \mathrm{ml}$.	Streamers of luminous clouds from SW. to NE.
	${ }_{1} 12 \mathrm{p}$. 11.	Streamers of luminoun clonds near the eastern horizon.
Dec. IK, 187	$1 \mathrm{a} . \mathrm{m}$.	Arch of luminous clonds extending from S. to N.
	\checkmark a.m.	Areh of luminous clonds from E. to N.
, Fill. 4, 1872	10 a, m.	Luminous arch extuding from NE. to SW.
	11 a a. m.	Sume arch still visible, but ruite laint.
Jim. 6, 15:	3 p.m.	Lumivous arch from NE. to SW.
	$4 \mathrm{Pr} . \mathrm{m}$.	Same arch still visible.
Jan. 7, 1-7	8 а. ш.	Arch of Inminors clouds from NW. to SLi.
	${ }^{9} \mathrm{a}$ a.m.	Same arch remains visible.
Janr rran	11 1).m.	Faint luminous streamers near easteru horizon.
Jan. 11, 1-a	II a.m.	Luminous streamers issming fiom a long, dark strathe doud, abow the twilight areh: similat streaners near the northern homizon.
	Noou.	Streamers disappeared; luminons areb stretehing from N. to S.
		Same arch still visible; shifterl its pusition to NE. and Sll.
Jant. 19, IE7\%	10 atm.	Lumiuons stremmers above the twilight arelimd ou the horizon opposite.
Jau. 13, 10\%	$10 \mathrm{a} . \mathrm{m}$.	Luminons streaners issuing from the twilight arch; similar streamers visible near the horizon oprposite.
	11 a. ш.	Faint streamers near the NE. horizon.
Jilu. 14, 1-\%	$10^{\text {b a }}$ a.m.	Daks streamers of clouds above the twilight arelh, of the same form as the luminons ones thegroutly seet..
	8 1. 110	Luminous streaners to NW and SE.
	11 pm	Top of cloud-bank luminous, NE.
Jal. 30, 1-\%	$\begin{array}{ll} 1 & 1,10 . \\ \therefore & 1.111 . \end{array}$	Faint luminons streamens from NE. to Stl. Two bright streamers NE.
Feh. 5, 1-5:		Liminons streamers visible toward NE., E., and sLe , remaining visible till $5^{\text {ha }} \mathrm{a}$. m,
Fels. 6, 10\%	\% p.m.	One bright streamer visible NE.
Fel. 7, 180:	1 a.m.	Bright streauers NE. by E.
	${ }_{3} \mathrm{a}$ a. m.	Faint lnwinuns streaners E.
Feld. 8, 12, ${ }^{\text {a }}$	$\underbrace{8}$ at. m.	Bright streamers W. br N. ; faint onen visible toward the east. Both undergo rapid chamge
	; $\mathrm{a} . \mathrm{m}$.	Faiut streamers fromi iV. to SW. ; arrlo of luminons vapor from NE. to SW.
	4 a.m.	Arch of thick lumimous vapor from E. to W.
	5 p.m.	Bright lamimons arcb pussing from NE to SW. throngh the zevith.
	7 p. 11.	Mass of lomiuous varor exteuding from NE. to E.
	\% l^{\prime}. m .	A lew luminuas streamers visible s. by E .
Febr 14, 189	5 :1.m.	Faint streamers visible W.
Mar ${ }^{\text {a }}$, 10\%	10 p. 1 m.	Paint lominous streamers SE. by E.
	11 1. m.	Faint luminons streamerss S. by E.
Mar. N, mis	$1 \mathrm{a} . \mathrm{lu}$.	Irregular lnwinous arch passing from S. to N through the zenith.

Auroras observed at Polaris House.

Nov. 10, 1-72	$4^{4} \mathrm{p} . \mathrm{m}$.	Faint luminous arch extending from NE. to SW.
Dec. 2, 107:	$9 \mathrm{p} . \mathrm{mm}$.	Bright streamers extending from S. by E. to WSW.
	$11 \mathrm{p} . \mathrm{m}$.	Luminous arch exteuding from N. to S.
Teec $\because 4,10 \%$	$1 \mathrm{a} . \mathrm{m}$.	A few streamers of a yellowish red visible toward the S.
Jim. 19, 1073	$3 \mathrm{p} . \mathrm{m}$.	Faint luminons streamers changiog rapidly in length frow E. to E. lge S.
Jan. 83,1803	1 a. 11.	Faiut streamers S. bg Es.
	$5 \mathrm{a} . \mathrm{m}$.	Fuint anroral clouls and streamers from NE. to NW.
Jan. 2.	1 a.m.	Faint anroral streamerssE.
Feb. 15, 16ヶ\%	7 p.w.	Auroral streawers SE.

pSYCHROMETRICAL TABLES,

IN ENGLISH INCHES OF MERCURY,
THE ELASTIC FORCE OF YAPOR CONTAINED IN THE AIR,

ITS RELATIYE ILUMOHITY IN IIUNIHREDTHS,
AND ITS DENV-POINT.

INTRODUCTORY.

Inasmuch as it devolved upon us to reduce abont 18,000 psychrometrical observations, most of which were taken at temperatures far below the freezing-point, the want of useful tables berame very noticeable. There are extant certainly very satistactory collections of talles, e. g., those pre pared by A. Guyot, Moritz, ${ }^{2}$ and Glaisher ; but they were not found to answer our porpose. Avoms observations were mostly taken at low temperatures, Guyot's tables would have been of no survice, muless laborions interpolation had been made, occnpying a great deal of time, heramse the horizom-
 cially calculated for low temperatures, are given in degress of Celsins; and, as all our observations were registered from instruments provided with Fabrenheit's sate, it would have cost much time and labor had we attempted to convert our readings into centigrades. We lelt some hesitation to use Glaisher"s tables, because they are based mpon empirical factors, and do mot furnish as amomate results as they wonld bad Regnault's constants been used in their calculation.

For these reasons, we considered it necessary to constact the following tables, primarily for our own use. We offer them hereby, bower, for others that may be followins the same line of observations, in order to sare the time aud tronble that would lie required tor anothor calculation. The tables are based mpon Reguanlt's coustants, ${ }^{4}$ and firmish, by inspection, limlatim Humidity, Force of Yapor, and Dew. Point for each teath of a degree. No further cxplanation als to therir nse: is reruired. We will only state that the valnes were mostly calcolated from 0.0 to $\mathbf{O} \cdot \boldsymbol{D}$, and the alteruating ones were interpolated.
${ }^{\prime}$ Tables, Meteorologreal and Physical, prepared for the Smithsonian Institution hy Aruohd Guyot. Wamhington: Smithsonian lustitution. IF,
${ }^{2}$ Psychrometrical Table, by James Giaisher, contajued in Guyot's Tables, p. 102.

${ }^{4}$ F. Regnault. Etades anr l'uygrométrie. Annales de chimie et de phrsimue, $3^{\text {me }}$ surie, tome NV, p. 129.

$\text { Wet-bulb thermometer, } t \text {, Fahreuheit. }$				DIFF	ERENCE	OF D	RY	ND WET	BULB	THE	RMOME	ERS．			
	0.0			0.1			10．3			0．0．3			（1）．4		
															｜cı
$\begin{array}{r} +32.0 \\ 31.9 \end{array}$		0．1811		98.9	0． 1899	31.9	97.8	0．178\％	31.7	$!11$.	0．17\％6	：3．6	9．\％． 8	0． 1761	31.4
		O． 1801		94． 9	0． 1892	31．6	97.8	0．1780	31.6	24．	O． 1769	31．5	9－5	0．175\％	31．3
－		0．179\％		98．9	0． 1785	31.7	97.8	0．17\％2	31.5	90．2	0．1761	21.4	15．8 8	0． 1719	31.3
7		0．1789		リー． 9	0．178\％	31.6	97．${ }^{\text {E }}$	0． 1765	$\therefore 11.4$	9ii．s	O． 1751	31．：3	95.8	0．1712	31.1
$1 ;$		0．1782		！－，9	O． 1769	31.5	97.8	0． 1757	31.3	96i．s	O． 1716	31．${ }^{\text {¢ }}$	9r．n	0．1735	：3．0
5		0．1871		92． 9	0．1762	21.4	（7\％$\%$	6． 1750	31.2	Mi，α	O． 1739	31.1	45， 4	0．172\％	； 11.9
4		0．1767		98．9	0．185．5	31，$:$	97.8	0． 1712	31.1	91． 8	0．1731	31.0	9\％	0．1720	$30 . \times$
3		0． 1759		9x． 9	0．1717	31.3	97．K	©．1\％31	31.0	93．¢	0．1721	30.9	35． S^{2}	0． 17112	2118
2		0．1732		！12！	O． 1710	31.1	97.8	0． 1788	30． 3	！ni．χ	O． 1716	30.	9－3，	0． 170.5	：31． 17
1		0．1714		9x． 9	0．1782	31.0	97．	0．1720	310．4	9\％i．8	0． 1709	30.7	95，	0．169\％	30.5
0		0．1737		9x．！	O． 18.5	30.9	97.8	9． 1713	30.7	Mi， 8	0．1702	23.6	98.7	0． 1690	210． 4
＋－30．9		0． 1730		92． 0^{1}	0． 1818	30.8	97．k	0．1706	30.6	？	0． 169.5	30． 5	57	0．168：	30.3
		0．1723		92． 9	0．1711	30.7	97.8	0． 1699	：30．5	！ 16.8	0．148\％	：31． 4	9.3 .7	（1． $16 \% 6$	30．：
7		0．1716		$9-9$	0．1701	2il 6	！1\％${ }_{6}$	（1． $\mathbf{1} 69 \%$	：31． 4	916．-	O．14061	： 113	95．\％	O． $166!$	311
6		0．1709			－． 169%	30．5	92.8	0． 1685	30．$: 3$	96.8	O．16\％1	30.3	95．$\%$	0．166\％	30.0
5		0．1702		9．6． 9	0． 1690	30.4	17.8	0.1678	$30 . \geq$	$90 . \bigcirc$	0． 1667	30.1	95.7	0． 1655	29.9
4		0． 1695		92.9	0.1683	30.3	97．\quad.	0． 1681	30.1	96.7	0． 1660	：31．0	95.7	9． 1614	290x
3		0． 1688		92．：	0．16\％6	30． 2	91．8	0． 1661	30.0	9i．E	O． 1653	$\because 9.9$	9．3． 7	0． 1611	99．7
2		0．1681		94.9	0． 1669	30.1	97． 区	0．165\％	29.9	96.8	0． 1616	20.8	95.7	0．1631	29， 0
1		O．16\％1		9r． 9	0．1664	30.0	97.8	0． 1650	99．8	96．$火$	0． 1639	2.7	95.7	（1）． 169%	景 5
11		0． 1666		$\times 9$	0． 1651	9！！ 9	41.8	4． 1612	ど17	91． 7	0． 1631	？ 46	45.6	0． 1619	9
＋29．9		0． 1659		92， 9	0.1617	23．8	97．	O． 163.5	2\％． 6	96.7	O．16：1	93	93.6	©． 1612	29.3
\square		0． 1652		92.9	0．1610	29.7	97.8	0． 1628	29.5	90.7	0．161\％	$\because 4$	9.3 .6	0． 160.5	9.8
7		0．1615		11－． 9	0． 1633	29.19	9.8	0． 1624	29.4	9.8 .7	0． 1610	$\because 3$	45． 19	0． 1598	29.1
6		D． 1639		19.9	0． 162%	34.5	97.8	0． 1615	29.3	Qi． 7	0． 1601	$3!19$	45． 4	0.1592	29．0
5		O． 1632		32．9	O． 1621	29.4	97．8	C． 1609	8.2	9．8． 7	0．159\％			©． $15 \pm .5$	2＊．9
4		0． 1625		98．9	0．1611	O！ 3	97.8	（1． 1602	$\bigcirc 9.1$	9：3．$\%$	0．1590	$\because 11$	9\％． $1 i$	4． 1578	2 CH
3		0． 1618		$9-9$	0．160\％	$\because!$	97.8	0． $\mathbf{1} 59.5$	23.0	9.9 .7	0．1583	$\because 2$	45． 19	6． 1581	2.7
\because		0．1611		$9-9$	O． 1600	99． 1	97，	0． 158	2＊9	9n．$\%$	0．1576	$\because 2$	95， 6	0． 1561	2－6 6
1		0． 1601		92.3	0．1593	29.0	97，8	0． 1581	9－8	92.7	0． 1569	32.7	95． 1	0．15．5\％	32．5
0		0． 1598		1－9 9	0．1586	2×． 11	97.7	0． 15%	Q． 7	Qii．${ }^{\text {a }}$	0．1569	ご， 6	95.5	©． 15.50	2×4

Wrat－bull，thermonater，t ，Fahrenheit．
DIFFERENCE OF DRY AND WET BULB THERMOMETERS．

$+1$	93．${ }^{\text {Q }}$	0． 1312	$\because 4.9$	$9 \cdot 13$	（1． 1380	24.7	91.4	0． 11818	？4．5	90，${ }^{\prime}$	4． 1806	$\because 1.3$	＊） 0	0． 1295	24.0
	\％3． 8	0．1386	$\because 1.6$	20．6	（1）．1321	$\because 4.6$	11．4	（b． 1 1810	2.1 .4	90． 2	d．	24.2	-4.0	0．1299	\cdots
7	93，${ }^{\text {a }}$	0．1330	34.7	昭仿	6． 1818	？1．5	91.4	（0． 1806	$\because 4 .: 3$	（11． 1	0． $\mathrm{B}^{489} 1$	$\because 1.1$	\cdots	0．1983	2－S
${ }^{6}$	313．8	0．13：1	24.6	92.5	0．13162	$\because 1.4$	91．${ }^{3}$	0． 18100	$\because 4.8$	90.1		$\because 1.0$	－	0．128\％	2－3． 6
5	93．\downarrow	0． 1315	24.5	92.5	O．1306	$\because 1.3$	91．：	0． 1091	$\because 4.1$	20.0	0．12\％	－39	－ 9.9	0．12\％1	昭 6
4	193.8	0．1312	$\because 4.4$	20．5	0．1300	$\because 1 . \because$	11．：	0．148\％	$\because 4.0$	［11． 0	0．12\％6	？	心．	（1）． 106.5	23.5
3	93．－	0． 1306	34.3	只口	0．1981	$\because 4.1$	91．：	9． $128{ }^{3}$	\cdots	90.0	0．1289	$\because \because 7$	－－＊	0．14059	2！ 1
\because	93．	0． 1300	$\because 4.9$	（1．）． 5	0． 188	$\because 4.0$	91．：	0． 1286	N－3	－19	0．1261	206	rrs	0．120．38	？
1	！\％，	0．1199	24． 1	昭碞	0．1839	¢．3．9	91．\because	0．1480	23.7	－！ 9	（0．H25s	？ 3.5	2r． 7	－1017	$\because 3$
0	93.7	0．1288	24.0	12.4	0．1276	טי？	91．${ }^{\text {a }}$	0．1061	23． 1	-3.9	（6．${ }^{\text {ato }}$	3	$\therefore 7$	0． 10.11	？3． 1
＋ 4.9	93．7	0．1285	23．9	92.1	0．1290	30．7	91.	15．1258	33.1	20．9	0． 1 12 46	20．	Sr． 7		？
\checkmark	93.10	0． 1283	23.8	92.4	0． 1265	23.6	91.1	9． 12.58	？$\because 3$	－ 0 cr	（）． 1210	？：31	\cdots	6． 1180810	\％
i	！ 16	0． 1280	－3	［19，：	0．1459	2：3	91． 1	0．1289	？\because	－${ }^{\text {a }}$		$\cdots 311$	$\cdots \mathrm{i}$	（1） 128	
6	43， 6	0．12\％8	$2: 6$	［9］． 3	0．118．33	르․ 4	91.0		$\because 31$	E4． 7	（1）具吸运9	－2．！	－	相． 12	$\because 7$
5	13．5	0． 1275	23． 5	92.3		？3：	91.0	0． 1 1236	？ 21	－！ 3		？	－	（1） 10818	？ 6
4	93．5	1． 1128	\％3． 4	［2．${ }^{2}$		23：	91.0	0．1130	2．9	-1.7		$\because 2.7$	\cdots	（1）． 1080	\％
$:$	$11 ? 5$	0．11269	蛙：$:$	93．	0． 1986	$\because 31$	90.9		He＊	－9． 13		只品	$\cdots .4$		\cdots
\because	13.4	0．1267	？ 2.2	［19．3	0． 12 2 d 1	？	（11）． 9	0． H 218	？	－9．ii	4．H087	\cdots	－ 4	－ 1196	！13：3
1	93.4	0．126．1	23.1	12.1		？$\because 8$	90.9		2？ 6 i	6.5	0．18084	$\because 4$	\cdots	0． 1180	吅：
0	9．3． 4	0．1261	930	！-1	0.1219	0.3	30．${ }^{2}$	）HED ${ }^{\text {a }}$		－	0． 1195	？	\cdots	9． 118	\cdots
＋ 2 只！	23， 4	0．12．50	？！9	呺 1	0．H211	？－9 ${ }^{\text {i }}$	10， 5	0． 68018	$\because 24$	＊）\％	0．1159	吅 1	－ 2 ：$:$	－1179	$\because 1.9$
r	4．4	0．1211	出口	！ 21		\cdots	60.8	0． 1196	？${ }^{3}$	$\because 4$	0．1183	300	－－． 3	O．113事	21．${ }^{2}$
7	13．4	0．1235	29.7	92.0	0．120：3	只4 4	90．	（5． 1 1 180	20：	－！！ 4	6． 11188	$\because 1.9$	\cdots	0．1168	21.7
13	9：3	0．128\％	昗 6	？r．0	（1） 1197	办：	［11．${ }^{-1}$	0.118 .5	23． 1	－．．． 4	©．1178	$\because 1$.	－－	0． 1188	$\because 1.15$
5	13． 4	O．1128	？	（2）． 0	（1）． 1198	$\because 3$	90.7	0．1879	3－3．1	\＆）．\therefore	d）． 11468	$\because 1.7$	－－ 1	0．1187	！1．${ }^{\text {a }}$
4	U3： 3	0．1210	2×4	20．0	d．11086	．$\because 3.1$	（11． 7	（1）． 188	21.1	Ex：	0． 11^{162}	？1．6	\cdots	0． 11.52	31.1
3	（1：＇：${ }^{\text {a }}$	0．1801	莡：${ }^{\text {a }}$	［r． 0	0．11＊1	$\because 口 1$	90．-	（1）． 168	21．－	20．3	C）11．16	？ 1	-1	O． 1118	$\because 1 .: 3$
\because	91．3	0． 1198	只	$!1.9$	0．1是学方	$\because 1.9$	30． 3	9．且163	31.7	－1，	0． 1151	$\because 1.4$	\cdots	O．H 1 㫫1	$\because 1 . \because$
1	． 3			1.9	0.	21．${ }^{\text {\％}}$	Io．${ }^{1}$	0．114\％	－31．6	－1．\because	0． 11 He	$\because 1.3$	\cdots	0．1135	$\because 1.1$
0	ب1．				0	$\because 1.7$	30.1	（1） 115	$\because 1.5$	－1．$:$	0． 1110			0． 1109	$\because 1.11$

華	1			DIFF	ERPNCE	OF D	$R Y$ A	ND WET	BULB	THE	RMOMET	ERS．			
$=$		1.10			$1^{\circ} 1$			1：3			1．8			$1 \cdot 1$	
三	=	E	三	$=$	三	$三$	$=$	．	年			－			三
\cdots	三	シ	\bar{z}	三－	三	\equiv	E	$\bar{\square}$	三	E	\＃	$\overline{=}$	E	三－	\pm
三		E	产	三	F		京	兰	클	三	\cdots	河	三	三	二
実		三	$\stackrel{\text { 少 }}{ }$	三	$\cdots \frac{1}{F}$	－	＝	$\because \frac{5}{5}$	交	¢	\because	爰		$\equiv \frac{7}{1}$	三
\＃	三		兩	二三		$\frac{1}{3}$	三		？			三	爫	交	为
\pm	－		三	三	$\stackrel{E}{E}$	$\bar{\Xi}$	E			\bar{z}		\equiv	三	＝	，
＋8，	$\therefore 2$.	0． 12888	？ 2	－4，$\%$	0．1988	20.6	－in	0．1080	23.4	1.4	（0．1299	？ 3	－3：	0． 1238	
	-i －	0．1278	9：\％	-6.6	－ 1296	U3， 5	-7.4	0．10851	\cdots	－1．：3	0．1918	$\cdots ? 1$	＊： 1	－1．12311	\cdots
7	－i． 5	0．1471	？${ }^{2}$	-13.6	（1）． 1860	23.4	-5.4	0．19．18	2品：	こ1．：	0．H288	？ 20	$\cdots 2$	0．1985	吅：
（i）	－－． 7	0．126．3	\cdots	－6i．	0． 1481	23， 3	5－：	0．10810	$\because 1$	－1．	C．11881	次！	-3.11	O． 1219	？
$\bar{\square}$	－i．ii	0．1059	2：3．4	－6i， 5	0．19－18	93：	5	9． 1 129 ${ }^{\text {a }}$	$\because 3.0$	－1．		S08	$\because 8$	0．1213	2916
4	\therefore－；	（1．11953	\cdots	2it． 4	0．1830	23	$\therefore \therefore$	0． 102819	4．9	$\because 1.1$	0．18219	$\because 2$.	$\therefore 0$	0．120 2	只号
3	－i．is	（1）1201\％	\cdots	－1i． 4	0． 1236	$\because 8.0$	8%	0．109098	$\therefore 8$	－1． 1	0． $121{ }^{13}$	23.6	$\cdots!$	0．1201	\％94
\because	－i．${ }^{\text {a }}$	0．10211	$\because 3,1$	－13． 3	a． 1280	29.9	$\cdots 8$	0．1哭18	\cdots	－1．11	6．150\％	2号	\cdots	0． 11.9	？3：3
1	－i． 4	（1） 11248	$\because 30$	$\therefore 3$	0．12011	\because	$\therefore 1$	0．1210	$\because 6$	84.0	9． 12011	\％9． 4	$\therefore 8$	0． 1189	？
11	87.4	0． 11829	399	＊（1，吕	9． 1218		$\therefore 0$	0．1206	\％	－3， 9	0． 119.3	20：	\cdots	0．1188	\cdots
＋24．9	$=7.3$	0．1－2983	7	\cdots	0．1218	品：	－-17	0． 1200	㬉	－ 9	0． 1190	$\stackrel{1}{2} 1$	， 5	0． 1178	01.3
	－i．it	0．1辺皆	$\because \because 6$	4，	0.1206	㫫 4	84.9	（0． 1198	－3． 9	－3． 8	0．118	？$\because 0$	206	0．1189	1，
\％	－i．$: 3$	0．1081	2－5	－ii． 1	0．1200	2？：	－1． 9	0．1188	$\cdots 1$	$\cdots 3$.	0．1178	$\because 1.9$	－\because t	0． 1166	91．7
6	－7． 8	0． 1180.5	$\because 4$	－-1.1	0． 1191	呺：	－1．8	（1． 1189	2010	$\therefore 3$.	（1）1172	$\because 1.8$	N－5	0． 1160	21．1；
7	$-i . \because$	0．12000	？	－13．11	0． 1188	只 1	8． 2	0.1176	$\because 1.9$	－3． 6	－． 1166	？1，\％	2	0． 1151	21.8
4	ถT．	0． 1193	\cdots	43．0	0． 1 且 $8^{\circ} \mathrm{B}$	\cdots		0． 1170	$\because 1$.	$\therefore .6$	0． 11160	31.6	N－9 4	0． 118	$\because 1.4$
3	－i． 1	©． 1190	$\because 2$	$\therefore \square$	－ 11 \％ 6	－$\% 1.9$	－1． 7	0． 116 是	$\because 1.7$	\therefore i	－ 115	$\because 1.5$	－	0．1112	$\because 1.3$
\because	$\therefore-1.1$	0． 118.1	$\because \because .0$	$\therefore 9$	0.1180	21．	＊4． 6	0． 11.58	$\because 1.16$	83.4	4． 1118	$\because 1.4$	－	0． 1186	$\because 1$.
1	$\therefore .1$	0．11\％8	$\because 1.9$		0.1165	21.7	－4．6	0． 1158	$\because 1, \therefore$	83.4	0． 11 H2	1．8	＊2， 9	0．1130	$\because 1.1$
11	2－0	©．1119\％	$\because 1$.		0． 1160	$\because 1.6$	8.5	0．1118	21.4	$\cdots 3$	0．113\％	$\because 1.9$	~ 1	0． 1105	90.9
＋+3.9	－i． 0	0． 11868	31.7	\cdots	0．115－511	$\because 1.5$	－4．5	（1）． 11 I2	$\because 1 . \because$	20：$:$		2.0	$\cdots 1$	0． 1119	
：－	27.11	O． 1868	2，if	\cdots	0．1149	$\because 1.4$	-1.4	－11839	$\because 1.1$	$\therefore \because$	0． 1125	211.9	\cdots	0． 1111	211． 15
7	M 4.	（4．1185：	21．	8.80	0． 11 18	21.3	E4． 4	O．1131	21.1	$\cdots \cdots$	6． 1 ［180	31.8	$\cdots 1.9$	0． 1148	211，
$1 ;$	E1． 9	0． 11.30	$\because 1.4$	－	－1．138	$\because 1.8$	$=1.3$	（0．1102\％	$\because 1$	E－i． 1	0．1115	$\because 11.7$	－1．9	0．110：3	20．！
\therefore	－Mi．$=$	0． 11111	11．	$\therefore \%$	－1． 1182	Q1．1	-4.3	（6）1188	30.8	ㅇ．31	0．1109	30.6	E1．＊	0．103\％	Sti．：
4	riner	d．1139	$\because 1 . \because$	－י\％	0．112\％	$\because 1.0$	84.2	（1）． 1115	21．	8．3．1	0．1101	Oll ；	-1.7	0． $109 \pm$	$20 . \because$
；	－1i． 1	0． 1 具沼㿽	$\because 1.1$	$\therefore 4$	0．1181	$\because 119$	－4． 3	0．1109	21.6	ぶい。＂	0． 1098	$\because 1$	¿1．	0．1086	$\because 1$
	－$\because 1.7$	O． 1188	$\therefore 1.0$	$\therefore 1$	0．1176	$\because 0.8$	$\therefore 1.1$	O． 1101	？11．	R2． 9	0． 1093	$\because 113$	81.6	0． 1081	20.0
1	－-6.4	0．110208	20.9	83	d． 1110	211.7	－4． 1	0.1098	31.4	$\therefore 9$	0．1088	$\because \cdots$	＋1．5	0．10\％\％	19.9
0	－6， 6	0． 1118	$\because 0.8$	83	0． 110.5	20.6	-1.11	0． 1053	－311，：	23．	0． 1082	Q0． 1	E1． 5	0． 1070	11.8

Wet－bulb thermometer，t ，Fahrembeit．	DIFFERENCE OF DRY AND WET BULB THERMOMETERS														
		（1）．0			0．${ }^{\circ}$			0.8			0.98			0． 1	
			$\begin{aligned} & \text { Temperathe of the } \\ & \text { inow-1uoint. } \end{aligned}$								$\begin{aligned} & \text { Forer of vapor in } \\ & \text { Enginh iuches. } \end{aligned}$	水		． 	
＋239	．．．．．	0． 12209		（120 6	0． 1218	3.	17.2	0． 1208	－	（6． 5	0． 1191	ㅂ：3）	94.6	O．11N：	？ 0
F		0．11921		水． 6	0． 12118	3－3．6	97.	0． 1201	$\because 2$	95．9	0． 1189	20．	94.6	0．1176	21.9
7		O． 1218		（1）${ }^{\text {a }}$	0．1205	ㄹ．．5	97.2	0． 1195	只：	95，9	0． 1183	29． 1	14.6	0.1171	$\because 1.5$
6		Q． 1213		1180	0．1202	3	97.8	0． 1190		95．9	0．1178	ㅇ․ 0	94.5	0．116．5	21.7
5		0．19087		118 Cl	0．119\％	38．3	97.3	0．1181	$2 \cdots 1$	$\because 5$	0．11\％2	21.9	94． 5	0．1160	21.6
4		0．1902		18.10	0． 1191	$\cdots 2$	97．${ }^{\text {g }}$	0．1188	$\because 20$	（\％， 9	0．116\％	21． K	94.5	0． 1151	$\because 1.5$
$:$		0． 1 196		！゙った	－1．186	$\because \cdots 1$	9%	0．1173	1．！	！5， 9	0．1161	21.7	45．5	0．1119	91.1
2	．	0． $1 \mathbf{1} \mathbf{1} 1$		！20， 6	0．1180	足0	9\％ 2	0． 116%	21．	（15． 9	O． 1156	$\because 1.6$	94． 5	0． 1113	$\because 1 . \therefore$
1		0．1185		98．0	d．1178	$\because 1.9$	97.2	0． 116°	$\because 1.7$	95． 9	0．1150	21.5	94． 5	－11336	21.2
a		0．1180		9 9－6	0． 1169	$\because 1.8$	97.2	0.115%	$\because 1.6$	45.8	0．1115	$\because 1.4$	94.4	0． 1133	21.1
$+21.9$		9． 1171		98.6	0．1163	21.7	97． 2	0． 1151	21.4	95.8	0． 1139	21． 2	94.4	0．112\％	21.1
8		0． 1169			0.1158	$\because 1.6$	！ 17.3	0． 1146	$\because 1.3$	$9 \mathrm{~F},-$	0.1131	21.1	94.4	0．1122	91.9
7		（1）．1161		9\％－ 6	0． $11 \mathbf{1} 5$	－31．5	97.2	9．1111	\％1．2	95.8	0．1199	31.0	94． 4	0．1117	211．${ }^{-1}$
6		9． 1 15		ir． 6	0． 118	21.4	97．${ }^{2}$	（1．1586	$\because 1.1$	98.8	0．1121	20． 9	94． 4	0． 1112	21.7
5		－1181		9－6 6		21.3	97.9	（1）． 1131	$\because 1.0$	\％	0．1119	30.8	14.3	0.110%	00.6
4		0． 1 1－${ }^{\text {c }}$ 9		㭂， 6	0．1139	$\because 1.2$	$97 . \cup$	0．1126	U11．9	（5）$\%^{6}$	0． 1111	20.7	4． 3	0． 1102	211.5
3		0．111晋		！ 6	0． 1138	$\because 1.1$	97.2	0．1121	20.8	9．5．8	0． 1109	31.16	94．：3	0． 1098	20.4
\because		0． 1189		92.6	0． 1 H089	31.0	97．？	d． 1116	311，$\%$	只，	0．1101	20.5	94.3	0．1092	34.3
1		0		！10． 6	9． 1123	$\because 11.9$	37.2	0． 1111	21.6	95．	0.1099	20.4	94.3	0．108\％	20.2
0		O． 1118		位， 6	0．1117	$\cdots 1.8$	97.1	（1） 110.5	20.5	95.7	0.1093	20．3	94．\because	0． 1081	20.1
＋20．0		0．1123			0．1119	20.7	97.1	0． 1100	$\because 0.1$	95.7	0．1088	20.2	94．2	0．10\％6	19.9
r		0． 1118		12， 5	0．110\％	20.6	97.1	0．1095	20.3	45.7	0．1083	20.1	91．2	0． $10 \% 1$	19． K
\％		0．1113		25.5	－ 1102	\because	97.1	0． 1090	\cdots	時	$0.10 \% 8$	20.0	14．2	0． 1066	19.7
6		0． 1108			0．1097	$\therefore 0.4$	97.1	0． 1085	20.1	95.6	0．1078	19.9	94，\because	0． 1061	19.6
5		－11103		！ 5.5	（1） 1092	，91，$: 3$	97.1	－ 1080	20.0	95.6	0．1068	19.8	94.1	0． 1056	19.5
4		0．1098		9.5	0．10每年	20.2	97.1	0．1075	19.9	95.6	0． 1063	19.7	14.1	0． 10.31	19.4
		0． 1093		95.5	0．1084	20.1	97.1	0． 1030	19．－	95.6	0． 1058	19.6	14．1	0． 1016	19．：
2		0． 1088		リー．	0．1078	20.0	91， 1	0． 1065	19.7	95． 6	0． 1053	19．5	94.1	0．1011	19.2
1		0． 1083		9×2	0．1072	19.9	97.0	0．1060	19.6	93， 5	0． 1018	19.4	94.0	0．1036	19.1
0		0．10\％8		9－5	0．106g	19.8	97.0	0． 1055	19.5	95.5	0．1013	19.3	94． 0	0． 1031	19.0

\checkmark	81\% 1	0.1059	19.4	E4. x	0. 1410	19.	23. 4	0. 1025	1-.9	- 2.1	0. 1017	12.3	N(1) ${ }^{2}$	0. 100.5	$1 \times .1$
7	83.0	0.1017	19. $:$	H. 7	0.103.7	19.1	8:3.3	0. 1023	1-2.8	$\cdots \cdot .1$	0.1012	1-1i	81.7	O. 1000	14.3:
6	85.11	0. 1018	19: \because	$\therefore 1.7$	0. 1030	19.11	\cdots	6. $101 \pm$	15.7	$\times 20$	0.106\%	125	- ${ }^{1} 1$	0.099.5	1~:
5	Ris.9	0. 1037	19. 1	Wh. 6	0.1025	1×. 9	x3:2	0. 1013	1.6.6	4. 11	O. 1008	1*. 1	- 11.16	©. 0950	12.1
4	8 Br 9	0. 1032	10.11	84.6	0. 1020	18.8	8)	0. 1005	1-5	-1.!	0.0.79\%	1.:	V1.	0. 098.5	13.11
3	Srich	0.1027	1\%.9	84.5	0.1015	18.7	*3. 1	0. 1098	12. 4	81.9	0.099\%	13.:	N) 1	0.0950	17.9
9	8.5 .4	O. 1028	12. 2	*,	0. 1010	1-6;	8.3. 1	0.0998	13.	Q1. 8	0.0987	$1 * 1$	81. 1	0.097%	17.4
1	85	0.1017	$1 \times .7$	-4.4	0. 109.5	18.5	- 3.0	0.0993	1~.	A1. ${ }^{\text {r }}$	O.0.9\%2	13.0	-1. 3	0.09\%	17.7
0	5.5 .7	O. 1011	1F.1;	8.4	0. 1000	12.4	8:0	0.098\%	1*.1	81.7	$0.09 \% 7$	17.!	2.) : 3	0.6985	17.6
$+20.9$	8.5	0. 1006	1×4	81.3	0.0995	1-. 2	219	0.093:3	17.9	¢1.	0.09\%2	17. $\%$	-11. ${ }^{\text {a }}$	0.0964	17.4
8	8. 6	0. 1001	$1 \times .3$	84.2	0.0993	12.1	2. 9	0.0978	17.8	Y, 6	0.0967	17.5	60. 1	0.69.5.5	1: 2
7	E5. 5	0.0996	1-3	$\because 4.2$	0.0985	$1=11$	2:-	0.0973	17.7	81.1	0.0962	17.4	81) 0	0.09 .50	1:. 1
1	-5. 5	0.0991	12.1	-1.1	0.0980	17. ${ }^{\text {a }}$	V $2 . \mathrm{Q}$	0.036 ${ }^{\text {a }}$	17.6	81. \quad,	0.035%	17.:	7.4.9	0.6915	17.1
5	E5. 4	0. 0986	$1 * .0$	84.0	0.10873	1i, ${ }^{\text {\% }}$	2. 7	9. 0363	17.	-1.4	0.0952	17. \because	73, 9	0.0910	11.9
4	85.4	0.0981	17.9	-1.0	0.0970	17.7	\cdots	0.613.58	17.4	-1. $:$	0.091\%	15.1	7.1. ${ }^{\text {- }}$	0.0335	11 i.
$?$	83	0.4976	1\%.	83.9	0.0965	17.11	S. 9	0.09 .38	17.3	-1. 3	0. 0112	12.0	71. $=$	0.0930	14.7
$?$	-5.3	O. 0971	17.7	$8: 3.9$	0. 0980	17.5	$\cdots 31$	0.0918	17.:	81. 2	0.093\%	13.9	71.7	0.0925	11.6
1	-3.2	4.0966	17. $\%$	$2 \cdots$	0.0.75	17. 1	82.5	O.0913	17.1	1.1	0.0932	13.,	79.7	0.0920	16.5
0	\cdots	0.0361	$17 . \%$	23.	0.0350	17, 3	$\therefore 24$	0.0938	17.0	81.11	0.0927	10,7	7. 6	(1.0915	11i. 4

Wet-bulb thermometer, t, Fabrenlu. it.

$$
+
$$

1.1 Forre of vapor in
English iuches.
Temprature at the
dew-point.
Relative lumbitity
iu humberths.

0. 1100
0. 109.5
O. 1080
${ }^{6}$,

6 4n
5 mi
4 si

\[

\]

$$
\begin{array}{cc|c|cc|}
* & 81.1 & 0.1052 & 19.4 & 84 . x \\
7 & 8.3 .0 & 0.1017 & 19.3 & 84.7
\end{array}
$$

$\begin{array}{llllll}5 & \text { к. . } 9 & 0.1037 & 19.1 & \text { स. } \\ 5\end{array}$

3	8.6	0.1027	$1 \alpha .9$	84.5

1	8.5 .7	0.1018	$1 \times .7$	-4.4

| 0 | K.s. | O. 1011 | $1 \times .1 ;$ | 84.4 |
| :--- | :--- | :--- | :--- | :--- | :--- |

DIFFERENCE OR DRY AND WET BULB THERMOMETERS

1.0

$$
\begin{array}{c|c|c|}
\hline i & \therefore \pi .0 & 0.0912 \\
\therefore & 8.0 & 0.0937 \\
4 & -1.9 & 0.0932 \\
3 & 4.9 & 0.0927 \\
\because & 4.8 & 0.0922 \\
1 & 84.8 & 0.04187 \\
1 & 4.7 & 0.0913
\end{array}
$$

 Tempratmpot the $\frac{\text { Rem-point. }}{\text { Relative hmmatity }}$

difference of dry and wet bulb thermometers.

亲			ERRENCE			ND WET	EU	$\mathrm{B} \mathbf{T H}$		ERR			
＋13．9	0．0981	如，：	（1）． 498 ± 8	$116.1 i$	973． 1	0．0911	16． 3	（15． 0	O． 0×99	16． 10	9， 3	O．0．6．ay	1．：
－	．0．09\％\％	14， 3	0.0919	16．$\overline{\text { i }}$	913．6	0.0908	116.2	（15， 10	0．069．5	1－5．！	4：3：3	0．0653	1i． 10
7	（1）．0908 ${ }^{\text {d }}$	9－：	0．091．7	16.4	93， 1	0．0903	11． 1	5．11	0.0691	1－\％	4：3：	O．0x79	1．is
$1{ }^{1}$		级：	0．0911	16．$: 3$	96． 6	0．069？		94．！	0．0×＊\％	1－i	913．\because	O．0N\％${ }^{\text {O．}}$	1：． 1
：	0．091＊	！－：	0．090\％	16．：	［19． 6	0．0w！ 3	1－9．9	94．9	d．0wns	15．4	193：	O． 0×871	12， 3
4	0．0911	！心．	0．0903	16.1	9i． 1	O．0w91	1－8，	！1．9	0．0ッ\％	1．8．	43．	0．06tig	13．：
3	（0．0910	！1－：	0.0898	16．11	（6i． 19	0．0¢ه\％	15，i	！ 1.9	0．0w7．	15． 1	！： 2.	0．Onfi3	15.1
\because	0	呺：	0．0w！ 5	15．9	916． 13	0．0＊83	15.6	94，9	d．0凶\％1	1－s．${ }^{\text {a }}$	4， 3	0．0x．5？	15．1
1	O． $090 \times$	！$)^{\text {a }}$ ：	0．0891	15． N	96． 10	－b凶す！	15.7	！ 4.8	0．0nctig	$1 \therefore \because$	昭 1	0．085．5	11．！
11	0．089\％	！ 1 ，	0．0war	15．7	9 O	0．0×\％1	1－1	！11．	O．0．4tis	1－1	！ 31	0．06．50	14.4
＋15．$!$	4．0893	！M，：	0．（1）Nw？	15． 19	（19．5		15．3	91．	0．0wisw	1－0	13：1	0．0．16	14.18
4	0．0889	！ 1 ： 3	0．0¢7＊	15，	！ n ，	O．086t	1－2：	91．	0．0＊）！	14.9	93.1	0．0812	11．5
7	0．ASW．	只：	－0．0651	$1-4$	！ 16	0．0862	1：． 1	11.7	0．0650	14．	17，3． 1	0．0838	14.4
1	0．0881	：1s．	O．0x\％ 0	15.3	917． 5	0．0tas\％	1 $\therefore 11$	！11．${ }^{\text {a }}$	O．A－ 18	11.7	！1： 11	c．08831	14.3
I	0．06\％\％	U－3：	d． 0 ¢ 66	15．\because	！nis	0．0n．ti	14.9	！11．		11.6	93．11	0．0430	14．3
4	0． 1888	［r．：	0．0562	15． 1	96， 5	0．0からす	14．，	01.		11.5	913． 0	0.0826	14． 1
3	0．0．845	S	c．0s．ts	15．11	！19，	0．ONI6	14.7	114．－		11.1	3：3， 0	0．0822	11.0
\because	0．0．84is	！ 6 ¢ 3	0． 98.51	14．！		9．0） 0 －	11.18	11．N	（0．06430	14．：	！ 3	0．081＊	13．3
1	d．WW6I	！ne：3	0．0．0．70	14．－	20：5	O．Oxisw	11.8	B1．	（1）．ANPEA；	14，：	！ $2: 9$	0．0W11	$1: 3$,
11	0．04．5\％	\％ 6 ：	0．0514；	14.7	19： 1	0．0）w ${ }^{1}$	11.4	91.7	（1）（1）W－2	11． 1	！ 29	0．0810	13：
＋14．9	0．45．51	幏：	4．6）${ }^{\text {a } 13}$	14.6	（14． 1	－4083	14．：	91.7	d． $0 \times 1 \leq$	11.11	！1，！	0．0807	13，6
\checkmark	9． 08.50	！ 1	4． 08.585	14.5	96． 1		11．\because	91.7	0．060．7	13： 3	！以 0	0.0803	1：3，
7	6．0406	！M，＂		11.1	［16． 1	9．41802：8	11.1	91.6	0．0WE1	13．3．	13×8	0.0799	13.1
（i）	0．084＊	！n．	0． 0893	11.2	！15． 1	0． 0 相19	11.1	91． 16	6．0xay	13． i	（1）	0．079．3	13：3
I	0． 0888	！	0．0） 0 －${ }^{\text {g }}$	11． 2	（17） 1	0．081．5	1：3：	94．6	（1）．0．4（）：3	1：3．6	12． 2	0.0791	1：1．\because
4	0.0831	． 2	（b）4．0．8：3	11.1	9：9， 1	（1）． 4 如11	1：3	91．1；	0． 0 \％ 5 ¢ 9	12： 5	！1． 7	0.0787	13． 1
；	0．0830	！ 4	0．0819	14．1）	2ni． 1	d）．0NOF	13：7	91．13	d）．0\％10．7	1：3， 1	93.7	0．0783	13．0
\because	0． 0858	呮：\because	0．0815	1：3．1	ab． 1	0．0803	1：3． 1	94.8	0．07¢1	1：3．3	B6	0．0789	13.9
1	0．0\％2起	！！－2．		13， 2 ！	！ 1 i .4	9．0\％9！	13.5	94．is	0．07＊\％	13．：3	！ 18	0．07\％ 0	12，\times
11	0．0519	Sr．	0．0508	1：3．	29：： 3	0.0796	1：3． 1	31．5）	0．07＊1	13， 1	！ 2 ¢	－）．0782	12.7

hatative lammathy ial hollumedths．
Forre al vapor in Englinlı inclus．

（
DIFFERENCE OF DRY AND WET BULB THERMOMETERS．

```
+13.9 90.8 0.0%5%
```



```
    , (10.* 0.0719
\therefore!11.7 0.0712 11.: --.9 0.0%311 11.4 <7.1
4 90.7 0.0%39 11.7 <., 0.0%2g 11.: -i.11
11.7 --. 0.0%2%
3 !0.7 0.083.5 116 F.5 0.0723
\because0.% 0.0%3%
1 \H1% 0.0%28 11.4 =-, O0%16 11.0 =2.0
1) !0.6 0.0%2.j 11.3 E., % 0.0%13
+13
- !0, 0.0%53
```



```
1.5 -..:
0%19
```



```7071110.7
```

0.0731
1
1

```0.081911
```

$110-3$

```0.070810.6
```

$11 . \therefore 2 \pi 3$ O． 0 g 10 10. 0

```0，\(\times \cdots\)0．0\％4111．\(\because \quad: 3\)0.081210.4
```

$11.1 \therefore 0.0 \% 08$ 111.78 0.0698 $0.0 \% 20$
11.0 シーロ

```（1）．0701
```

```0.0698\(0.0659 \quad 10.1\)10． 0 － 082.
```

（1） 8

Furen of supur in
Eunlinl imelus．

0.8 （1）． 9
 Relation hmmidits
in lomandols． Fumer wi vapur in
Finglish iuches．

n	$=$
E	\％
京	三
三ミ	シ．
三	F
三	\cdots
\＃	少

DIFFERENCE OF DRY AND WET BULB THERMOMETERS

	910．0	0．06．51	$\therefore 9$	\cdots	0.0612
\sim	$\text { ! Ih. } 0$	0．06．31	\cdots	－9．11	0.0639
\％	－！！	0.0618	8.7	－－！	0.0636
6	－9．9	0.0615	P．1．	－．！	0．0633
5	89.9	0.064%	\therefore	- －	O． 0630
4	－3．	0.0639	$-.4$	\therefore－	0．062\％
：	-1.4	0． 0636	$\because 3$	$\therefore i .7$	0．0621
\because	－1．	0．0633	$\because 8$	－－7	0．0621
1	－1． 7	0．0430	－ 1	－\％．${ }^{\text {a }}$	0.0618
0	－18	0.06% \％	－． 11	－i．ti	0．0615

0．s

Jemperature of tho d．w－jemit．
Remative hmmidnty in hamededths．

0.9

$+9.9$	89.6	0.0625	7． 0	－i．	0．0619
－	360	O．06セロ	7．	－－	0.0609
；	-4.5	0.0619	7．$\%$	$\therefore 2.4$	O．0606
6	－！－\％	0．0816	7.6	$-i .4$	0.0603
5	$5!1.5$	0.0613	\therefore	$-\therefore .:$	0．0600
4	$\because 1$	O．0610	7． 4	$\because: \therefore$	0．0．79\％
$:$	$\because 1.4$	0.060%	T． 3	－8．\because	0．0．391
2	-1.31	0．0601	－	$\because \because:$	0.0 .591
1	$\cdots 1$	O． 0601	$\therefore .1$	$\therefore 1$	0.0 .35
0	－	0．0．j9＊	8.0	． 1	0.0

7． 1	－5	0．0600		-3.5	0． 0.560	B．\quad.	-1.1	0.0 .75	6.1
7.3	Esins	0．0．79\％	n．${ }^{4}$	8．5．4	0．0．76．5	1． 4	$-1 .: 1$	0．0．57．7	6.0
\％．2	－ 4	O．0．79	（i．）	－3．：	0．0．ixa	（i）：	－1．：	0．0．3－2	5．！
\％． 1	$\therefore 1$	0.0 .791	0． 7	－3．3	0．0．）${ }^{\text {a }}$	ti．${ }^{-}$	$-1 .:$	0．0．369	
7．0	－	0．0．358	1i， 11	$\therefore 3$	0． 0.876	i． 1	-1.1	O．O．7．76	5.8
B． 3	－	0.0 .58 .7	13．	-3.2	0．0．738	ii． 0	－1．	0．0．56\％	$5.1 ;$
B．	8＊．	0．© in？	（i． 4	$-: 1$	0．05＞0	5．$!$	-1.11	0．0．760	\therefore
1． 5	5	0．0．579	1i．：	－3， 1	0． 0.36%	5．${ }^{\text {2 }}$	－ 0 ．！	0．0．3．3）	$\therefore 4$
6． 13	$\therefore 1$	0．0．5\％6	1：	－ 31	0．0．561	5．$\%$	－0，！	0．0．5．31	C．：
（i．－	－5．11	0．0．55 ${ }^{\text {a }}$	（i． 1	－！ 9	0． $0.36{ }^{2}$	5.6	－13－	0.0 .3 .51	$\therefore \because$

Wet－hall，thermometer，t ，Fabreubeit．
DIFFERENCE OF DRY AND WET BULB THERMOMETERS．

0.8 0.9美 Relative bmundity
in lomulredths． Fore of rapme in
English inches． 4．：3（ 01.1 O．0．520

$4:-2 \cdot 0$.
0．051\％
0．0．525 4.1 ：$-10.0 \mid 0.0 .514$
$4.5^{\mid-1.9!} 0$
$0.0 .5 セ 2$
（1） 79.9
0.0 .511
$4.4-1.90 .0 .319$
$\therefore 97$
79
0.
0.508
$4.0,-1,=$
0.0513

3．7 $7!1.6$
0． 0.502
$4.1 \mid r \mathrm{I} .7$
0．0．510
3.6 79．5
0.0199
$4.0-1.7$
0． 0.508
$3.5 \quad 7!\therefore$
0． 019%
0．（1．506
$3.4-9$
（1）

 i x－2 0．0．5：3： （i）rri． 10.0 .530 $4.4,-\therefore$ 0 （05） 1 $\therefore!$ Ri． 0.0510
，0．0．30\％

4
+5.9 ～～． 9 0．0．5 11

$\mathrm{B}-\pi .9$	0.0509	：i． 4	－．．． 1

7 r7．8 0．0．50\％

$i \quad \pi$	$\pi . \%$	$0.0 .50-1$
$\therefore \quad \pi .7$	0.0 .500	

| $\overline{1}+3.7$ | 0.0 .500 |
| :---: | :---: | :---: |
| $4 \quad-7.7$ | 0.0 .199 |

$\begin{array}{lrr} \\ ; & -7.6,0.019\end{array}$

0.301
3.
1 － 1
0.0198

$\therefore 1$ El．11
0． 0189
\because i；-A
0． 0.17 m
$\therefore .11 .11$
0.0186 ？．
2.9 － 2.110
0.0183 ヨ．
$\because-10 .!0$

$\begin{array}{llll}\because 27 & -11.8 & 0\end{array}$
0.0179
\because.
li（）．
036

DIFFERENCE OE DRY AND WET BULB TEERMOMETERS.

DIFFERENCE OF DRY AND WET BULB THERMOMETERS.
-

苂	DIFFERENCE OF DRY AND WET BULB THERMOMETERS．														
$\stackrel{3}{2}$	1．5			1.6			1.7			1.8			1.9		
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$											$\begin{aligned} & \text { Furce of vapor in } \\ & \text { Eagglinh inclues. } \end{aligned}$			$\begin{aligned} & \text { Force of vapor in } \\ & \text { Euglist inches. } \end{aligned}$	
-1.0	54，2	0.0213	-12.1	51.5	0．0231	－1：0 0	4゙S	（0．02020	－11．1	4 4． 1	9．0208	1－2：	43.4	0.019%	-16.3
1	54．0	0.0210	1？．\％	B1．${ }^{\text {a }}$	0．02429	13． 9	4－3	0．0209	14．：	4.5	0.0206	15.5	$4 \because 2$	0.0195	16.6
2	53.8	0． 0238	19.4	50.4	0．0227	13．4	$1^{2} .3$	0． 0216	11.4	45.5	0．0201	15．${ }^{\text {a }}$	13． 0	0．0193	16．${ }^{\text {a }}$
3	53.6	0． 0236	12．${ }^{1}$	50． 5	0．0225	13．6	1－2． 1	0．0911	14．1i	$4-1.3$	0．0202	1%	13．7	¢． 0191	17．1
4	53.4	0． 0231	12.8	5.5	0.0223	1：3， 4	47.3	0．0012	11．－	45.1	9．0800	16.0	43.5	0． 0189	17.2
5	23． 3	0．0232	13．${ }^{\prime}$	：．11． 3	0．0221	14.0	47.7	0． 0 明 10	1－11	44.9	0． 0196	14.2	42.2	0.018%	17． 1
6	53.0	0． 0230	13.2	50.1	0．0219	11.2	4.5	O． 0 20\％	12．	41.7	0.0196	16， 4	$1 \because .0$	0.0185	17.6
7	52.8	0． 0228	13.4	4！ 4	0．0¹7	14． 4	17． 3	0． 02006	1．， 4	41．${ }^{\text {r }}$	0.0151	16． 1	41.7	0.0183	17.8
8	52.6	0．0226	13.6	41.7	0．0215	14．6	di． 1	0．0201	15.6	11．：	0．0192	16.6	41.5	0.0181	18.0
9	52.4	0．0224	13.8	49.5	0．0213	14．＊	（15．9	0． 0202	15.6	4.1	0.0190	17．0	41.2	0.0179	12． 2
-2.0	52．	0.0222	-13.9	49.4	0．0211	－1：0	41． 6	0． $0: 000$	－16．0	43．－	0．0188	－17．	11.0	0.0177	－18．4
1	52.1	0.0220	14.1	4 4 .3	0．0209	15． 2	41，$: 3$	0．0198	11．\because	43.5	00186	17.5	40.7	0.0184	18.7
2	52.0	0.0218	14．：	49.1	0.0207	15． 4	46． 1	－． 0196	16.4	43．3	0.0181	17.8	40.4	0．0172	19.0
3	51.8	0.0216	14．$\%$	429	0．0205	15． 9	4.5 .9	0．0191	16．6	4：30	4．0182	$1 \therefore 0$	40． 1	0．0170	19.2
4	51.7	0.0211	14.7	4.7	0.0203	15．e	45.7	0．0175	16．9	42，	0.0180	12．\because	39.2	0.0168	19.4
5	51.5	0．0212	14．：	$4 \therefore 5$	0.0201	16.0	4.5	0.0190	17.8	4， 6	0.0178	12.1	29．5	0.0166	19.6
¢	51.4	0．0210	15.1	$42: 3$	0． 0199	16．2	45	0．0185	17.4	$4 \because 4$	0.0176	$1 \therefore 1$	： 0.2	0．0164	19．8
7	51.2	0．0208	15.3	52． 1	0.019%	11． 4	4．5． 1	0．0186	17.6	42． 1	0.0171	18.6	2r． 9	0．0162	20.0
8	51.1	0．0206	15.5	47.9	0．0195	16.6	44.9	0．0181	17.6	41．	0.0179	19.11	2\％ 36	0.0160	20.2
9	50.9	0．0204	15．$\%$	47.7	0．0193	13．1－	41.7	0．0182	$1 \therefore 0$	41． 5	0.0170	19． 2	统3	0．0158	20.4
－3．0	50.8	0．0202	-15.9	47.6	0.0191	－17．0	44.4	0.0189	－18．3＇	41.3	0.0168	-19.4	32． 0	0.0156	－－20．7
1	50.6	0． 0200	16.0	42.4	0．0190	$1 \mathrm{C}, 1$	44.1	$0.01 \% 8$	12.4	41.0	0.0160	19.5	37.8	O．0151	20.5
2	50.4	0． 0199	16.2	47．2	0．0188	17．：	413．3	0．0176	$1 *$	40.7	0．016．5	19.7	37.6	0．0153	21．0
3	50．2	0.019%	16.3	47.0	0.018%	17.4	4：37	0．017	12． 7	40.4	0.0163	19.9	：7．4	0.0151	21． 6
4	50.0	0． 0196	16.5	46.8	0．018．5	17．6	；13．	0．61783	1－． 1	40.1	0．0162	20.1	：\％． 2	0.0150	21． 4
5	49.8	0.01	16．6	40.6		17．7	1：3：	0．6） 月 $^{8} 1$	1！9．11	39.9	0． 0160	20.3	：17．0	0.0118	21.1
6	49.6	0.01	16.8	16.4	$0.018{ }^{\circ}$	17.9	$1: 1$	0.0170	19．	$3!.7$	0．0159	20.5	36． 2	0.014%	21．ε
		0．019	10.		0．0192									0.0115	29．110
7	49.4	0．0191	1 C .9	46.2	0．0181	$1 \times .11$		0．0168	19，4	［3． 3	0.015%	20.7	30.6	0.014	～．
8	49．2	©． 0	17． 1	4fi． 0	0.0179	12．2	13．	0.0167	19．6	3 ${ }^{3}$	0．0156	81， 11	：in． 4	0.0114	22.5
9	49，0	0． 0188	17．2	45.8	0．0178	$1 \sim 3$	4？ 5	9． 016.5	10．${ }^{2}$	20． 1	0． 0 1．71	21.1	；3， 2	0.0142	2

DIFFERENCE OF DRY AND WI'I EULB THERMOMETERS.

تٌ تٌ	DIFFERENCE OF DRY AND WET BULE THERMOMETERS														
	1．05			1.96			1.8				1.8		1.9		
	$\begin{aligned} & \text { n } \\ & 0 \end{aligned}$						$\begin{aligned} & \text { An } \\ & \text { An } \end{aligned}$							为	－
－－．0	4.6	0.0141	－	：120	0．01129	－ 1.8	3） 3	0．9118	－－25．9	31.6	0.0106	-27.7	27.8	0.009 .5	－89．5
1	13.8	0.0110	是是	洼只	0.0128	$\because 2.4$	35.0	0．0116	20.2	21．：3	0．010．3	$\because 2.9$	25． 4	0.0093	29.7
2	41．：	0.0138	23． 11	：－ 1	0．01126	－1． 6	：4．6	0．0115	96． 5	311.9	©．（1010	ハー・ン	97.0	（1．099 ${ }^{\circ}$	99．9
3	41.5	9． 0137	29．3	：1． 7	0． 1118.5	24.6	： 4.3	0．6113	20.7	30.17	4．910\％	$\because 2$	2， 7	0.0090	$\because 6.1$
4	41.2	0.0135	23． 4	：3． 4	0． 1183	25.0	33.9	（1）． 1112	20.9	30． 2	0．0101	2． 7	21	0.0089	2ir． 4
5	40.9	0.0131	只喪	$3 \% .1$	0．019 ${ }^{\text {a }}$	25.2	33.6	0．0110	27.1	39.9	0．00． 08	\because	$\because 3.1$	0．006\％	3.3
6	41.6	6． 0132	9\％，	：2ti． 8	0．0 0 ［20	25.4	3－3．9	0．0189	只：${ }^{\text {a }}$	$\because 9$	0.009%	只．\because	象象	O． 04886	：31． 19
\％	40.3	0．0131	24．11	36.5	0．0119	2－6 6	3 3． 9	0.0107	97	39.2	0．0095	突． 4	25	0．008－	31.3
\checkmark	40.0	0．0189	$\because 1.2$	31．	0.0117	走，6	： 2.6	0． 0106	$\because 7.7$	2rin	¢． 0093	？ 3.5	景昜	0．00y ${ }^{\text {c }}$	31.10
9	［99． 7	0．0128	$\because 4.1$	35．9	0.4116	26.0	32． 3	0．0101	27.9	$2-5$	0.0492	30， 11	－4．9	0．0481	：31．9
	39.3	0.0126	－21． 7	：5， 6	0．01111	-26.3	31.9	0．0103	292	心－	0．0091	－30．	$\because 1.5$	0.0080	边
1	39.0	0.0129	24.9	号，	O． 0111 ld	26.6	21.6	0．0102	28.5	9－11	0．0090	：ii） 1	$\because 1.1$	0.0089	
\because	3－2	0．0123	2－1	$\therefore 2$	0.0110	Q6．	31.4	0．0100	28.8	$\because 7.7$	0.0056	（31） 2	\cdots	0.007%	386
：；	$\because \sim 6$	0.0122		：4，	0．0109	\％\％．0	31.2	0． 0099	29.15	25． 4	0．006\％	310．4	－3． 5	0.0075	S 9
4	3r． 4	0.0120	9\％	34.6	0．010\％	吹：	31.0	0.009%	29.2	$\because 2.1$	0．005．5	31． 2	ㄴ․․․	0.00783	33\％
5	吅。	0.0119	20．	34.4	0.0106	2.1	30.8	0．0096	$\because 1.4$	26.8	0．008	$\because 1.4$	$\because 29$	0．0074	： 3.5
6	320	0.0117	？5．9	34.3	0．010．5	97.18	30.6	0．009 II	29.6	－ 3	0．0083	31.7	ㄴ․ 6	0．00\％0	3i3． 6
7	：5．8	0．0116	96.1	34.0	O．010］	9\％	30.4	0．0093	20.8	20.2	0.0088	31.4	23.3	0.0069	31.1
s	37.6	0.0111	26.3	23，8	0.0103	2－10	30.0	0． 6091	30.0	25.9	0．0081	R 81	23．11	0． 0068	34.4
9	37.4	0.0113	26.5	33.6	0.0102	22^{2}	99.6	9．009（1）	30.2	2－ 4	0．0080	：	21.7	0．0068	34.7
-9.0	21．2	0.0112	－93． 3	：13：3	0．0101	－98．5	㫛：	0．0083	-30.5	25.3	0．09\％	－\％${ }^{3}$	21.3	9．0966	－3． 2.3
1	： 3.9	0.0110	2li． 9	23． 0	©．0099	䞨 7	29.0	0.0087	30.7	25．0	0．00\％6	89	21.0	9，006	35.2
2	$\therefore 16$	0.0108	24.2	湿 11	0．009\％	23！ 11	28.5	（4）．0096	30.9	24.7	0．00\％是	\％ $3:$	010.	0．0062	35.4
3	313． 3	0.0106	？\％． 4	i2． 3	0．0095	\because	32． 4	（1）．003	$31 . \because$	21.4	0．0079	㳚，	90． 6	O．906	碞 6
4	36.0	0.0105	？7．${ }^{2}$	38.1	0.0091	ㅇ！ 4	28．11	0．0088	31.1	$\because 1.0$	0．0081	＇：3． 8	20． 4	0．0060	（ais
5	25 $\%$	0.0101	97．	31.7	0．0093	吅们	96	（1）．0981	： 1.1	83.7	0．0086	2：3．	20，\because	0．0553	36.0
6	$\therefore \therefore 1$	0.0103	9－11	31.4	0．009 ${ }^{\text {ct }}$	O！	$\because 2$	0． 00080	31.8	？ 3.4	0．0069	34.1	90.0	10．00．3	？ 3
7	35.1	$0.010{ }^{0}$	凹－：	31， 1	9．009	30.0	20：	（0．0078	：$\because 11$	－ 0	0.0068	31.3	19．8	0.0037	83.13
E	34.7	0．0101	Q	3 3．8	0．0090	： 10.2	205	0．007\％	识：	ㅇ．7	0．0063	O1	19， 6	0.00 .50	AH，
9	34.2	0．0099	28.7	30.4	0．6088	30.5	20.3	0.0076	20， 5	293	0．0063	34.7	19.3	0.0053	34.0

-11.0	26.10	0.0200	-16.11	i1．0	0.01 \％	－17．1	1itio 0	0．0178	－1－161．9	6． 0166	－1：1	－7．11	4	． 0
1	75.9	0.0198	16． 2	70． 9	0.0187	17．$: 3$	1ir． 9	0.018 .7		9．0161	1！ 1 ．	sios	0． 015	$\because 1.3$
2	75． 8	0.019%	16．：3	711． 5	0． 0185	17．：	Cis，	0.0181	1－5 60，	0．016\％	13．：	Sin． 4	0．（1）．5］	21.3
3	75． 7	0.0196	16.4	70.7	0．0181	17.6	6－3	0．0183	1以．96it． 7	0.0161	$\because 1$	（n） 1	0．0150	21.5
4	7．9， 1	0.019 .5	16.5	20.6	0．0183	17． 7	165． 10	0．01\％2	19．0 130． 1	0.0160	20.9	513．	O． 1119	$\because 1.6$
5	75，5	0.0191	16.6	70.5	0．0182	17.6	65．5	0.0171	19．1 lin．St	0.0159	20.4	5．1． 0	0.0118	21.8
6	75， 4	0.0193	16.7	70.4	0.0181	17．：	65． 4	0.0170	19．${ }^{(10.4}$	0.0155	20．51	mis	0．01．87	21.9
7	25． 3	0.0192	16．5．	70，：	0.0180	14	6．2． 3	0．0169	19．：（6）． 3	O．O15\％	21.7	Si． 15	0.0116	2． 1
＊	5	0.019	16．！	70.2	0.0189	$1 \cdots .1$	65．$:$	0．0168	19．4 60.2	0．0156	Q11．	万．r． 4	0.0145	\＆゙っこ
9	75.1	0.0190	17.11	70． 1	0.0188	12．：	65.1	0.016%	1！1． 11.60 .1	0.015%	21.11	5r． 2	0．0111	4
-13.0	75． 0	0.0188	－17．9	70.0	0．6176	－12． 5	（演 0	0．016．5	$-19.860 .0$	0．01．53	$\because 1.1$	55.0	0． 0142	． 5
	－11							0．0163	00．11－8．－	0．0151	？1．${ }^{\text {a }}$	54，－	0．0140	足：
1	74．11	O．0186	17.4	69.8	0．0171	12．7	64．${ }^{\text {a }}$	0.0163	20.1	0.01 .91	｜	－1．6	－013！	
$\stackrel{2}{2}$	74.8	0.0185	17． 5	69.17	0．0173	1－！	1i4． 17	0.016°	20.180 .6	0.0150	$\because 1.4$	． 1.6	0.0130	－2．${ }^{\text {a }}$
3						19．0	64.1	O．0161	20.54	0． 011 19	$\because 1.5$	51.4	0．013 ${ }^{\text {a }}$	33.0
										O．t11＊	81.7	T．1．2	0．013\％	！2： 1
4	74．6	0．0183	17.7	69．2	0.0171	19.1	61．？	0.0160	211： 5	O．b14．	1．1．			
5	74．5	0.01	17．6	69.0	O．0170	19.8	64．11	0． 015.39	90．4 5 －10	0.0118	$\because 1$.	51.	0.0136	
									11．\％．\％．．．	©． 0116	$\because 1.8$	73． 2	0．0135	？ 4
6	74.4	0.0181	17．9	68．8	0．0169	19.3	63． 2	0．0154	，． 1 ，					i． 6
7	74.3	0．0180	1＊．0	68.6	0．0168	19.4	63.4	0．015\％	94．t 5－6 6	0．014．0	$\because 1$		． 1.3	．
8						19.5	63.	0． 01.56	20.758 .4	0．01H	$\because!5$	53． 4	0.0133	3.7
		0.	．	，	－								0.0132	景．9
9	74.1	0．0178	183	14．2	0．0166	19.7	（3i）．\because	0．015．5	$\because 0.515$	0.0148	…	53．	0.0132	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} \& \multicolumn{15}{|c|}{DIFFERENCE OF DRY AND WET BULB THERMOMETERS．}

\hline \& \multicolumn{3}{|c|}{1.0} \& \& 1.1 \& \& \multicolumn{3}{|c|}{1.9} \& \multicolumn{3}{|c|}{1.8} \& \multicolumn{3}{|c|}{1.1}

\hline \& \& \& 边 \& \& \& \& \& \& \& \& \& \& \& z

$=0$
$=0$
$=0$

$=0$ \& $$
\begin{aligned}
& \text { D } \\
& \hline
\end{aligned}
$$

\hline $$
-130
$$ \& 47.0 \& 0． 0118 \& －25．- \& 44.0 \& 0．0107 \& －7， \& 39.0 \& 0.0096 \& － \& ：3． 0 \& 0．00\％1 \& －．31．： \& ： 31.11 \& ©． 0078 \& －－3：3． 4

\hline 1 \& 46． « \& 0．0117 \& 25.9 \& 43．7 \& O． 0106 \& \& ： 2 \& 0.009 .5 \& \& 33，${ }^{*}$ \& 0．00883 \& 31.1 \& 91.7 \& －0．007！ \& 3.3 .2

\hline \because \& 46.6 \& 0． 0116 \& 26.1 \& 43.4 \& 0.0105 \& 97.9 \& 384 \& 0．009 1 \& \& 33.1 \& 0．0082 \& 31． \& 29． 1 \& O． 0071 \& 3：9

\hline 3 \& 46.4 \& 0．0115 \& 26.3 \& 43.1 \& 0．0101 \& 201 \& 3－1 \& 0．0093 \& \& 33.4 \& 0．0081 \& ： 31 \& 59.1 \& 0．0070 \& 31.1

\hline 4 \& 46．\because \& 0．0114 \& 26.5 \& 42.8 \& 0．0103 \& \because \& ：$: 1.8$ \& 0．0092 \& \& 33， 3 \& 0.0080 \& 32． \& 28． \& 0.0069 \& 31．：

\hline 5 \& 46.0 \& 0．0113 \& 26．7 \& 42． \& O． 0102 \& 2 29． 4 \& 3\％．5 \& 0． 0091 \& \& 33.0 \& 0.0079 \& S？． 4 \& 些5 \& 0．0068 \& 31.5

\hline 6 \& 45.8 \& 0．011：2 \& 26.9 \& 42．2 \& 0.0101 \& 28.6 \& ：17．2 \& 0.0090 \& 30．\because \& 32， \& 0.0078 \& 30， 6 \& 为： \& 0．0467 \& 31.7

\hline 7 \& 45.6 \& O．0111 \& $\because 7.1$ \& 41.9 \& 0.0100 \& 2－7 \& 36.9 \& 0．0089 \& 30.7 \& ： 81 \& 0.007% \& 3 3.3 \& 27.9 \& O．DOE6 \& 31.9

\hline 8 \& 45.4 \& 0．0110 \& 27.2 \& 41.15 \& 0.0099 \& 29.0 \& 36.6 \& 0．0088 \& \& ［324 \& 0.0076 \& 23： 11 \& 27.19 \& 0．0065 \& 35.1

\hline 9 \& 45，2 \& 0.0109 \& 27．$:$ \& 41.3 \& ©． 0098 \& 29． 2 \& $36 .:$ \& 0．0087 \& 31.1 \& 32.2 \& 0．0075 \& ：33： \& 漦： \& 0．00611 \& ： 3.4

\hline -14.0 \& 45.0 \& 0.010% \& －27．5 \& 41.0 \& 0． 0096 \& -29.3 \& 36.0 \& 0．008．8 \& -31.4 \& ：32． 0 \& 0.0073 \& －3：3， 5 \& 27.11 \& －．0002 \& －in． 7

\hline 1 \& 44.7 \& 0.0106 \& 27.7 \& 40． \& 0．0095 \& 29.5 \& \& 0．00¢ 1 \& 31.6 \& 31.7 \& 0．007\％ \& 36． 2 \& 26.7 \& 0.0061 \& 25．9

\hline 2 \& 44.4 \& 0.010 .5 \& 27.9 \& 40.6 \& 0.0091 \& 29.7 \& 3\％ 6 \& 0．0083 \& ： 11. \& 31.4 \& 0．0071 \& 3．3． 9 \& 26.4 \& 0．0060 \& 03.1

\hline 3 \& 44.1 \& 0.0104 \& ？2． 1 \& 40.4 \& 0.0093 \& 29.9 \& 25． 4 \& O．0082 \& ［32．11 \& ： 31.1 \& 0．0070 \& 34.1 \& 26.1 \& 0．005\％ \& 36． 3

\hline 4 \& 43． $\bar{\square}$ \& 0.0103 \& 2r．\because \& 40.2 \& 0．0092 \& 30.1 \& 35.2 \& 0．00＊1 \& \％ \& 30.7 \& 0．0069 \& 34．3 \& 25．－ \& 0．00．7\％ \& 33.5

\hline \square \& 43，5 \& 0.0102 \& V6． \& 40.0 \& 0.0091 \& 311．3 \& 35． 0 \& 0．0080 \& ？ 4 \& 30.5 \& 0．0068 \& 34.5 \& 45. \& 0．003\％ \&

\hline $1 i$ \& 43．\because \& 0.0101 \& 足： \& 39.8 \& 0.0090 \& 30.5 \& 34. \& 0．007 \& Si－1 \& 30．！ \& 0．0067 \& 34.7 \& 号： \& 0．00．56 \& 36．9

\hline 7 \& 42.9 \& O． 0100 \& S2．9 \& 39.6 \& 0.0089 \& ：31． 7 \& 34.6 \& 0．00\％ \& $32 . \sim$ \& 29.9 \& O．0066 \& 34， \& ：4．9 \& 0．005．］ \& ：2i． 1

\hline ＊ \& 42.6 \& 0． 0099 \& 29.11 \& 39.4 \& 0．008＊ \& 30.9 \& ：34． 4 \& 0．007\％ \& 33.0 \& 29.6 \& 0．0065 \& 35.1 \& 24．1； \& 0.00 .74 \& ：3．：

\hline 9 \& 42．$:$ \& 0． 0098 \& 29． 1 \& 39.2 \& 0．008\％ \& 31.1 \& 31.2 \& 0．0076 \& 33.1 \& 29，3 \& 0．006 \& 35．： \& 24.3 \& 0．005：3 \& 33.8

\hline -15.0 \& 42.0 \& 0．0097 \& －29．2 \& 39.0 \& 0．0086 \& －31． \& 34.0 \& 0．0074 \& －33． 3 \& 29，0 \& 0．0063 \& －6in． 1 \& 24.0 \& 0．00．72 \& －3is． 4

\hline 1 \& 41.9 \& 0．0096 \& 20：${ }^{\prime}$ \& 38． 7 \& 0．0085 \& 31.3 \& 33.7 \& 0.0078 \& 33.4 \& 2－ 7 \& 0．006 \& 35.6 \& 23．6i \& 0．0051 \& $: 36.1$

\hline 2 \& 41.8 \& 0．0095 \& 95.5 \& 38.4 \& 0．008 \& 31.5 \& 33.4 \& 0．00\％ 2 \& 33， $6 ;$ \& 些 4 \& 0．0061 \& 35.8 \& 23.2 \& 0.00 .50 \& ： 2.3

\hline 3 \& 41.7 \& 0．0094 \& 94．7 \& 3 z .1 \& 0．008is \& 31.7 \& 38.1 \& $0.00 \% 1$ \& 3： \& 9， 1 \& 0.0060 \& $\because 6$ \& 28.8 \& 0.0019 \& Sr

\hline 4 \& 41.6 \& 0．0093 \& 29.9 \& ：37． 8 \& 0．008 ${ }^{2}$ \& 31.9 \& ： \& 0.0070 \& 34.11 \& 27.8 \& 0.00 .79 \& 3i，こ \& ！2． 4 \& 0．0018 \& ：2．7

\hline 5 \& 41.5 \& 0．0092 \& 30.1 \& ：$: 1.5$ \& 0．0081 \& 32.1 \& 32．5 \& 0.0069 \& 34． 2 \& 27．5 \& 0.00 .78 \& 3itic 4 \& $\therefore 2.10$ \& 0.0017 \& 3－．9

\hline 6 \& 41． 4 \& 0．0091 \& 30.3 \& ：\％ 2 \& 0．0080 \& 吅： \& ： 2 \& 0．006\％ \& ： 4 \& $\because 7.3$ \& 0．00．57 \& 313． 19 \& $\because 1.6$ \& 0．0016 \& 31.1

\hline 7 \& 41.3 \& 0． 0090 \& 30.5 \& ： 6.9 \& 0.0079 \& 3 ${ }^{2}$ \& ：31．9 \& 0．0067 \& $\therefore 1.6$ \& 36.9 \& 0.0056 \& 36.8 \& 21．2 \& 0．0015 \& ： 31.3

\hline 8 \& 41.2 \& 0． 0089 \& 30.7 \& 36.6 \& 0．00\％8 \& 3.7 \& 31.6 \& 0．0066 \& 34.8 \& 26． 6 \& 0．00．75 \& 37.11 \& 20.8 \& 0．0011 \& ：

\hline 9 \& 41.1 \& 0．0088 \& 30.1 \& 36.3 \& 0.007% \& 32.8 \& $31 .: 3$ \& 0.0065 \& ：${ }^{2} .10$ \& 96， 3 \& 0．0054 \& ：35． 2 \& 20.4 \& 0.0013 \&

\hline
\end{tabular}

DIFFERENCE OF DRY AND WET BULB THERMOMETERS.

	DIFFERENCE OF DRY AND WET BULB THERMOMETERS．														
	1.0			1．1			1.9			1.3			1．1		
						華								$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	
-16.0	41．11	0．008\％	－31．11	：rico	0.0076	－ 9	31.0	0.0061	－$\quad 1$	26	0.00 .5	－37．4	$2(1)$	0.0	－11， 11
1	41.5	0． 0086	$\because 1.3$	汤 7	0.0085	：3．：． 11	：31） 6	0． 0063	：15．：	－5	0．005 2	37.7	19．：	0． 0010	411．3
2	40.15	0．0085	31.4	：5． 4	0．00\％	3：\％	30.2	0．006	3is．${ }^{\text {a }}$	25.0	0．00j1	\therefore ：－ 11	19.0	0．0039	40．5
3	41.4	0．008岳	$\because 1.1 ;$	：\therefore ） 1	0．00\％3		180．8	0．0061	$35 . \hat{1}$	－4．5	0．00．30	\therefore－$:$	12.5	0．0038	41，\％
4	411．2	0．0063	31.8	$\because 1,8$	0．00\％	：3i． 6	29.4	0．0060	315	24.0	0．0019	$3 \sim .6$	1s．0	0．00：38	41.0
5	（1）． 11	0.0082	呮 11	：31．5	0．0081		9！． 0	0．00．59	：36． 1	？3． 5	0．00．18	： 4.8	17.6	0.0036	41.3
6	：3．	0． 008 㫫	： $2 \cdot \underline{1}$	$\therefore 1 . \because$	0．0070		ご 6	0．00．38	： 3 i．$: 3$	230	0．0017	29．01	17.1	0.0035	41．5
7	：${ }^{1}$ ，1；	（1）．0080	： 2.4	． 9	0．0069		\cdots	D．00．87	36.	23：	0.0016	埧吕	10.5	0．003－1	41.4
8	$\because 4$	$0.00 \% 9$	S3． 5	i：3．6	0． 0068	34.4	亿ッ，	0． 0.0 .36	： 6.7	\cdots	0．0015	39.4	16.0	0.0083	
0	30． 2	0.0078	？ 2 （i）	33.3	0．006\％	34.6	$\because 7.4$	0.00 .55	36.9	21.5	0．00H	3） 6	15，5	0．0032	423：
-17.11	： 9.0	0．00\％\％	－3： 7	33． 0	0．0066	-34.8	27.0	0.00 .54	－37． 2	27.0	0.00113	－－3： 3	$1 \therefore 0$	0．0032	-12.5
1	吅． 3	0．0076	？ 6	： 3	0.0063	34.9	26.7	0.00 .53	27.4	20． 7	（1）0012	40.1			
\because	32． 4	0．00\％5	33． 0	：39．4	O． 0064			0．00．72	37.6	20.4	0．0011	40.4			
3	$\therefore 1$	0.007 是	： \％3	？ 31	9．0063	硠．	\％i． 1	0．0．0．51	？2．－	20.1	0． 3010	40.			
4	$: \%$	0． 10083	\％3． 3	31.8	0．0062	3－4． 4	\cdots	0.0050	S－0	$1: 1.6$	0． 0039	40.			
5	：3．5	0．0078	？ 3	31.5	－．0061	\％ 6	3， 5	0.0019	350	$1!.5$	0．0038	41.0			
6	：37．2	0． 0071	23．6	31.2	0．0060	（3）${ }^{\text {c }}$	2－2	0.0018	88.4	10.2	0．0037	41.2			
7	36.9	$0.00 \% 0$	$\therefore 3.8$	：3．9	0．005	36.0	24．9	0．0018	32.6	14．9	0．0036	41.4			
s	：3i． 6	0．0069	2：3， 9	30．6	0.0058	36． 2	24.6	0.0046	2x．	18.6	0． 0035	41.6			
9	36.3	0.0068	34.1	30.3	0．005\％	： 6.4	$\because 4.3$	0.0015	39.0	1＊． 3	0．0034	41.8			
－1～．0	$\because 6.0$	0．0968	－34． 2	30.0	0．005\％	－3ti． 6	$\because 4.0$	0.0015	－36：	$1 \because 0$	0.0031	－42．0			
1	35.7	0．0067	24．\quad－	9！． 7	0．00．56	36.9	23.6	0．0014	39.5						
\because	\％\％． 4	0．0066	34.7	？$\because 1.4$	0.00 .55	37.2	？ 3.2	0．0043	39.8						
3	in． 1	0．0065	：34．！	\cdots	0．0051	27．4	298	（t．0012	40.1	．．．					
4	：4． 8	0．0061	Sis． 1	$\because 8$	0．00．53	23.10	？ 4	0．0011	40.3						
5	：34．5	0．0063	35． 3	545	0．0052	37.8	$\cdots 3$	0．00．10	40.5						
6	3－2	0．0062	\cdots	2） 2	0．0051	S＊． 4	$\because 1.6$	0．0039	40.7						
7	3．9．9	－0．00611	？$\quad 8$.	$\because 1.9$	0．00．50	3 ze	21.2	0．0038	40.9						
8	： 3.6	0．0060	3－5， 9	$\because 7.6$	0．00．9	2in． 1	20.8	0.0038	41.1						
9	： 3.0	0． 0059	36.1	－7，3	（1）．0018	3×15	20.4	0．0036	41.3						

葛	DIFFERENCE OF DRY AND WET BULB THERMOMETERS．														
	0.5				0.6		0．77			0.8			0.9		
						边			$\begin{aligned} & \text { Temprature of the } \\ & \text { dew-point. } \end{aligned}$			昰			（1）
-19.0	66.0	0．0115	－20．	59.0	©． 0103	－92． 1	21． 0	0． 0092	-30.0	4．5． 0	0．0081	－32． 11	39.0	$0.00 \% 0$	－：30， 0
1	65.7	0.0111	26.4	58.7	0．0103	2s．	81.7	0.0092	30.9	44.8	0．0081	$32 \cdot$	38.7	0．0070	：3． 1
2	65． 4	0.0113	26.6	5 Sc 4	0.0102	28． 5	51.4	0.0091	30.4	44.6	0.0050	哏：	3.4	0． 0069	34.9
3	65． 1	0．011？	26.7	5x． 1	0.0101	985	51.1	0.0090	311.6	44.4	0．0079	32.5	33． 1	0.0068	34．$: 3$
4	64.8	0.0111	26.9	57.8	0.0100	2－9	50.8	0．0089	30.8	44．：	0．0078	326	37.6	0.0067	34.5
5	64． 5	0.0110	27.0	57.5	0.0099	99.0	50.5	0．0088	30.9	44.0	0．007\％	32.	37.5	0.0066	34.7
6	14．3	0.0109	2ั．\because	$5 \% .2$	0． 0098	$\cdots 9$	50.2	0.0087	31.0	4：3． 8	0．0076	S． 9	37.2	0.0065	： 14.9
7	63.9	0.0108	27.3	56.9	0.0037	－	49.9	0．0086	31.1	fi． 6	0：00\％5	： 3.1	36.9	0．0061	洨 1
8	（ii）．${ }^{3}$	0.01107	27.5	56.6	0.0096	29.3	49.6	0．0085	31.2	4：3． 4	0．00\％ 1	3： 2	36.6	0． 0063	35.3
9	63.3	0.0106	2\％．6	50.3	0．0095	09.4	49.3	0.0081	31.3	43.2	0．00\％ 3	3： 7	36．：	0．0062	35.5
－20．0	（63．0	0.0106	－27． 7	56.0	0.0095	－29．5	49.0	0.0081	－：31． 4	43.0	0．0078	－33．5	36.0	0.0062	-35.7
1	62.9	0.010 .5	ソ\％！	55.8	0.009 \％	9． 4	4 F .4	0．0093	31． 6	42.7	0．0478	33．3 2	35.7	0． 0061	35.9
2	62．	0.0105	20.1	2－5． 6	0.0093	29.9	42.6	0．0082	31.8	42.4	0．00\％ 1	33． 6	35． 4	0.0060	36.0
3	63． 7	0.0101	ご， 2	55.4	0．009 2	30.1	42.4	0．0081	3： 11	42.1	0．0070	34.11	35.1	0.0059	36．
4	62.6	0.0103	Q2． 3	55． 2	0.0091	30，${ }^{\prime}$	ts． 2	0．0080	呮：	41.8	0.0069	34.1	34.8	0.0058	36．
5	62.5	0.0102	28.4	55.0	0.0090	30.5	15．0	0.0079	32.4	41.5	0.0068	34．3	34.5	0.0057	36.5
6	62.4	0.0101	昭 5	54.8	0.0089	30.7	47.8	0.0078	32.6	41.2	0．006\％	34． 1	34.2	0.0056	36.6
7	6－3	0.0100		54.6	0.0088	30.9	47.6	0．0077	3.9 .7	40.9	0.0066	34． 6	33.9	0.0055	36．${ }^{\text {c }}$
8	（10．2 2	0.0099	28.7	54.4	0.008%	31.0	47.4	0．0076	39．	40.6	0.0065	34.7	33.6	0．00】1	36.9
9	62.1	0.0098	28.8	54.2	0.0086	31.1	47.2	D．0075	32.4	40.3	0．0061	34.9	33.3	0．0053	37.1
－21．0	62.0	0.0098	\cdots	54.0	0.0086	－－31．\because	47.0	0． 0075	－33．11	40.0	0．0064	－35． 1	33.0	0.0053	－37．3
1	61.8	0.0097	29.1	53.8	0.0083	31.4	46.8	0．0071	33． 2	39.7	0．0061	35.3	32.5	0.0053	32.4
2	61．${ }^{\text {i }}$	0． 0098	29． 2	53． 6	0.0085	：31．6	46.6	0．0074	33.4	39.4	0．0063	35.5	32.0	0.0052	37.6
3	61.4	0．0096	$29 .:$	53.4	0．008 1	31.8	46.4	0.0073	33.6	39.1	0．0062	35． 7	31.5	0.0051	37.4
4	61.2	0.0095	29.4	53.9	0.0081	31.9	46.2	0．00\％ 3	33.8	38．8	0.0061	35.9	31.0	0.0050	32.0
5	61.0	0．0091	29.5	53.0	0．0053	320	46.0	0.0072	：34，0	38.5	0.0060	36.1	30.5	0.0049	38.2
6	60.2	0．0093	－9，6	52．8	0．0082	3 2.1	45.4	0．0071	34.	$3-2$	0． 0059	36.3	30.0	0．0048	3－4
7	60.6	0.0092	33.7	52.6	0.0081	38.2	45.6	D．00\％ 0	34.8	37.9	0． 0458	36.5	29.5	0．0047	32.6
＊	60.4	0.0091	29.9	52.4	0.0080	准3	45.4	0．0069	34.4	37.6	0．00．57	36.6	29.0	0.0046	32.
9	（in） 2	0．0090	30.1	519	0.0079	33.4	45.2	0．0068	34.5	37.3	0.0056	36.7	28.5	0． 004.5	39.0

Wet－lmult，thermouseter，t ，Fulnemheit．	DIFEERENCE OF DRY AND WET BULB THERMOMETE														
	0.0			d）． 1				（1）．3	0．83				0.1		
										$\begin{aligned} & \text { 关 } \\ & \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Fores of rapor in } \\ & \text { English inches. } \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \equiv \\ & \\ & = \\ & \hdashline \end{aligned}$	等
-0		9． 018		91． 0	9．011近	－ 31.15	-1.0	0．0101	－゙った	72．11	0.0090	－．in． 1	（i）． 11	0．0079	－62． 4
1		0．01：11		90.9	－． 1 1133	31.7	－ 01.9	0．0101	组；	71．8	0.0090	30.17	$61 . \mathrm{H}$	0．0079	
\because		0.01198		！0，－	（1）．011 ${ }^{\text {d }}$	93．8	-11.8	0．0100	2－9，	71.6	0.0089	3il．－	61.1	0． 0078	3 3.2
3		0． 11083		90.7	（1）．0112	$\because(6)$	80.7	0.0100	\％s．9	71.1	0.0089	30.9	131.4	6．0078	吅起
4		0．010420		［10． 6	0．6111	$\because \% .11$	N4． 6	0.0499	90．0	71．：	9．0088	31.11	61．\because	－0．0\％7	3
5		0．01398		90．	0．011星	$\because \mathrm{T} 1$	－11． 5	0.0093	\％ 1	71.1	0.0088	31.1	－81．0	0.0077	23：30
${ }^{4}$		0．01141		20．4	0．0110	：7． 2	91.4	0．0098	21．\because	70．s	0． 0087	31．\because	60．${ }^{\text {ch }}$	0.0076	33.1
7		－1．010 ${ }^{1} 20$		［10． 3	0.0198	？7． 3	（11） 3	0．009\％	9！ 3	71.1	0．0086	31．：3	60.15	O．90\％${ }^{\text {a }}$	33.2
8		0.0119		［11．）：	0．0108	$\because 2.1$	$-11 . \because$	0.0096	90.4	T0． 4	0．0085	31.4	till． 1	0.0071	：3．3
$!$		0.0118		90.1	0.010%	$\because 7.5$	－11． 1	0．0095	43．5	70	0．0051	31.51	（i）．\because	0．00\％ 3	3． 4
－$\because 1.0$		0．011\％		919．0	0.0146	$\because 7.7$	－11， 11	0．0091	－90．7	70．0	0．0083	-31.7	6il 11	0.0072	一景佼
1		0．111\％		－4．9	0.0106	（27． 3	79.9	0．009	29．a	（i） 9	0．0083	31.8	59.8	0.00% \％	33.8
2		0.0116		－－ 1 －	0．0108	20．0	513 5	0． 1098	？3）：	69．5	0．0082	31.9	－9．6	0．0071	34.0
3		0．0116		－ 4.7	0．010． 0	ご． 1	7！．	0．0098	30.0		0．0082	3.0	59．4	0．00\％1	34.3
4		0.0115		23． 6	O．O10 1	w	73．15	1．0092	30.1	13．1． 6	0．0081	版1	51.2	0．00\％ 0	（24．3
5		0.0115		－1， 5	0.0103	28．3	79．5	0．0092	30．${ }^{2}$	（i）． 5	0．0081	32.4	59.0	0.0070	3． 4
6		0．011 1		-1.4	0.0103	$\because 4$	59.4	0.0091	30.3	12． 4	0．0080	32． 3	5s．	0．0069	34.5
7				84． 3	$0.010{ }^{0}$	？	－9．3	0．00911	30.4	63.3	0．00\％	\％${ }^{2} 4$	Ex 6	0.0068	34.6
r		0.0112		E！	0.0101	20， 6	79.3	0．0090	30.5	69.2	0.0078	\％ 2	5×4	0.0067	34.7
9		0.0111		－1！ 1	0.0100	$\because \sim 7$	73． 1	0．0089	30.6	69.1	0．007\％	32， 11	58.2	0．0066	34．${ }^{-}$
-27.0		0.0110		－－9， 0	0.0099	－	73.0	0．0088	－30．－	69.0	0.0076	－32．	2－20	0.0065	－35．0
1		0．0110		－ 4.0	0.0099	$\because 2$	分． 9	0．0088	30.9	18.8	$0.00 \% 6$	33.1	5\％．	0.0065	35， 2
2		0.0109		－1， 0	0．0098	29.0	が，シ	0.0087	81.0	1is． 6	0．00\％ 5	33.1	57．${ }^{\text {c }}$	0．0064	35． 3
3		0.0109		－1．0 0	0．0098	$\because 9.1$	7r． 7	0.0087	31.1	fix． 4	0．007．	33．${ }^{2}$	2\％． 4	0．0061	涼． 4
4		0.0108		－3．0	0.009%	晾！${ }^{\text {2 }}$	T－6	0.0086	31.2	12．2	0.0071	33．3	S7．\because	0．0063	35.5
5		0.0108		－ 4.0	0．009\％	！！！ 3	7N． 5	0.0086	31.3	152．0	$0.00 \% 1$	33.4	53.0	0.0063	35.6
6		0.010%		± 9.0	0.0096	29.4	－3．4	0．0085	31.4	67.8	O．00\％3	33． 5	56.8	0.0062	35.7
7		0．010\％	－－－	－ 0	0.0096	23.5	袉3	0.0085	31.5	67． 6	0．0073	33.6	56，6	0.0062	35．8
8		0．0106			0．0095	\％0．ci	が， 2	0.0084	31.6	6.4	0．007 ${ }^{68}$	33.7	56.4	0．0061	35.9
1		0.0105		-3.0	0.0094	－13． 7	Ts． 1	0.0083	31.7	1i7． 2	$0.00 \% 1$	33.8	56．2	0．0060	36.0

DIFFERENCE OF DRY AND WET BULB THERMOMETERS． 0.0 0.1 0． 2 0.3 0.1													
			$\begin{array}{ll} \\ & \\ & \\ & \\ & \\ & \\ & \end{array}$				$\begin{aligned} & 1 \\ & \\ & \end{aligned}$		． 				－
$-\because-.0$		0.10101	，$\because 0$	93	－39－ir．0	0．0082	，－31．！	$1)^{1 \%} 0$	0．0070	－	in． 0	0． 00.59	－36． 2
1		0.0101	－ 9	0．0093	：30， 11 7\％，9	0．0082	$\therefore \therefore 1$	mitis	0．0070	： 14.	－2．3	（0）00．7．	：3i6． 1
\because		0．0103	－	0．009	\％ 0 \％ 1 \％s	O．0081	枵吕	66.5	0．0069	：34．：	\therefore－ 4	$0.00 .5 \%$	331.5
：		0．0103		0．0092	\％0．$\because 3.7$	0.0081	$\therefore \cdots$	16， 1	0．0069	：3． 1		0．00．58	36.6
1		0．0102	$\cdots 8$	0.0091	$330 .: 38,6$	0.0080	［10． 1	66． 2	0.0068	24．${ }^{\text {a }}$	－its	0．00．3\％	
\therefore		0．010\％	\therefore	0.0091	：20．+178	O． 00 ＊0	St：	83.0	0．0068	： 4.1 i	$\therefore 1.8$	$0.00 .5 \%$	： Hi_{6} ，
（i		0.0101	4	0．0090	30． 5 － 3.4	0．00\％9		（is），	0.0067	34.7	－ 4.	0.0056	：4．9
7		0．0100	－	0.0090	（i1． 16.3 .3	0.0089	：$\because .7$	65.6	0.0067	： 4.	－im： 9	0.0056	：＇i． 11
E		0.0099	$\therefore \geq$	0.0059	20． 278	0.0078	＊ 3.	（ii．） 4	0.0066	： 1.6	A．${ }^{\text {a }}$	0.00 .55	$\therefore 2.1$
9		0．0098	8.1	0．0088	，\％．	0.0078		（in）${ }^{\text {a }}$	0．006．3	A 31	－3， 3	0.00 .51	$\because 2$
－$\because 10$		0.0098	E－．11	0.0087	－31．11 71.0	0．0076	－${ }^{\text {a }}$ ， 11	（5．）． 0	0．006 ${ }^{\text {d }}$	－3，	$\because 11$	0． 00.38	－i8． 4
1		0.009%	－i．9	0．008\％	$\because 1.1$ 176．	0．0076	：3i． 1	64．－	d． 006.1	$\therefore .1$	吅，	0． 00.53	：12． 1 i
\because		0.0098	－	0．0086	31.2 in， 6	0.0085	2－3	rit． 6	0．0463	吅，	枵 4	0．00－92	：19，-7
：		0.0096	－7． 7	0． 0086	：1．$: 3$ 21． 4	0．00\％5	3：3 3	（i）．${ }^{\text {d }}$	0．0063	S3． 10	ㅇ． 1	0．005：	： 3.9
4	．．－－．．	0.0096	－i． 13	0．0085	31.4813 .3	$0.00 \% 1$	in． 4	64.2	0．006	？ F_{5} \％	51.	0． 00.31	䟚 0
$\overline{5}$		0.0095	5	0．008．	31.815 .0	0．00\％	33.3	14． 0	0．006 2	\therefore in，	11.	0.00 .51	$\therefore \div-1$
1		0.0095	87.4	0.008.	$31.6{ }^{\prime} 78$.	0.0083	33.6	（is）＊	0.0061	8，5．9	51．	0.00 .50	\because
7		0.0091	-7.3	0．0081	31.7 －in． 6	0.0073	\％ 3	（i）． 1 i	0.0061	34.11	50.9	0.0050	：2，
E		0.0091	－1．2	0．0083	31.585 .4	0．0073	33.	（i）． 4	0.0060	： H．$^{1} 1$	20．6	0．0019	： $2-4$
9		0.0098	－1． 1	0．008＊	31.938	$0.00 \% 1$	33.9	63．2	0.0059		50.3	0.0015	3×5
-30.0		0．009\％	87.0	0.0051	－	0． 00%	－-8	（i．）． 0	0.0058	-36.4	50.0	0.0018	－i， 5
1		0．009：3	－i． 11	0.0081	：6．1 1.1 .9	0.0070	34.1	10．8	0．00．55	36.5	49.7	0.0017	3－9
\because		0．0091	8.0	0.0080	湿： 84.	0．0069	34.3	（i2． 6	0.00 .58	：ir． 1	43.4	0．0016	［日． 1
：		0.0091	－7．0	0.0080	32． 2.71 .5	0．0069	34．：	lis． 4	0．00．7\％	$8: 16$	49.1	0.0016	39．2
4		0.0090	-1.0	0.0089	：2．3． 7.6	0.0065	34.4	6\％ 2	0.0036	30.5	小゙心	0.0015	39．3
i		0.0090	8.0	0．0079	浞． 51.5	0.0068	34.5	（2）0	0.00 .56	30．9	小゙，5	0.0015	39.4
${ }^{1}$	，	0.0089	$\therefore-7.0$	0.0078	O2．6，\％4． 4	0．006\％	34.6	61． 6	0.0055	（24．0 11	$4 \geq 2$	0.0011	39.5
7		0.0089	－T．0	0.0085	：2．7． 74.3	0．0067	3：1．7	61.15	0．005．5	： 2 \％ 1	17.9	0．0011	38.6
\because		0．006＊	－1．0	0．00\％\％	3－rit．	0.0066	34．	1.1 .4	0．005 1	涼．	45 6	0.0013	3in．
！		0．0056	－7， 1	0.0076	2n．9 21.1	0．0065	31.9	61．2	0.00 .51	：\％．：3	15.	0．0043	3n

䔍
DIFEERENCE OF DRY AND WET BULB THERMOMETERS

Wet-bulb thermometer, t, Fahrenheit.	DIFFERENCE OF DRY AND WET BULB THERMOMETSRS.														
	0.0			0.1				0.23			0.3		0.1		
							至					$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			\%
-37.0		0. 00.5		79.0	0.0011	-39. 5	50.0	0.0031	-42. 1	39.0	0.0022	- -5.1)	20.0	0. 0010	-48.7
1		0.0055		78.8	0.0044	39.7	55.7	0.0031	42.3	38.5	0.0022	4. $\because 2$	19.5	D. 0010	4 4 .8
2		0.0031		7F. 6	0.0043	39.9	57.4	0.0033		32.0	0. 1021	45.4	19.11	©. 0009	$4 \times .9$
3		0.00.51		78.4	©. 0043	40.0	57.1	0.0033	$1 \because 5$	37.5	0.0021	45.1.	15.5	©. 0009	49.1
4		0.0053		78.2	0.0042	40.1	56. H	0.0032	4.3. 6	37.0	0.0020	45.7	18.0	0.0008	49.3
5		0.0053		78.0	0.0012	10.2	56.5	0.0032	42.7	36.5	0.0020	45.8	17.5	0. 0008	49.5
6		0.0052		77.8	0.0011	40.3	56.2	0.0031	42.8	36.0	0.0019	45.9	17.0	0.0007	49.7
7		0.0052		77.6	0. 0041	40.4	[5. 9	0. 0031	42.9	35.5	0. 0019	46.0	16.5	0.000%	49.8
8		0.0051		77.4	O. 00.10	40.5	55.6	0.0030	43.0	35.0	0.0018	4 (6. 1	16.0	0.0006	49.9
9		0.0051		77.2	0.0010	40.6	55.3	O. 0030	43.1	34.5	0.0018	46. 2	15.5	0.0006	50.0
-38.0		0. 0050		7\%.0	0.0039	-40.7	55.0	0.0029	-43.3	34.0	0.0018	-16.3	15.0	0.0006	-50.1
1		0.0050		76.8	00039	$40.9{ }^{\prime}$	2.4. 5	0.0093	43.4	33.5	0.0018	46.5.	14.6	0.0005	50.3
2		0. 0019		76.6	0.0038	41.0	-4.0	0.0023	43.4	33.0	0.0017	41.7	14.2	©.0005	50.5
3		0. 0049		ib. 4	0. 0038	41.1	53.5	0.0028	4.3.	39.5	0.0017	46.9	13, x^{2}	0.0005	50.7
4		0. 0048		-it. 2	0.0037	41. 2	53.0	0.0027	43.6	3, 0	0.0016	47. 1	13.4	0.000 1	50.8
5		0.0018		76.0	0.0037	41.3	52.5	0.0027	43.6	31.5	0. 0016	47.2	130	0.0004	50.9
6		0.00 .17		55.8	0.0036	41.4	- 0	0.0026	43.7	31.0	0.0015	47. 3	12.6	0.0004	51.0
9		0.00H7		75. 6	0.0036	41.5	51.5	0.0026	$4: 3.7$	30.5	O. 0015	47.4	12.2	©. 0003	51.1
		0.0016		75. 4	0.0035	41.6	510	0.0025	4:3.-	30.11	O.0011	47.5.	11.8	0.0003	51.2
		0.0016		\%5.	©. 0035	41.7	50.5	0.0025	43.4	4.5	0.001.1	47.6	11.4	0. 0003	51.3
-39.0		0.0016		75.0	0.0035	-41.8	50.0	0.0025	-44.0	20.0	0.0018	-17.7	11.0	0.0002	-51.4
1		0.0015		74.8	0.003 1	41.9	49.6	0.0021	44.2	$\because 2.6$	0.0013	47.9	10.6	0.0002	51.6
2		0.0015		74.6	0.003	13.19	49.2	0.0021	44.4	22.2	0.0012	48.1	10.:	0.0002	51.7
3		0.0015		84. 4	0.0031	4\% 1	48.8	0.0023	44, 6	\%\%.	0.0012	42.	9.8	0.0001	51.9
4		0.0011		74.2	0.0033	4.9 .2	48.4	0. 0028	4.7	.7. 1	0. 0011	45.3	9.4	0.0001	52.0
5		0.004		74.0	0.0033	$4: 3.3$	48.0	0.0022	44.8	27.0	0.0011	48.4	9.0	0. 0001	52.2
6		0.0011		73.8	0.0033	42.4	47.6	0.00-23	44.9	26.6	0. 0011	4×5	8.6	0.0001	52.3
7		0.0043		73.6	0.0032	$4 \cdot .5$	47.2	0.0) ${ }^{\text {a }} 1$	45, 0	96. 2	0.0010	48.6	8.2	0.0000	52.5
8		0.0013		73.4	0.0032	$4 \because .6$	46.8	0.0021	45:	25.8	0.0010	48.7	7.8	0.0000	52.6
9		0.0042		73. 2	0.0031	42.4	46.4	0.0020	45.4	25. 4	0.0010	4×2	7.4	0.0000	52.8

	DIFEERENCE OF DRY AND WET BULB THERMOMETERS.														
	0.0			$0^{\circ} \cdot 1$			0.3			0.83			0. 1		
												$\begin{aligned} & \text { 焉 } \\ & 0 \end{aligned}$			
-40.0		0.0012		73.0	0.0031	-4.2.9	46.0	0.0020	-45.6	25.0	O. 0009	$-4^{2} .9$	3.0	0.0000	-59.9
1		0.0042		79.7	0.0031	43.1	45.5	0.0020	45.8	24.5	0.0009	49. 1			
2		0.00-11		72.4	0.0030	43.2	45.0	0.0019	46.0	24.0	0.0008	49.2			
3		0.00-11		72. 1	0.0030	43.3	44.5	0.0019	46.1	23.5	0.0008	49.3			
4		0.0010		71. H	0.0029	43.4	44.0	0.0018	46.2	23.0	0.0008	49. 1			
5		0. 0010		71.5	0.0029	43.5	43.5	0.0018	46.3	? 25	0.0007	49.5			
6		0.0039		71.9	0.0028	43.6	43.0	0.0017	46.4	ㅇ.0.0	0.000\%	49.6			
7		0.0039		70.9	0.0028	43.7	42.5	0.0017	46.5	21.5	0.0006	49.7			
8		0.0038		70.6	0.0027	43.8	42.0	0.0016	46.6	21.0	0.0006	49.8			
9		0.0038		70.3	0.0027	43.9	41.5	0.0016	46.7	20.5	0. 0006	49.9			
-41.0		©. 0038		70.0	0.0026	-44.010	41.0	0.0016	-46.8	20.0	0. 0005	-50.1			
1		0.0037		69.7	0.0026	44.1	40.5	0.0015	47.0	19.5	0.0005	50.3			
2		0.0037		6). 4	0. 0025	44.2	40.0	0.0015	47.2	19.0	0. 000 !	50.9	.		
3		0.0037		69.1	0.0025	4.3	39.5	©. 0014	47.3	14.5	0. 0001	5.0. 6	-		
4		0.0036		68.8	0.0021	44.4	39.0	0.0014	47.4	1 k .0	0.000	50.7			
5		0.0036		tiz. 5	O.0024	4.5	38.5	©. 0013	45.5	17.5	0. 0003	50.6			
6		0.0035		192. 2	0.0023	44.6	38.0	O. 0013	47.6	17.0	0.0003	50.9			
7		0.0035		tif. 9	0.0023	44.7	37.5	0.0013	47.7	16.5	0.0003	51.0			
v		0.0035		67.6	0.0022	4.8	33.0	0.0012	47.8	16.0	0.000:	51.1			
9		0.0031		67.3	0.0022	4.4	36.5	0.0012	47.9	15.5	0.000%	51.2			
-42.0		0. 0034		67.0	0.0022	-45. 1	36.0	0.0012	-48.0	. 15.0	0.0001	-51. 4			
1		0. 0031		66.6	0.0021	45. 2	35.5	0.0012	48.1	14.5	0.000 1	51.6	S.		
2		O. 0033		66.2	0.0021	45.3	385.0	0.0011	48.3	14.0	0.0001	51.8	8.		
3		O. 0033		65.8	0.0021	45.4	34.5	0.0011	48.3	13.5	0. 0001	51.9			
4		0.0032		65.4	0.0020	45.5	34.0	0.0010	48.4	13.0	0. 0001	5-11	1		
5		0.0032		65.0	0.0020	45. 6	33.5	0. 0010	48.5	512.5	0.0001	52.1			
6		0.0031		64.6	0.0019	45.7	33.0	©. 0009	48.6	12.0	0.0000	5.3	?		
7		0.0031		. 64.2	0.0019	45.8	32.5	0. 0009	48.7	\% 11.5	0.0000	59.3			
8		0.0030		63.8	0. 0018	45.9	32.0	0.0008	4-. ${ }^{\text {c }}$	- 11.0	0. 0000	52.5			
9		0. 0030	63.4	0.0018	46.1	131.5	0. 0008	49.11	10.5	0.0000	59			

[^0]: * Dr. A. Petermann : Das Noerdliehste Land der Erde. Petermann's Geogr. Mittheilungen, April, 1867, p. 186.

[^1]: * Der Golfstrom nod Standpunkt der thermometrischen Kenntniss des Nordatlantischen Oceaus und Laudgebietes w Jahre 1870 von A. Petermann. Geagraph. Mitthcilnugen, Vol. XVI, 1870, Heft 6 und 7.

[^2]: * Compare Petermann's paper, Das Nördlichste Land der Erde, Plan No. 3 of the accompanjing map, loc. cit. 3 H

[^3]: * The track may bo fonnd on the aceompanying map, and the positions as taken during the time are given in the chapter containing the astronomical ubservations.
 Spottiswoode, 18tio, p. 4.

[^4]: ＊The half－tid level being derived from the means of mean valun is usially and prop rly enomg called the mean lew，but as this latter tem is also used othervise，we prefer the term half－tide level to aroid any miscunception as the texm we：n berel．In the following discussions it will always h．referred to as the hall－tide level，while the mean of two or more levels will be called the mean level simply．

[^5]: * Compare Az Arapály a Finmei Öbölben irta Stahlberger Emil. Budapest, 1874. Kiadja a Kir. Magyar Természettudomángi Tarsulat. (The Tides at the Road of Fiume, by E. Stahlberger. Budapest, 1si4. Royal Hungariau Society of Nat. Sciences), containing the latest and most careful iu vestigation on this subject, derived from automatic records.

[^6]: * In some instances it occurs that only the height of the barometer, or ouly the half-tide lerel, could be recorded in the "Table for the reduction of tides, No. 1." In such cases these single values were not taken into account in the separation of values, therels prodncing the differeuce in the vumber of ralues enumerated in this and in the preceding table.

[^7]: * We tried to remedy this ly applying corrections for the non-periodical effects, but this proved to be rather ditticult, as it became doubtful whether the errors contained in the corrections applied could be considered small evough 7 II

[^8]: * Iutirpulaterl.

[^9]: * In the investigation of the variation of the half-tide level as depending on the changes in the moon's declination, wa found for the mean balf-tide level correspondiug to the mean duclination of the moon the valno $4^{\text {ft }} 44^{2} \mathbf{h}^{4}$, which differs from the above by 0 ft.00I only.

[^10]: ＊Physical Observations in the Arctic Seas，by I．I．Hayes．Reduced and discnssed by Charles A．Schott．Smith－ sonian Contributions to Knowledge，196．Washingtou City，Smithsonian Institution，1v67，p． 104.

[^11]: *According to Koldewey the tides of Sabine Island show the same peculiarity. Compare "Die zweite deutselh" Nordpolarfalirt," vol. II, p. 66?.

 11 H

[^12]: ＊For Tan liensela Harbor the dimual inequality in height of high water disappears on the areage 1.6 days and for Port Fonlke 1.9 days after the epoch of the moon＇s seluldeclination．For the latter plaee the apparent retard of the
 of interference of the dimnal with the semi－dimen waw，but we do not burere that such au explanation conld apply to our case．If we were to dednce the intrraln given in the almove table that now have a negative sign，throughout， from the preceding epoch of the moon＇s zevo declination，we shonld obtain a retardation extending not ouly over the Whole period of a semi－huation，but it wonk，in one instance，be at laist two hays longer．This explanation might be plansihle if the tiles observed at Polaris Ray wero prodned by the same wave as those at Van harsidur Harbor and at Fort Funlke；but a emprarison of the cotidal hours of the three places conclusively shows that the two tidal waves are propagated from entirely different dirmetions．

[^13]: * In usiug this method, the scale employed shonld lo large cnough to allow of measuring the ordinates accurately within $0^{\text {tr }} .01$.

[^14]: * Compare the thermal curves for the seasons, as given hereafter in the discussion of the dew-point in the Hygrometri-

[^15]: Probable error of a single representation $= \pm 0^{\circ}, 0!$
 Probable error of mean．．．．．．．．．．．．．．．．．．．．．$= \pm 0$ ： $0:$ ：

[^16]: * Abstracts and results of magnetical and meteorological observations at the Magnetic Observatory, Torouto, Canada, from 1841 to 1871, inclusive. Toronto: Copp, Clark \& Co., 1875. Table XXVI, et seq.

[^17]: * For the description of tho Fortin-Green barometer, compare Smithsonian Mriscellaneous Collections (148), Directions for Meteorological Thsurvations, and the lienistry of Periodical Phenomena. Washington: Government Printing Office, 1072.

[^18]: ＊The abore results were dedncel from the computed bihourly＂me：ns of each month，combined for the respective seasons．For reasons mentioned beture，we abstain from giving the analytical expressions for the respectire months in question．

[^19]: tions take山 at seat."

[^20]:

[^21]: * Haleer, A discomse concerniug the proportional hrat of the sun in all the latitudes, etc. Philosophical Transactions, vol. 17.

 Lambert, Pytometrie, Berlin, 1779, p. 310, etc.
 Herschel, Comptes rendus, 1836 , II, p. 505.
 Quetelet, Annuaire météorologique do la France ponr 1815. Paris, 1850.
 Mefch, On the relative intensity of the heat and light of the sun. Smithsonian Contributions to Knowledge Washington, 1856.

[^22]: (1) Max. tomp. $=+42.2 ;$ min. toup. $=+3.5 .4$
 (2) Max. temp. $=+38.2$; min. temup. $=+26$.

[^23]: Latitude $=80^{0} 54^{\prime \prime}$

[^24]: rroor, as given by Mr. I'hester, at Nemman's Bay.
 $6 \Delta 0$

[^25]:

[^26]: * In two instancer wr ohbervorl fill ithonrs.

[^27]: *We intended to repeat the experiments at Polaris Bay during the summer of 1892 , but were prevented from doing so by the perilous position of the ship.

[^28]: * The few extreme cases beyond the limit of this table can easily be supplied.
 \dagger Schott (loc.cit., p. 33) assumed the coefficient of expansion to be 0.0001045 , and the coefficient for the number of vibrations, 0.4518 . Insteal of the latter value, we used 0.452 , which was considered to be accurate enough.
 \ddagger To take not only the expausion, but also the unernal density of the pendnlum into account, we assmmed that the two strata of cold and warm air met midway between E_{2} and E_{1} (as shown above). In order to obtain the factors mentioned, the moment of inertia of the pevdulum (of the dimensions as stated above) was divided by the statieal moment, which gave the length of the simple pendulum. Designating 7 y τ_{1} and τ_{2} the number of degrees Fahrenheit above 50° of the upper and lower end respectively, it was found that the correetion to be applied to the usual correction for temperature, $0.452\left(\frac{\tau_{1}+\tau_{2}}{2}\right)$ on account of unerual density, is,

 $$
 \begin{aligned}
 & +0.10\left(\tau_{1}-\tau_{2}\right) \\
 & +0.17\left(\tau_{1}-\tau_{2}\right)
 \end{aligned}
 $$

[^29]: No correction is needed if the two strata mcet at P_{b}. We adopted the coefficient 0.10 ; and the complete correction for the sum of vibrations performed in a solar day becomes, after combining the coefficients of τ_{1} and τ_{2} into one$0.329 \tau_{1}+0.130 \tau_{2}$
 for a solar day, and, therefore, for an interval of 15 minutes$0.335 \tau_{1}+0.135 \tau_{2}$
 the unit being now 0.01 vibrations.

 * As the excess was positive at Polaris House, the middle had to be subtracted from the preceding transit, and the following transit from the middle. Instead of finding the excess at once, it might bo found to be more convenient to assume an excess by first approximation, in order not to be compelled to carry over so many figures and find only the correction to this assumed valne; but, as the excess for 15^{m} was unter 1^{s} at Polaris lab, the excess was found at once. At Polaris House, it would bo well to assume 1s.5, and find tho correction to this value.

